
VITAM - Manuel de développement
Version 8.1.2

VITAM

déc. 15, 2025

Table des matières

1 Introduction 1
1.1 But de cette documentation . 1
1.2 Destinataires de ce document . 1

2 Rappels 2
2.1 Information concernant les licences . 2
2.2 Documents de référence . 2

2.2.1 Documents internes . 2
2.2.2 Référentiels externes . 3

2.3 Glossaire . 3

3 Configuration de l’environnement de développement 6
3.1 1. Prérequis . 6
3.2 2. Récupérez le code source . 6
3.3 3. Démarrez Docker . 7
3.4 4. Dans Docker . 7
3.5 5. Ajoutez les lignes suivantes dans le fichier /etc/hosts . 7
3.6 7. Lancez IntelliJ . 7
3.7 8. Importez le project Vitam dans IntelliJ . 7
3.8 9. Initialisez la configuration . 7
3.9 10. Dans IntelliJ, configurez les chemins suivants pour chaque module du projet : 8
3.10 11. Dossier de travail : . 8
3.11 12. initialisation de la base de données : . 8
3.12 13. Démarrez les services dans IntelliJ . 8
3.13 14. Démarrage de l’IHM . 8
3.14 15. Utilisez Vitam . 9

4 Détails par composant 10
4.1 Access . 10

4.1.1 Introduction . 10
4.1.1.1 But de cette documentation . 10

4.1.2 Composant Access . 10
4.1.2.1 Utilisation . 10

4.1.2.1.1 Configuration . 10
4.1.2.1.2 La factory . 11

4.1.2.2 Le Mock . 11
4.1.2.2.1 L’application rest . 11

i

4.1.2.2.2 Le client . 11
4.1.2.3 Exemple d’usage générique . 12
4.1.2.4 Exemple d’usage générique . 12

4.1.3 Filtre Contrat d’accès . 12
4.1.3.1 Classe de filtre . 12
4.1.3.2 Implémenter des filters . 13

4.1.4 Access-rest . 13
4.1.4.1 Présentation . 13
4.1.4.2 fr.gouv.vitam.access.external.rest . 13

4.1.4.2.1 Rest API . 13
4.1.4.2.2 Rest API . 14
4.1.4.2.3 Rest API . 15
4.1.4.2.4 Rest API . 15

4.1.5 contrôle des flux d’accèss . 16
4.1.6 vitam-pooling-client . 17
4.1.7 Utilisation . 17

4.1.7.1 Paramètres . 17
4.1.7.2 Le client . 18

4.2 Collect . 18
4.2.1 Introduction . 18
4.2.2 DAT : module collect . 18

4.2.2.1 Modules et packages . 18
4.2.2.2 Classes métier . 19

4.2.2.2.1 collect-rest . 19
4.2.2.2.2 collect-client . 19

4.2.3 COLLECT . 19
4.2.3.1 L’application rest . 19

4.2.3.1.1 collect : CollectMain . 19
4.3 Common . 19

4.3.1 Introduction . 19
4.3.1.1 But de cette documentation . 19
4.3.1.2 Utilitaires Commons . 19

4.3.1.2.1 FileUtil . 19
4.3.1.2.2 LocalDateUtil . 19
4.3.1.2.3 ServerIdentity . 20

4.3.1.2.3.1 Usage . 20
4.3.1.2.3.2 Les usages principaux . 20

4.3.1.2.4 SystemPropertyUtil . 20
4.3.1.2.5 PropertiesUtils . 21
4.3.1.2.6 BaseXXX . 21
4.3.1.2.7 CharsetUtils . 21
4.3.1.2.8 ParametersChecker . 21
4.3.1.2.9 SingletonUtil . 21
4.3.1.2.10 StringUtils . 21

4.3.1.3 GUID . 21
4.3.1.4 Logging . 21
4.3.1.5 LRU . 22
4.3.1.6 Digest . 22
4.3.1.7 Json . 22
4.3.1.8 Exception . 22
4.3.1.9 Client . 22

4.3.2 Global Unique Identifier (GUID) pour Vitam . 22
4.3.2.1 Spécifier ProcessId . 22
4.3.2.2 GUID Factory . 22

ii

4.3.2.2.1 Pour la partie interne Vitam . 23
4.3.2.2.2 Pour la partie interne et public Vitam . 24

4.3.2.3 Attention . 24
4.3.3 Digest . 24

4.3.3.1 Usage . 24
4.3.4 Logging . 25

4.3.4.1 Initialisation . 25
4.3.4.2 Usage . 25
4.3.4.3 Pour l’usage interne Vitam . 25

4.3.5 JunitHelper . 26
4.3.5.1 MongoDb or Web Server Junit Support . 26

4.3.6 Client . 27
4.3.6.1 But de cette documentation . 27
4.3.6.2 Client Vitam . 27
4.3.6.3 Configuration . 28

4.3.7 DirectedCycle . 28
4.3.7.1 Initialisation . 28
4.3.7.2 Usage . 29
4.3.7.3 Remarque . 29

4.3.8 Graph . 29
4.3.8.1 Initialisation . 29
4.3.8.2 Usage . 29

4.3.9 Code d’erreur Vitam . 29
4.3.9.1 Les codes . 30

4.3.9.1.1 Code service . 30
4.3.9.1.2 Code domaine . 30
4.3.9.1.3 Code Vitam . 30
4.3.9.1.4 Ajout d’élement dans les énums . 30

4.3.9.2 Utilisation . 30
4.3.10 Common format identification . 31

4.3.10.1 But de cette documentation . 31
4.3.10.2 Outil Format Identifier . 31
4.3.10.3 Configuration . 32

4.3.11 Common-storage . 32
4.3.11.1 Présentation des APIs Java . 32

4.3.11.1.1 Introduction . 32
4.3.11.1.2 Liste des méthodes . 33

4.3.11.2 Configuration . 34
4.3.11.2.1 Configuration par code . 35

4.3.11.2.1.1 Exemple filesystem . 35
4.3.11.2.1.2 Exemple SWIFT CEPH . 35
4.3.11.2.1.3 Exemple SWIFT OpenStack . 35
4.3.11.2.1.4 Exemple S3 . 35

4.3.11.2.2 Configuration par fichier . 36
4.3.11.3 Présentation des méthodes dans SWIFT & FileSystem 36

4.3.11.3.1 Introduction . 36
4.3.11.3.2 Liste des méthodes . 36

4.3.11.3.2.1 getObjectInformation 36
4.3.11.4 Détail de l’implémentation HashFileSystem . 37

4.3.12 Métriques dans VITAM . 37
4.3.12.1 Introduction . 37
4.3.12.2 Fonctionnement des métriques dropwizard . 37

4.3.12.2.1 Métriques métier . 38
4.3.12.2.2 Reporters . 38

iii

4.3.12.2.3 Legacy . 38
4.3.12.3 Prometeus . 39

4.3.12.3.1 API . 39
4.3.12.3.2 Configuration du serveur promtheus . 39
4.3.12.3.3 Implémentation des métriques . 40

4.3.12.3.3.1 Récupération des métriques déjà existante 40
4.3.12.3.3.2 Développement de nouvelles métriques prometheus 40

4.3.13 Common-private . 45
4.3.13.1 Génération de certificats et de keystore . 45

4.3.13.1.1 Présentation . 45
4.3.13.2 esapi utilisation . 46
4.3.13.3 Format Identifiers . 46

4.3.13.3.1 But de cette documentation . 46
4.3.13.3.2 Format Identifier . 47

4.3.13.3.2.1 Implémentation Mock . 47
4.3.13.3.2.2 Implémentation Siegried . 47

4.3.13.3.3 Format Identifier Factory . 47
4.3.13.3.3.1 Configuration . 47
4.3.13.3.3.2 Méthodes . 48

4.3.13.4 Introduction . 48
4.3.13.4.1 But de cette documentation . 48

4.3.13.5 DAT : module Graph . 48
4.3.13.5.1 modules & packages . 49

4.3.13.5.1.1 Modules et packages . 49
4.3.13.6 Paramètres . 49

4.3.13.6.1 Présentation . 49
4.3.13.6.2 Principe . 50
4.3.13.6.3 Mise en place . 50

4.3.13.6.3.1 Nom des paramètres . 50
4.3.13.6.3.2 Interface . 50
4.3.13.6.3.3 Possibilité d’avoir une classe abstraite 51
4.3.13.6.3.4 Possibilité d’avoir une factory 52
4.3.13.6.3.5 Code exemple . 53

4.3.13.6.4 Exemple d’utilisation dans le code Vitam 53
4.3.13.7 Uniform Resource Identifier (URI) (vitam) . 53

4.3.13.7.1 fonctions . 53
4.3.13.8 Configuration de apache shiro . 53
4.3.13.9 Présentation authentification via certificats . 53
4.3.13.10 Décryptage de shiro.ini . 54
4.3.13.11 Utilisation des certificats . 54
4.3.13.12 Présentation . 55
4.3.13.13 Classes de filtres . 55
4.3.13.14 Implémenter des filters . 55
4.3.13.15 Appliquer le filtre pour Vitam . 55
4.3.13.16 Présentation . 56
4.3.13.17 Classe de filtre . 56
4.3.13.18 Ajout du filtre . 56
4.3.13.19 Modules Vitam impactés . 56
4.3.13.20 Présentation . 56

4.3.13.20.1 Utilisation . 56
4.3.13.21 Présentation . 57

4.3.13.21.1 Classe de configuration . 57
4.3.13.21.2 Implémentation dans les serveurs de Vitam 57

4.3.13.22 Implémentation de l’éxécution des requêtes mono-query DSL 58

iv

4.3.13.22.1 Implémentation des query builder . 58
4.3.13.22.2 Implémentation de DbRequestSingle . 58

4.3.13.23 Implémentation de l’authentification . 59
4.3.13.23.1 Implémentation de l’authentification (MongoDbAccess) 59

4.3.13.24 Implémentation du secret de la plateforme . 59
4.3.13.24.1 Présentation . 59
4.3.13.24.2 Implémentation . 59

4.4 Functional administration . 60
4.4.1 Introduction . 60
4.4.2 DAT : module functional-administration . 60

4.4.2.1 Modules et packages . 60
4.4.2.2 Classes métiers . 61

4.4.2.2.1 functional-administration-common . 61
4.4.2.2.2 functional-administration-format . 62
4.4.2.2.3 functional-administration-rest . 62
4.4.2.2.4 functional-administration-client . 62
4.4.2.2.5 functional-administration-rules . 62
4.4.2.2.6 functional-administration-accession-register 63
4.4.2.2.7 functional-administration-contract . 63
4.4.2.2.8 functional-administration-profile . 64
4.4.2.2.9 functional-administration-context . 64
4.4.2.2.10 functional-administration-security-profile 64

4.4.3 Administration-Management-Common . 64
4.4.3.1 1. Modules et packages . 65
4.4.3.2 2. Classes . 65

4.4.3.2.1 2.1 Class ElasticsearchAccessFunctionalAdmin 65
4.4.3.2.2 2.2 Class MongoDbAccessAdminImpl 65

4.4.4 Administration-Management-client . 67
4.4.5 Utilisation . 67

4.4.5.1 Paramètres . 67
4.4.5.2 La factory . 67

4.4.5.2.1 Le Mock . 67
4.4.5.3 Le client . 67

4.5 IHM demo . 68
4.5.1 Introduction . 68

4.5.1.1 But de cette documentation . 68
4.5.2 IHM Front . 68

4.5.2.1 Cette documentation décrit la partie front/Angular de l’ihm et en particulier sa confi-
guration et ses modules. 68

4.5.2.1.1 Utils et général / Composition du projet Angular 68
4.5.2.1.1.1 Composition du projet . 68
4.5.2.1.1.2 Gulp et déploiement à chaud . 69
4.5.2.1.1.3 Karma et Tests unitaires . 69
4.5.2.1.1.4 Qualité du code Javascript . 69
4.5.2.1.1.5 Modèle MVC . 69
4.5.2.1.1.6 Internationalisation . 70

4.5.3 Modules IHM Front . 71
4.5.3.1 Module archive-unit . 71

4.5.3.1.1 Directive display-field . 71
4.5.3.1.2 Directive display-fieldtree . 72
4.5.3.1.3 Affichage des Libéllés des champs . 72

4.5.3.2 Affichage dynamiqueTable . 72
4.5.3.3 Service de recherche . 73
4.5.3.4 Service d’affichage des mesures d’un objet physique 73

v

4.5.4 IHM Front - Tests . 74
4.5.4.1 Cette documentation décrit la partie tests (unitaires et end to end) du front/Angular

de l’ihm. 74
4.5.4.1.1 Tests unitaires . 74

4.5.4.1.1.1 Installation / Lancement des tests unitaires 74
4.5.4.1.1.2 Informations sur la configuration des tests unitaires 74
4.5.4.1.1.3 Exemples de tests unitaires . 74

4.5.4.1.2 Tests end to end . 74
4.5.4.1.2.1 Initialisation / Lancement des tests e2e 74
4.5.4.1.2.2 Informations sur la configuration des tests e2e 75
4.5.4.1.2.3 Exemple d’utilisation des outils e2e 75

4.5.5 DAT : module IHM logbook operations . 76
4.5.5.1 Modules et packages . 76
4.5.5.2 Classes de métiers . 77

4.5.5.2.1 Partie Backend . 77
4.5.5.2.2 Partie Frontend . 77

4.5.6 ihm-demo . 77
4.5.6.1 Présentation . 77
4.5.6.2 Services . 77
4.5.6.3 Rest API . 77

4.5.7 IHM Front - Requêtes HTTP et Tenant ID . 78
4.5.7.1 Cette documentation décrit le process de récupération / sélection et communication

du tenant ID depuis IHM-DEMO front vers les API publiques VITAM 78
4.5.7.1.1 Gestion du tenantId . 78

4.5.7.1.1.1 Coté front . 78
4.5.7.1.1.2 Coté serveur d’app . 78

4.5.7.1.2 Création de requêtes HTTP utilisant un tenantID (front) 78
4.5.7.1.2.1 Utilisation de ihmDemoClient 78
4.5.7.1.2.2 Requêtes http personnalisées . 78

4.5.8 Gestion des droits sur IHM demo . 79
4.5.8.1 Cette documentation décrit la gestion des droits sur IHM-demo. 79

4.5.8.1.1 Gestion des autorisations . 79
4.5.8.1.2 Gestion des permissions . 79

4.5.9 IHM Filter for X-Request-ID . 79
4.5.9.1 Description . 79
4.5.9.2 Côté serveur . 79
4.5.9.3 Côté IHM Front . 80

4.5.10 IHM Demo serveur . 80
4.5.10.1 IhmMain . 80
4.5.10.2 Classe BusinessApplication . 80
4.5.10.3 Configuration . 80

4.6 IHM demo . 80
4.6.1 IHM Front . 80

4.6.1.1 Cette documentation décrit la partie front/Angular de l’IHM et en particulier sa
configuration et ses idéologies architecturales . 80

4.6.1.1.1 Utils et général / Composition du projet Angular 80
4.6.1.1.1.1 Builds et lancement des tests . 82
4.6.1.1.1.2 Composant de Page . 82
4.6.1.1.1.3 Service de Composant . 83
4.6.1.1.1.4 Sous Composant . 83

4.6.2 ihm-recette . 83
4.6.2.1 Présentation . 83
4.6.2.2 Services . 83
4.6.2.3 Rest API . 83

vi

4.6.3 IHM Recette serveur . 84
4.6.3.1 IhmRecette . 84
4.6.3.2 Classe BusinessApplication . 84
4.6.3.3 Configuration . 85

4.6.3.3.1 Fichier ihm-recette.conf . 85
4.7 Ingest . 89

4.7.1 Introduction . 89
4.7.2 DAT : module ingest-internal . 89

4.7.2.1 Modules et packages . 90
4.7.2.2 Classes métier . 90

4.7.2.2.1 ingest-internal-model . 90
4.7.2.2.2 ingest-internal-api . 90
4.7.2.2.3 ingest-internal-core . 90
4.7.2.2.4 ingest-internal-rest . 90
4.7.2.2.5 ingest-internal-client . 90

4.7.3 DAT : module ingest-external . 91
4.7.3.1 Modules et packages . 91
4.7.3.2 Classes métiers . 91

4.7.3.2.1 ingest-external-common . 91
4.7.3.2.2 ingest-external-api . 91
4.7.3.2.3 ingest-external-core . 91
4.7.3.2.4 ingest-external-rest . 91
4.7.3.2.5 ingest-external-client . 92

4.7.4 ingest-internal-client . 92
4.7.5 Utilisation . 92

4.7.5.1 Paramètres . 92
4.7.5.2 La factory . 92

4.7.5.2.1 Le Mock . 92
4.7.5.3 Le client . 92

4.7.6 ingest-external-client . 93
4.7.7 Utilisation . 93

4.7.7.1 Paramètres . 93
4.7.7.2 La factory . 93

4.7.7.2.1 Le Mock . 93
4.7.7.3 Le client . 93

4.7.8 ingest-external-antivirus . 94
4.7.9 INGEST . 95

4.7.9.1 L’application rest . 95
4.7.9.1.1 ingest-internal : IngestInternalApplication 95
4.7.9.1.2 ingest-external : IngestExternalApplication 95

4.8 Security-Internal . 95
4.8.1 Introduction . 95

4.8.1.1 But de cette documentation . 95
4.8.2 Certificats . 96

4.8.2.1 Utilisation . 96
4.8.2.1.1 La factory . 96

4.8.2.2 Le Mock . 96
4.8.2.3 Le client . 96

4.9 Logbook . 97
4.9.1 Introduction . 97

4.9.1.1 But de cette documentation . 97
4.9.2 Logbook . 97
4.9.3 Utilisation . 97

4.9.3.1 Paramètres . 97

vii

4.9.3.2 La factory . 97
4.9.3.2.1 Le Mock . 98

4.9.3.3 Le client . 98
4.9.3.3.1 Exemple d’usage générique . 99
4.9.3.3.2 Exemple Ingest . 100
4.9.3.3.3 Exemple ihm-demo-web-application . 101

4.9.3.4 Données . 102
4.9.4 Logbook-lifecycle . 102
4.9.5 Utilisation . 102

4.9.5.1 Paramètres . 102
4.9.5.2 La factory . 103

4.9.5.2.1 Le Mock . 103
4.9.5.3 Le client . 103

4.10 Metadata . 104
4.10.1 Métadata - Introduction . 104
4.10.2 DAT : module metadata . 104

4.10.2.1 Modules et packages . 104
4.10.2.2 Classes métiers . 104

4.10.2.2.1 metadata-api . 104
4.10.2.2.2 metadata-core . 104
4.10.2.2.3 metadata-rest . 105
4.10.2.2.4 metadata-client . 105

4.10.3 Métadata . 105
4.10.3.1 Utilisation . 105

4.10.3.1.1 Paramètres . 105
4.10.3.1.2 Le client . 105

4.10.3.1.2.1 Créer le client metadata . 105
4.10.3.1.2.2 Accéder aux fonctionnalités . 105
4.10.3.1.2.3 Insérer des ArchiveUnits . 105
4.10.3.1.2.4 Insérer des ObjectGroups . 106

4.10.3.1.3 Sélection des ArchiveUnits . 107
4.10.3.1.4 Sélection d’un ObjectGroup . 107

4.10.4 Métadata : API REST Raml . 108
4.10.4.1 Présentation . 108
4.10.4.2 Rest API . 108

4.10.5 Métadata-tenant . 108
4.10.6 Métadata . 109

4.10.6.1 Utilisation . 109
4.10.6.1.1 Paramètres . 109
4.10.6.1.2 Calcul des règles de gestion pour une unité archivistique via API dédiée . 109

4.10.6.1.2.1 La prévention d’héritage . 109
4.10.6.1.2.2 L’exclusion d’héritage . 109
4.10.6.1.2.3 La redéfinition de règles ou de propriétés 110

4.10.6.1.3 Calcul des règles de gestion pour une unité archivistique (déprécié) 110
4.10.7 Désynchronisation des bases de données . 110

4.10.7.1 Traitement . 110
4.11 Processing . 110

4.11.1 Introduction . 110
4.11.1.1 But de cette documentation . 110

4.11.2 Paramètres . 111
4.11.2.1 WorkerParamerterName, les noms de paramètre 111
4.11.2.2 ParameterHelper, le helper . 111
4.11.2.3 WorkerParametersFactory, la factory . 111
4.11.2.4 AbstractWorkerParameters, les implémentations par défaut 111

viii

4.11.2.5 DefaultWorkerParameters, l’implémentation actuelle 111
4.11.3 Processing Management . 111

4.11.3.1 Présentation . 111
4.11.3.1.1 Processing-management . 112

4.11.3.1.1.1 Rest API . 112
4.11.3.1.1.2 Core . 112
4.11.3.1.1.3 La machine à état : . 112
4.11.3.1.1.4 Processing-management-client 114
4.11.3.1.1.5 Utilisation . 114
4.11.3.1.1.6 Exemple : . 114

4.11.3.1.2 Processing-data . 114
4.11.3.2 Configuration . 114

4.11.4 Processing Distributor . 115
4.11.4.1 Présentation . 115

4.11.4.1.1 Processing-distributor . 115
4.11.4.2 Rest API . 115
4.11.4.3 Core . 115

4.11.4.3.1 Processing-distributor-client . 115
4.11.5 Processing Engine . 115

4.11.5.1 Présentation . 115
4.11.5.1.1 Api . 116
4.11.5.1.2 Core . 116

4.11.6 Etudes en cours . 116
4.11.6.1 Workspace . 116

4.11.6.1.1 Arborescence . 116
4.11.6.2 Workflow . 117

4.11.6.2.1 DefaultIngestWorkflow . 117
4.11.6.2.1.1 Etapes . 126
4.11.6.2.1.2 Création d’un nouveau step . 127

4.11.6.2.2 DefaultRulesUpdateWorkflow . 127
4.11.6.3 Nombre d’objets numériques conforme . 127

4.11.6.3.1 Usage . 128
4.11.6.3.2 Pour l’usage interne Vitam . 128

4.11.7 Métriques . 129
4.11.7.1 Introduction . 129
4.11.7.2 Liste des métriques . 130

4.12 Scheduler . 131
4.12.1 Introduction . 131
4.12.2 SCHEDULER . 131

4.12.2.1 Création d’un nouveau job . 131
4.13 Storage . 131

4.13.1 Présentation . 131
4.13.2 Storage Driver . 131

4.13.2.1 Utilisation d’un Driver . 131
4.13.2.1.1 Vérifier la disponibilité de l’offre . 132
4.13.2.1.2 Vérification de la capacité de l’offre . 132
4.13.2.1.3 Put d’un objet dans l’offre de stockage 132
4.13.2.1.4 Get d’un objet dans l’offre de stockage 133
4.13.2.1.5 Head d’un objet dans l’offre de stockage 134
4.13.2.1.6 Delete d’un objet dans l’offre de stockage 134
4.13.2.1.7 Lister des types d’objets dans l’offre de stockage 135
4.13.2.1.8 Récupérer les metadatas d’un objet . 135

4.13.3 Storage Engine . 136
4.13.4 Modes ReadOnly / Write Protection . 136

ix

4.13.5 Storage Engine Client . 136
4.13.5.1 La factory . 136

4.13.5.1.1 Le Mock . 137
4.13.5.1.2 Le mode de production . 137

4.13.5.2 Les services . 137
4.13.6 Métriques . 138

4.13.6.1 Introduction . 138
4.13.6.2 Liste des métriques . 138

4.14 Technical administration . 139
4.14.1 Introduction . 139

4.15 Worker . 139
4.15.1 Introduction . 139

4.15.1.1 But de cette documentation . 139
4.15.2 Worker . 139

4.15.2.1 Présentation . 139
4.15.2.2 Worker-server . 140

4.15.2.2.1 Rest API . 140
4.15.2.2.2 Registration . 140
4.15.2.2.3 Configuration de worker . 140
4.15.2.2.4 WorkerBean . 140
4.15.2.2.5 Persistence des workers . 141
4.15.2.2.6 Désenregistrement d’un worker . 141

4.15.2.3 Worker-core . 141
4.15.2.3.1 Focus sur la gestion des entrées / sorties des Handlers 142
4.15.2.3.2 Cas particulier des Tests unitaires . 144
4.15.2.3.3 Création d’un nouveau handler . 145

4.15.2.4 Details des Handlers . 145
4.15.2.4.1 Détail du handler : CheckConformityActionHandler 145

4.15.2.4.1.1 Description . 145
4.15.2.4.1.2 Exécution . 146
4.15.2.4.1.3 4.1.3 journalisation . 146

4.15.2.5 logbook lifecycle . 146
4.15.2.5.1 modules utilisés . 147

4.15.2.5.1.1 cas d’erreur . 147
4.15.2.5.2 Détail du handler : CheckObjectsNumberActionHandler 148

4.15.2.5.2.1 description . 148
4.15.2.5.3 Détail du handler : CheckObjectUnitConsistencyActionHandler 148
4.15.2.5.4 Détail du handler : CheckSedaActionHandler 149
4.15.2.5.5 Détail du handler : CheckStorageAvailabilityActionHandler 149
4.15.2.5.6 Détail du handler : CheckVersionActionHandler 149
4.15.2.5.7 Détail du handler : ExtractSedaActionHandler 149

4.15.2.5.7.1 description . 149
4.15.2.5.7.2 Détail des différentes maps utilisées 149
4.15.2.5.7.3 Vérifier les ArchiveUnit du SIP 151
4.15.2.5.7.4 Détails du data dans l’itemStatus retourné 151

4.15.2.5.8 Détail du handler : IndexObjectGroupActionHandler 152
4.15.2.5.8.1 4.7.1 description . 152

4.15.2.5.9 4.8 Détail du handler : IndexUnitActionHandler 152
4.15.2.6 4.8.1 description . 152

4.15.2.6.1 4.9 Détail du handler : StoreObjectGroupActionHandler 152
4.15.2.7 4.9.1 description . 152

4.15.2.7.1 4.10 Détail du handler : FormatIdentificationActionHandler 152
4.15.2.8 4.10.1 Description . 152
4.15.2.9 4.10.2 Détail des différentes maps utilisées : . 152

x

4.15.2.10 4.10.3 exécution . 153
4.15.2.11 4.10.4 journalisation : logbook operation? logbook life cycle? 153
4.15.2.12 4.10.5 modules utilisés . 153
4.15.2.13 4.10.6 cas d’erreur . 153

4.15.2.13.1 Détail du handler : TransferNotificationActionHandler 153
4.15.2.13.1.1 Description . 153
4.15.2.13.1.2 Détail des différentes maps utilisées 154
4.15.2.13.1.3 exécution . 154
4.15.2.13.1.4 journalisation : logbook operation? logbook life cycle? 154
4.15.2.13.1.5 modules utilisés . 155
4.15.2.13.1.6 cas d’erreur . 155

4.15.2.13.2 Détail du handler : AccessionRegisterActionHandler 155
4.15.2.13.2.1 Description . 155
4.15.2.13.2.2 Détail des maps utilisées . 155
4.15.2.13.2.3 Exécution . 155

4.15.2.13.3 Détail du handler : CheckIngestContractActionHandler 156
4.15.2.13.3.1 Description . 156
4.15.2.13.3.2 Détail des données utilisées . 156
4.15.2.13.3.3 Exécution . 156

4.15.2.13.4 Détail du handler : CheckNoObjectsActionHandler 156
4.15.2.13.4.1 Description . 156
4.15.2.13.4.2 Détail des données utilisées . 156
4.15.2.13.4.3 exécution . 156

4.15.2.13.5 Détail du plugin : CheckArchiveUnitSchema 157
4.15.2.13.5.1 Description . 157
4.15.2.13.5.2 Détail des données utilisées . 157
4.15.2.13.5.3 exécution . 157
4.15.2.13.5.4 détail des vérifications . 157

4.15.2.13.6 Détail du handler : CheckArchiveProfileActionHandler 157
4.15.2.13.6.1 Description . 157
4.15.2.13.6.2 exécution . 157

4.15.2.13.7 Détail du handler : CheckArchiveProfileRelationActionHandler 157
4.15.2.13.7.1 Description . 157
4.15.2.13.7.2 exécution . 158

4.15.2.13.8 Détail du handler : ListArchiveUnitsActionHandler 158
4.15.2.13.8.1 Description . 158
4.15.2.13.8.2 exécution . 158

4.15.2.13.9 Détail du handler : ListRunningIngestsActionHandler 158
4.15.2.13.9.1 Description . 158
4.15.2.13.9.2 exécution . 158

4.15.2.13.10Détail du plugin : ArchiveUnitRulesUpdateActionPlugin 159
4.15.2.13.10.1 Description . 159
4.15.2.13.10.2 exécution . 159

4.15.2.13.11Détail du plugin : RunningIngestsUpdateActionPlugin 159
4.15.2.13.11.1 Description . 159
4.15.2.13.11.2 exécution . 159

4.15.2.13.12Détail du handler : ListLifecycleTraceabilityActionHandler 160
4.15.2.13.12.1 Description . 160
4.15.2.13.12.2 exécution . 160

4.15.2.13.13Détail du plugin : CreateObjectSecureFileActionPlugin 161
4.15.2.13.13.1 Description . 161
4.15.2.13.13.2 exécution . 161

4.15.2.13.14Détail du plugin : CreateUnitSecureFileActionPlugin 161
4.15.2.13.14.1 Description . 161

xi

4.15.2.13.14.2 exécution . 161
4.15.2.13.15Détail du plugin : CheckClassificationLevelActionPlugin 162

4.15.2.13.15.1 Description . 162
4.15.2.13.15.2 exécution . 162

4.15.2.13.16Détail du handler : FinalizeLifecycleTraceabilityActionHandler 162
4.15.2.13.16.1 Description . 162
4.15.2.13.16.2 exécution . 162

4.15.2.13.17Détail du handler : GenerateAuditReportActionHandler 163
4.15.2.13.17.1 Description . 163
4.15.2.13.17.2 exécution . 163

4.15.2.13.18Détail du plugin : AuditCheckObjectPlugin 164
4.15.2.13.18.1 Description . 164
4.15.2.13.18.2 exécution . 164

4.15.2.13.19Détail du plugin : CheckExistenceObjectPlugin 164
4.15.2.13.19.1 Description . 164
4.15.2.13.19.2 exécution . 164

4.15.2.13.20Détail du plugin : CheckIntegrityObjectPlugin 164
4.15.2.13.20.1 Description . 164
4.15.2.13.20.2 exécution . 165

4.15.2.14 Worker-common . 165
4.15.2.15 Worker-client . 165

4.15.3 Worker Client . 165
4.15.3.1 La factory . 165

4.15.3.1.1 Le Mock . 165
4.15.3.1.2 Le mode de production . 166

4.15.3.2 Les services . 166
4.15.4 Worker Plugin . 166

4.15.4.1 Présentation . 166
4.15.4.1.1 Présentation de l’architecture VITAM 166
4.15.4.1.2 Définition du plugin VITAM . 167

4.15.4.2 Gestion des entrants du plugin . 178
4.15.4.2.1 WorkerParameters . 178
4.15.4.2.2 HandlerIO . 179

4.15.4.2.2.1 Récupérer un Json sur le workspace 192
4.15.4.2.2.2 Transférer un fichier sur le Workspace 192
4.15.4.2.2.3 Récupérer un objet spécifique déterminé dans le workflow 192
4.15.4.2.2.4 Travailler sur le Workspace sur un fichier temporaire 193
4.15.4.2.2.5 Enregistrer un output . 193

4.15.4.3 Gestion des statuts du plugin : ItemStatus . 193
4.15.4.3.1 Journalisation : opération et cycle de vie 194

4.15.4.4 Intégration d’un nouveau plugin . 195
4.15.4.4.1 Ajout de l’action dans le Workflow . 195
4.15.4.4.2 Ajout du plugin dans la liste des plugins 207
4.15.4.4.3 Création du plugin . 208
4.15.4.4.4 Installation du plugin . 209

4.15.5 Idempotence . 209
4.15.5.1 Introduction . 209
4.15.5.2 Modifications . 209

4.15.5.2.1 HandlerIO . 209
4.15.5.2.2 Handlers / plugins . 210

4.15.5.2.2.1 AccessionRegisterActionHandler 210
4.15.5.2.2.2 ExtractSedaActionHandler . 210
4.15.5.2.2.3 IndexObjectGroupActionPlugin 210
4.15.5.2.2.4 IndexUnitActionPlugin . 210

xii

4.15.5.2.2.5 StoreObjectGroupActionPlugin 210
4.15.5.2.3 WorkerImpl . 210

4.16 Workspace . 210
4.16.1 Introduction . 210

4.16.1.1 But de cette documentation . 210
4.16.2 workspace . 211

4.16.2.1 1- Consommer les services exposés par le module : 211
4.16.2.2 2.2 - Exemple d’utilisation . 212
4.16.2.3 2- Configuration du pom . 212

5 Parallélisation des tests 213
5.1 Séparation des tests TDD et tests d’intégration . 213
5.2 Parallélisation de tests unitaires . 214
5.3 Configuration de build avec les options de tests . 215

6 Plugin ICU Elasticsearch 216

7 Gestion des bases de données 217
7.1 Gestion de l’ajout d’un champ . 217

7.1.1 metadata-core : Unit et ObjectGroup . 218
7.1.2 Pour les autres collections . 218

7.2 Modification d’une collection : check list . 218

8 Ressources et clients 219
8.1 Ressources . 219
8.2 Client . 219

9 Création d’une machine de dev contenant Swift 220
9.1 Préparation de la machine virtuelle avec Qemu . 220
9.2 Préparation de la machine virtuelle avec Virtualbox . 220
9.3 Installation de devstack . 220

10 Annexes 222

Index 225

xiii

CHAPITRE 1

Introduction

1.1 But de cette documentation

Ce document a pour but de permettre de fournir à une équipe de développeurs de la solution logicielle VITAM les
procédures et informations utiles et nécessaires au bon fonctionnement de la solution logicielle.

1.2 Destinataires de ce document

Ce document s’adresse à des développeurs du secteur informatique ayant de bonnes connaissances en environnement
Linux et Java.

1

CHAPITRE 2

Rappels

2.1 Information concernant les licences

La solution logicielle VITAM est publiée sous la licence CeCILL 2.1 1 ; la documentation associée (comprenant le
présent document) est publiée sous Licence Ouverte V2.0 2.

Les clients externes java de solution VITAM sont publiés sous la licence CeCILL-C 3 ; la documentation associée
(comprenant le présent document) est publiée sous Licence Ouverte V2.0 4.

2.2 Documents de référence

2.2.1 Documents internes

TABLEAU 1 – Documents de référence VITAM
Nom Lien
DAT http://www.programmevitam.fr/ressources/DocCourante/html/archi
DIN http://www.programmevitam.fr/ressources/DocCourante/html/installation
DEX http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
DMV http://www.programmevitam.fr/ressources/DocCourante/html/migration
Release notes https://github.com/ProgrammeVitam/vitam/releases/latest

1. https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html
2. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
3. https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html
4. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf

2

https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
http://www.programmevitam.fr/ressources/DocCourante/html/archi
http://www.programmevitam.fr/ressources/DocCourante/html/installation
http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
http://www.programmevitam.fr/ressources/DocCourante/html/migration
https://github.com/ProgrammeVitam/vitam/releases/latest

VITAM - Manuel de développement, Version 8.1.2

2.2.2 Référentiels externes

2.3 Glossaire

API Application Programming Interface

AU Archive Unit, unité archivistique

BDD Base De Données

BDO Binary DataObject

CA Certificate Authority, autorité de certification

CAS Content Adressable Storage

CCFN Composant Coffre Fort Numérique

CN Common Name

COTS Component Off The shelf ; il s’agit d’un composant « sur étagère », non développé par le projet VITAM, mais
intégré à partir d’un binaire externe. Par exemple : MongoDB, ElasticSearch.

CRL Certificate Revocation List ; liste des identifiants des certificats qui ont été révoqués ou invalidés et qui ne sont
donc plus dignes de confiance. Cette norme est spécifiée dans les RFC 5280 et RFC 6818.

CRUD create, read, update, and delete, s’applique aux opérations dans une base de données MongoDB

DAT Dossier d’Architecture Technique

DC Data Center

DEX Dossier d’EXploitation

DIN Dossier d’INstallation

DIP Dissemination Information Package

DMV Documentation de Montées de Version

DNS Domain Name System

DNSSEC Domain Name System Security Extensions est un protocole standardisé par l’IETF permettant de résoudre
certains problèmes de sécurité liés au protocole DNS. Les spécifications sont publiées dans la RFC 4033 et les
suivantes (une version antérieure de DNSSEC n’a eu aucun succès). Définition DNSSEC 5

DSL Domain Specific Language, langage dédié pour le requêtage de VITAM

DUA Durée d’Utilité Administrative

EBIOS Méthode d’évaluation des risques en informatique, permettant d’apprécier les risques Sécurité des systèmes
d’information (entités et vulnérabilités, méthodes d’attaques et éléments menaçants, éléments essentiels et be-
soins de sécurité. . .), de contribuer à leur traitement en spécifiant les exigences de sécurité à mettre en place, de
préparer l’ensemble du dossier de sécurité nécessaire à l’acceptation des risques et de fournir les éléments utiles
à la communication relative aux risques. Elle est compatible avec les normes ISO 13335 (GMITS), ISO 15408
(critères communs) et ISO 17799

EAD Description archivistique encodée

ELK Suite logicielle Elasticsearch Logstash Kibana

FIP Floating IP

GOT Groupe d’Objet Technique

IHM Interface Homme Machine

IP Internet Protocol

IsaDG Norme générale et internationale de description archivistique

JRE Java Runtime Environment ; il s’agit de la machine virtuelle Java permettant d’y exécuter les programmes com-
pilés pour.

5. https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

2.3. Glossaire 3

https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

VITAM - Manuel de développement, Version 8.1.2

JVM Java Virtual Machine ; Cf. JRE

LAN Local Area Network, réseau informatique local, qui relie des ordinateurs dans une zone limitée

LFC LiFe Cycle, cycle de vie

LTS Long-term support, support à long terme : version spécifique d’un logiciel dont le support est assuré pour une
période de temps plus longue que la normale.

M2M Machine To Machine

MitM L’attaque de l’homme du milieu (HDM) ou man-in-the-middle attack (MITM) est une attaque qui a pour but
d’intercepter les communications entre deux parties, sans que ni l’une ni l’autre ne puisse se douter que le
canal de communication entre elles a été compromis. Le canal le plus courant est une connexion à Internet
de l’internaute lambda. L’attaquant doit d’abord être capable d’observer et d’intercepter les messages d’une
victime à l’autre. L’attaque « homme du milieu » est particulièrement applicable dans la méthode d’échange de
clés Diffie-Hellman, quand cet échange est utilisé sans authentification. Avec authentification, Diffie-Hellman
est en revanche invulnérable aux écoutes du canal, et est d’ailleurs conçu pour cela. Explication 6

MoReq Modular Requirements for Records System, recueil d’exigences pour l’organisation de l’archivage, élaboré
dans le cadre de l’Union européenne.

NoSQL Base de données non-basée sur un paradigme classique des bases relationnelles. Définition NoSQL 7

NTP Network Time Protocol

OAIS Open Archival Information System, acronyme anglais pour Systèmes de transfert des informations et données
spatiales – Système ouvert d’archivage d’information (SOAI) - Modèle de référence.

OOM Aussi apelé Out-Of-Memory Killer ; mécanisme de la dernière chance incorporé au noyau Linux, en cas de
dépassement de la capacité mémoire

OS Operating System, système d’exploitation

OWASP Open Web Application Security Project, communauté en ligne de façon libre et ouverte à tous publiant
des recommandations de sécurisation Web et de proposant aux internautes, administrateurs et entreprises des
méthodes et outils de référence permettant de contrôler le niveau de sécurisation de ses applications Web

PDMA Perte de Données Maximale Admissible ; il s’agit du pourcentage de données stockées dans le système qu’il
est acceptable de perdre lors d’un incident de production.

PKI Une infrastructure à clés publiques (ICP) ou infrastructure de gestion de clés (IGC) ou encore Public Key Infra-
structure (PKI), est un ensemble de composants physiques (des ordinateurs, des équipements cryptographiques
logiciels ou matériel type HSM ou encore des cartes à puces), de procédures humaines (vérifications, validation)
et de logiciels (système et application) en vue de gérer le cycle de vie des certificats numériques ou certificats
électroniques. Définition PKI 8

PCA Plan de Continuité d’Activité

PRA Plan de Reprise d’Activité

REST REpresentational State Transfer : type d’architecture d’échanges. Appliqué aux services web, en se basant
sur les appels http standard, il permet de fournir des API dites « RESTful » qui présentent un certain nombre
d’avantages en termes d’indépendance, d’universalité, de maintenabilité et de gestion de charge. Définition
REST 9

RGAA Référentiel Général d’Accessibilité pour les Administrations

RGI Référentiel Général d’Interopérabilité

RPM Red Hat Package Manager ; il s’agit du format de paquets logiciels nativement utilisé par les distributions Linux
RedHat/CentOS (entre autres)

SAE Système d’Archivage Électronique

SEDA Standard d’Échange de Données pour l’Archivage

6. https://fr.wikipedia.org/wiki/Attaque_de_l’homme_du_milieu
7. https://fr.wikipedia.org/wiki/NoSQL
8. https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
9. https://fr.wikipedia.org/wiki/Representational_state_transfer

4 Chapitre 2. Rappels

https://fr.wikipedia.org/wiki/Attaque_de_l'homme_du_milieu
https://fr.wikipedia.org/wiki/NoSQL
https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
https://fr.wikipedia.org/wiki/Representational_state_transfer
https://fr.wikipedia.org/wiki/Representational_state_transfer

VITAM - Manuel de développement, Version 8.1.2

SGBD Système de Gestion de Base de Données

SGBDR Système de Gestion de Base de Données Relationnelle

SIA Système d’Informations Archivistique

SIEM Security Information and Event Management

SIP Submission Information Package

SSH Secure SHell

Swift OpenStack Object Store project

TLS Transport Layer Security

TNA The National Archives, Pronom 10

TNR Tests de Non-Régression

TTL Time To Live, indique le temps pendant lequel une information doit être conservée, ou le temps pendant lequel
une information doit être gardée en cache

UDP User Datagram Protocol, protocole de datagramme utilisateur, un des principaux protocoles de télécommuni-
cation utilisés par Internet. Il fait partie de la couche transport du modèle OSI

UID User IDentification

VITAM Valeurs Immatérielles Transférées aux Archives pour Mémoire

VM Virtual Machine

WAF Web Application Firewall

WAN Wide Area Network, réseau informatique couvrant une grande zone géographique, typiquement à l’échelle d’un
pays, d’un continent, ou de la planète entière

10. https://www.nationalarchives.gov.uk/PRONOM/

2.3. Glossaire 5

https://www.nationalarchives.gov.uk/PRONOM/

CHAPITRE 3

Configuration de l’environnement de développement

Voici comment préparez votre environnement de développement afin de pouvoir coder, démarrer les micros services,
débugger. . .

3.1 1. Prérequis

L’installation du poste de travail a été faite (installation de GIT, Maven, Docker, IntelliJ. . .).

Assurez-vous que le plugin lfs pour GIT a été installé pour vous permettre la récupération des fichiers SIP (.zip) du
projet vitam-itests.

Dans le cas contraire voici la ligne de commande à lancer :

Debian family : $ git lfs install

RedHat family : $ sudo yum install git-lfs

3.2 2. Récupérez le code source

Placez-vous dans le dossier ou vous voulez mettre le code source Vitam sur lequel vous allez travailler :

$ git clone <gitlab vitam/vitam>

$ git clone <gitlab vitam/vitam-conf-dev>

$ git clone <gitlab vitam/vitam-itests>

Remarque : toutes les lignes de commande ‘‘cd‘‘ des points suivants supposent que vous êtes dans votre dossier de
travail

6

VITAM - Manuel de développement, Version 8.1.2

3.3 3. Démarrez Docker

Déplacez vous dans le dossier suivant et exécuter la commande run_cots.sh

$ cd vitam/dev-deployment

$./run_cots.sh

3.4 4. Dans Docker

[xxxxx@xxxxxxxxxxxx code]$ vitam-build-repo

[xxxxx@xxxxxxxxxxxx code]$ vitam-deploy-cots

3.5 5. Ajoutez les lignes suivantes dans le fichier /etc/hosts

127.0.0.1 metadata.service.consul
127.0.0.1 logbook.service.consul
127.0.0.1 storage.service.consul
127.0.0.1 functional-administration.service.consul
127.0.0.1 processing.service.consul
127.0.0.1 ingest-external.service.consul
127.0.0.1 ingest-internal.service.consul
127.0.0.1 access-internal.service.consul
127.0.0.1 access-external.service.consul
127.0.0.1 collect-internal.service.consul
127.0.0.1 collect-external.service.consul
127.0.0.1 workspace.service.consul
127.0.0.1 workspace-collect.service.consul
127.0.0.1 offer-fs-1.service.consul
127.0.0.1 ihm-recette.service.consul
127.0.0.1 ihm-demo.service.consul
127.0.0.1 security-internal.service.consul
192.30.253.113 github.com

3.6 7. Lancez IntelliJ

Et installez le plugin « Multirun ».

3.7 8. Importez le project Vitam dans IntelliJ

En utilisant le menu Import Project puis sélectionnez vitam/sources/pom.xml

3.8 9. Initialisez la configuration

Copiez le dossier vitam-conf-dev/intellig-conf/runConfigurations dans le dossier vitam/
sources/.idea (automatiquement créé par IntelliJ)

3.3. 3. Démarrez Docker 7

VITAM - Manuel de développement, Version 8.1.2

Redémarrez IntelliJ.

(XX. Ajouter le XML snippet : ‘‘vitam/logback/vitam-logback.xml‘‘ par exemple dans votre dossier ‘‘HOME‘‘)

3.9 10. Dans IntelliJ, configurez les chemins suivants pour chaque
module du projet :

∙ Dans le menu déroulant des configurations de debug/run d’IntelliJ > Edit Configurations. . .

∙ Dans la boite de dialogue Run/Debug Configuration dépliez l’item « Application » et selectionnez le premier
projet.

∙ Modifiez les champs :
∙ VM options (vérifie le chemin de l’option -Dlogback.configurationFile= qui doit pointer

vers le fichier vitam-logback.xml précédent)

∙ Program arguments

∙ Working directory

3.10 11. Dossier de travail :

Exécutez le commade suivante : $ sudo chmod -R ugo+w /vitam

Dans /vitam/data/storage créez le fichier offer-fs-1.service.consul contenant la ligne suivante
fr.gouv.vitam.storage.offers.workspace.driver.DriverImpl

3.11 12. initialisation de la base de données :

$ cd vitam/vitam-conf-dev/scripts

$./init_data_vitam.sh

Puis dans IntelliJ : lancer « launch cucumber_init »

3.12 13. Démarrez les services dans IntelliJ

Dans le menu déroulant des configurations de debug/run d’IntelliJ selectionnez vitamIhm

Lancez les services en cliquant sur bouton debug

3.13 14. Démarrage de l’IHM

$ cd vitam/sources/ihm-demo/ihm-demo-front/

$ npm run start

$ cd vitam/sources/ihm-recette/ihm-recette-web-front/

$ npm run start

8 Chapitre 3. Configuration de l’environnement de développement

VITAM - Manuel de développement, Version 8.1.2

3.14 15. Utilisez Vitam

∙ Transfert SIP et plan de classement http://localhost:4201

∙ Recette : Tests des requêtes DSL http://localhost:4202

Remarque :

∙ login : aadmin

∙ password : aadmin1234

3.14. 15. Utilisez Vitam 9

http://localhost:4201
http://localhost:4202

CHAPITRE 4

Détails par composant

Les sections qui suivent donnent une description plus fine de l’architecture interne des services VITAM.

4.1 Access

4.1.1 Introduction

4.1.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

4.1.2 Composant Access

4.1.2.1 Utilisation

4.1.2.1.1 Configuration

Le module d’access est configuré par un POM qui contient les informations nécessaires (nom du projet, numéro de
version, identifiant du module parent, les sous modules (common, api, core, rest, client) de sous module d’access,
etc..). Ces informations sont contenues dans le fichier pom.xml présent dans le répertoire de base du module Access.

<parent>
<groupId>fr.gouv.vitam</groupId>
<artifactId>parent</artifactId>
<version>${vitam.version}</version>

</parent>

<artifactId>access</artifactId>
<packaging>pom</packaging>

(suite sur la page suivante)

10

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

<modules>
<module>access-internal</module>
<module>access-external</module>

</modules>

4.1.2.1.2 La factory

Afin de récupérer le client une factory a été mise en place.

// Récupération du client
final AccessClient client = AccessClientFactory.getInstance().
→˓getAccessOperationClient();

4.1.2.2 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock. Si les paramètres de
productions sont introuvables, le client passe en mode Mock par défaut. Il est possible de récupérer directe-
ment le mock :

// Changer la configuration du Factory client
AccessClientFactory.setConfiguration(AccessClientType.MOCK);

// Récupération explicite du client mock
final AccessClient client = AccessClientFactory.getInstance().

→˓getAccessOperationClient();

- Pour instancier son client en mode Production :

// Changer la configuration du Factory
AccessClientFactory.setConfiguration(AccessClientType.PRODUCTION);

// Récupération explicite du client
AccessClient client = AccessClientFactory.getInstance().getAccessOperationClient();

4.1.2.2.1 L’application rest

La méthode run avec l’argument de port permet aux tests unitaires de démarrer sur un port spécifique. Le premier
argument contient le nom du fichier de configuration access.conf (il est templatiser avec ansible)

4.1.2.2.2 Le client

Le client propose actuellement plusieurs méthodes permettant de gérer la lecture et la modification des
collections Units, LogbookOperation, ObjectGroup, Lifecycle (Unit et OG) et de gérer l’export DIP.
Le client récupère une réponse au format Json ou au format InputStream.

Le client AdminExternalClient implémente aussi l’interface OperationStatusClient ayant la méthode suivante :

RequestResponse<ItemStatus> getOperationProcessStatus(VitamContext vitamContext,
→˓String id) throws VitamClientException;

Cette interface est passée comme paramètre au client VitamPoolingClient.

4.1. Access 11

VITAM - Manuel de développement, Version 8.1.2

4.1.2.3 Exemple d’usage générique

// Récupération du client dans le module ihm-demo
AccessClient client = AccessClientFactory.getInstance().getAccessOperationClient();

// Récupération du dsl (cf ihm-demo documentation)

// Recherche des Archives Units
JsonNode selectUnits(String dsl)

// Recherche des Units par Identification
JsonNode selectUnitbyId(String sqlQuery, String id)

//Recherche d'object par ID + un DSL selectObjectQuery
JsonNode jsonObject = client.selectObjectbyId(String selectObjectQuery, String id);

//Récupération d'un objet au format input stream
InputStream stream = client.getObjectAsInputStream(String selectObjectQuery, String
→˓objectGroupId, String usage, int version);

4.1.2.4 Exemple d’usage générique

// Récupération du client
private static final AccessClient ACCESS_CLIENT = AccessClientFactory.getInstance().
→˓getAccessOperationClient();

...

// Autres Opérations

public static JsonNode searchUnits(String parameters)
throws AccessClientServerException, AccessClientNotFoundException,

→˓InvalidParseOperationException {
return ACCESS_CLIENT.selectUnits(parameters);

}

4.1.3 Filtre Contrat d’accès

Un filtre passé dans les headers, a été ajouté pour pouvoir interdire toute requête n’indiquant pas de header Access-
ContratId ou son contrat est inconnu sur ce tenant ou son contrat est invalide.

L’exécution du filtre (vérification de la présence du Header + validation) est effectué dans le module Access Internal.

4.1.3.1 Classe de filtre

Une classe de filtre a été ajoutée :

AccessContractIdContainerFilter : On vérifie la présence du header X_ACCESS_CONTRAT_ID dans la requête, si-
non, une réponse UNAUTHORIZED (code 401) sera retournée. Ensuite, on vérifie l’existence et la validité du contrat
avec id de X_ACCESS_CONTRAT_ID, sinon, une réponse une réponse UNAUTHORIZED (code 401) sera retournée.

12 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.1.3.2 Implémenter des filters

Le filtre sera ajouté dans la construction du serveur application (BusinessApplication) de access internal.

singletons = new HashSet<>();
// some code
singletons.addAll(commonBusinessApplication.getResources());
// some code

singletons.add(new AccessContractIdContainerFilter());

4.1.4 Access-rest

4.1.4.1 Présentation

API REST EXT appelées par le client access external. Il y a un controle des paramètres (SanityChecker.checkJsonAll)
et des headers transmis avec ESAPI.

4.1.4.2 fr.gouv.vitam.access.external.rest

– AccessExternalRessourceImpl

4.1.4.2.1 Rest API

-Unit

GET https://vitam/access-external/v1/units récupérer la liste des units avec la filtre (le contenu de la requête)

POST https://vitam/access-external/v1/units (with X-HTTP-METHOD-OVERRIDE GET) récupérer la liste des units
avec la filtre (le contenu de la requête)

PUT https://vitam/access-external/v1/units Mettre à jour la liste des units (non implémenté)

PUT https://vitam/access-external/v1/units/unit_id Mettre à jour l’unit avec avec le contenu de la requête

HEAD https://vitam/access-external/v1/units Vérifier l’existence d’un unit (non implémenté)

GET https://vitam/access-external/v1/units/unit_id récupérer l’units avec la filtre (le contenu de la requête)

POST https://vitam/access-external/v1/units/unit_id (avec X-HTTP-METHOD-OVERRIDE GET) récupérer l’units
avec la filtre (le contenu de la requête)

GET https://vitam/access-external/v1/units/unit_id/objects récupérer le group d’objet par un unit (le contenu de la
requête)

4.1. Access 13

https://vitam/access-external/v1/units
https://vitam/access-external/v1/units
https://vitam/access-external/v1/units
https://vitam/access-external/v1/units/unit_id
https://vitam/access-external/v1/units
https://vitam/access-external/v1/units/unit_id
https://vitam/access-external/v1/units/unit_id
https://vitam/access-external/v1/units/unit_id/objects

VITAM - Manuel de développement, Version 8.1.2

POST https://vitam/access-external/v1/units/unit_id/objects (avec X-HTTP-METHOD-OVERRIDE GET) récupérer
le group d’objet par un unit (le contenu de la requête)

-ObjectGroup

GET https://vitam/access-external/v1/objects récupérer la liste des object group (non implémenté)

POST https://vitam/access-external/v1/objects (avec X-HTTP-METHOD-OVERRIDE GET) récupérer la liste des
object group (non implémenté)

GET https://vitam/access-external/v1/objects/object_id récupérer une groupe d’objet avec la filtre (le contenu de la
requête) et id

POST https://vitam/access-external/v1/objects/objet_id (avec X-HTTP-METHOD-OVERRIDE GET) récupérer une
groupe d’objet avec la filtre (le contenu de la requête) et id

-Accession Register

POST https://vitam/admin-external/v1/accession-registers récupérer le registre de fond

POST https://vitam/admin-external/v1/accession-registers/document_id récupérer le registre de fond avec la filtre (le
contenu de la requête) et id

POST https://vitam/admin-external/v1/accession-registers/document_id/accession-register-detail récupérer le détail
du registre de fond avec la filtre (le contenu de la requête) et id

– LogbookRessourceImpl

4.1.4.2.2 Rest API

-Operation

GET https://vitam/access-external/v1/logbookoperations récupérer tous les journaux de l’opéraion

POST https://vitam/access-external/v1/logbookoperations (with X-HTTP-METHOD-OVERRIDE GET) récupérer
tous les journaux de l’opéraion

GET https://vitam/access-external/v1/logbookoperations/{id_op} récupérer le journal de l’opéraion avec la filtre (le
contenu de la requête) et id

14 Chapitre 4. Détails par composant

https://vitam/access-external/v1/units/unit_id/objects
https://vitam/access-external/v1/objects
https://vitam/access-external/v1/objects
https://vitam/access-external/v1/objects/object_id
https://vitam/access-external/v1/objects/objet_id
https://vitam/admin-external/v1/accession-registers
https://vitam/admin-external/v1/accession-registers/document_id
https://vitam/admin-external/v1/accession-registers/document_id/accession-register-detail
https://vitam/access-external/v1/logbookoperations
https://vitam/access-external/v1/logbookoperations
https://vitam/access-external/v1/logbookoperations

VITAM - Manuel de développement, Version 8.1.2

POST https://vitam/access-external/v1/logbookoperations/{id_op} (with X-HTTP-METHOD-OVERRIDE GET)
récupérer le journal de l’opéraion avec la filtre (le contenu de la requête) et id

-Cycle de vie

GET https://vitam/access-external/v1/logbookunitlifecycles/{id_lc} récupérer le journal sur le cycle de vie d’un unit
avec la filtre (le contenu de la requête) et id

GET https://vitam/access-external/v1/logbookobjectslifecycles/{id_lc} récupérer le journal sur le cycle de vie d’un
groupe d’objet avec la filtre (le contenu de la requête) et id

– AdminManagementResourceImpl

4.1.4.2.3 Rest API

-Format&Rule

PUT https://vitam/admin-external/v1/collection_id vérifier le format ou la règle

POST https://vitam/admin-external/v1/collection_id importer le fichier du format ou de la règle

POST https://vitam/admin-external/v1/collection_id récupérer le format ou la règle

POST https://vitam/admin-external/v1/collection_id/document_id récupérer le format ou la règle avec la filtre (le
contenu de la requête) et id

– AdminManagementExternalResourceImpl

4.1.4.2.4 Rest API

-Contrat d’accès

PUT https://vitam/admin-external/v1/accesscontracts Mise à jour du contrat d’accès

-Contrat d’entrée

PUT https://vitam/admin-external/v1/ingestcontracts

Mise à jour du contrat d’entrès

4.1. Access 15

https://vitam/access-external/v1/logbookoperations
https://vitam/access-external/v1/logbookunitlifecycles
https://vitam/access-external/v1/logbookobjectslifecycles
https://vitam/admin-external/v1/collection_id
https://vitam/admin-external/v1/collection_id
https://vitam/admin-external/v1/collection_id
https://vitam/admin-external/v1/collection_id/document_id
https://vitam/admin-external/v1/accesscontracts
https://vitam/admin-external/v1/ingestcontracts

VITAM - Manuel de développement, Version 8.1.2

∙ Profiles

POST https://vitam/admin-external/v1/profiles Créer ou rechercher des profiles au format json (métadata). Le header
X-Http-Method-Override pilote la décision entre la recherche et la création.

PUT https://vitam/admin-external/v1/profiles Importer le profile au format rng ou xsd

GET https://vitam/admin-external/v1/profiles Télécharger le profile au format rng ou xsd si le accept est un
octet-stream sinon c’est une recherche de profiles au format json (métadata)

GET https://vitam/admin-external/v1/profiles/profile_id Rechercher un profile avec son id (profile_id)

POST https://vitam/admin-external/v1/profiles/profile_id Si X-Http-Method-Override égale à GET alors rechercher
un profile avec son id (profile_id)

POST https://vitam/admin-external/v1/logbookoperations Importer un journal d’opération externe

∙ Profiles de sécurité

POST https://vitam/admin-external/v1/securityprofiles Créer des profiles de sécurité.

GET https://vitam/admin-external/v1/securityprofiles Rechercher de profiles de sécurité.

POST https://vitam/admin-external/v1/securityprofiles (avec X-HTTP-METHOD-OVERRIDE GET) Rechercher de
profiles de sécurité.

GET https://vitam/admin-external/v1/securityprofiles/identifier Rechercher un profile de sécurité avec son id
(identifier)

PUT https://vitam/admin-external/v1/securityprofiles/identifier Mise à jour d’un profile de sécurité par son id
(identifier)

4.1.5 contrôle des flux d’accèss

Le module access-external a besoin de disposer d’une brique frontale effectuant les contrôles de sécurité pour les flux
d’accès à la plateforme.

– Fournissant la terminaison TLS – Fournissant l’authentification par certificat – Un WAF applicatif per-
mettant le filtrage d’entrée filtrant les entrées être une menace pour le système (ESAPI) – Un filtre per-
mettant de vérifier l’existence et la cohérence du header X-Tenant-Id

16 Chapitre 4. Détails par composant

https://vitam/admin-external/v1/profiles
https://vitam/admin-external/v1/profiles
https://vitam/admin-external/v1/profiles
https://vitam/admin-external/v1/profiles/profile_id
https://vitam/admin-external/v1/profiles/profile_id
https://vitam/admin-external/v1/logbookoperations
https://vitam/admin-external/v1/securityprofiles
https://vitam/admin-external/v1/securityprofiles
https://vitam/admin-external/v1/securityprofiles
https://vitam/admin-external/v1/securityprofiles/identifier
https://vitam/admin-external/v1/securityprofiles/identifier

VITAM - Manuel de développement, Version 8.1.2

protected void setFilter(ServletContextHandler context) throws
→˓VitamApplicationServerException {

if (getConfiguration().isAuthentication()) {
File shiroFile = null;
try {

shiroFile = PropertiesUtils.findFile(SHIRO_FILE);
} catch (final FileNotFoundException e) {

LOGGER.error(e.getMessage(), e);
throw new VitamApplicationServerException(e.getMessage());

}
context.setInitParameter("shiroConfigLocations", "file:" + shiroFile.

→˓getAbsolutePath());
context.addEventListener(new EnvironmentLoaderListener());
context.addFilter(ShiroFilter.class, "/*", EnumSet.of(

DispatcherType.INCLUDE, DispatcherType.REQUEST,
DispatcherType.FORWARD, DispatcherType.ERROR, DispatcherType.ASYNC));

}
// chargemenet de la liste des tenants de l'application
JsonNode node = JsonHandler.toJsonNode(getConfiguration().getTenants());
context.setInitParameter(GlobalDataRest.TENANT_LIST, JsonHandler.

→˓unprettyPrint(node));
context.addFilter(TenantFilter.class, "/*", EnumSet.of(

DispatcherType.INCLUDE, DispatcherType.REQUEST,
DispatcherType.FORWARD, DispatcherType.ERROR, DispatcherType.ASYNC));

}
protected void registerInResourceConfig(ResourceConfig resourceConfig) {

setServiceRegistry(new VitamServiceRegistry());
serviceRegistry.register(AccessInternalClientFactory.getInstance())

.register(AdminManagementClientFactory.getInstance());
resourceConfig.register(new AccessExternalResourceImpl())

.register(new LogbookExternalResourceImpl())

.register(new AdminManagementExternalResourceImpl())

.register(new AdminStatusResource(serviceRegistry))

.register(SanityCheckerCommonFilter.class)

.register(SanityDynamicFeature.class);
}

4.1.6 vitam-pooling-client

4.1.7 Utilisation

VitamPoolingClient offre la possibilité d’attendre la fin des processus asynchrone.

4.1.7.1 Paramètres

VitamPoolingClient accepte un seul paramètre dans son constructeur : C’est l’interface OperationStatusClient. Cette
interface définie la méthode suivante :

RequestResponse<ItemStatus> getOperationProcessStatus(VitamContext vitamContext,
→˓String id) throws VitamClientException;

4.1. Access 17

VITAM - Manuel de développement, Version 8.1.2

4.1.7.2 Le client

VitamPoolingClient implémente différentes méthodes « wait » avec différents paramètres qui offre la fonctionnalité
pooling sur les différents processus asynchrone. Utiliser les méthodes « wait » pour mieux gérer le pooling côté serveur
et remédier à l’asynchrone des certains opérations.

Les différentes méthodes « wait » du client VitamPoolingClient sont :

// Possibilité de faire plusieurs (nbTry) appel espacé d'un temps (timeWait) avant de
→˓répondre au client final
public boolean wait(int tenantId, String processId, ProcessState state, int nbTry,
→˓long timeWait, TimeUnit timeUnit) throws VitamException
public boolean wait(int tenantId, String processId, int nbTry, long timeout, TimeUnit
→˓timeUnit) throws VitamException
public boolean wait(int tenantId, String processId, ProcessState state) throws
→˓VitamException
public boolean wait(int tenantId, String processId) throws VitamException

4.2 Collect

4.2.1 Introduction

L’ensemble de ces documents est le manuel de développement du module collecte, qui représente le métier fonctionnel
de l’user story #9004 de projet VITAM, dont le but et de réaliser des opérations sur une transaction a fin de produire
un SIP et l’envoyer vers Ingest de Vitam .

Le module est divisé en deux sous modules : collect-client et collect-rest. Le module collect-client fournnit les fonctio-
nalités pour des traitements internes de la plate-forme Vitam, autrement dit il n’est visible que pour les appels internes
de Vitam. Le module collect-rest fournit des services pour les appels extérieur de la plate-forme cela veux dire qu’il
est visible pour les appels de l’extérieur de Vitam.

Le manuel se compose de deux parties - DAT présente l’architecture technique du module au niveau des packages,
classes - REST-RAML explique comment on utitlise des différents service proprosés par module - détail d’utilisation
du client

4.2.2 DAT : module collect

Ce document présente l’ensemble du manuel développement concernant le développment du module collecte qui est
identifié par la user story #9004, qui contient :

∙ modules & packages

∙ classes métiers

4.2.2.1 Modules et packages

collect

∙ collect-rest : le serveur REST de collect qui donnes des traitement sur dépôt de document SIP.

∙ collect-client : client collect qui sera utilisé par les autres modules interne de VITAM pour le service de dépôt
des SIPs

18 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.2.2.2 Classes métier

Dans cette section, nous présentons quelques classes principales dans des modules/packages qu’on a abordé ci-dessus.

4.2.2.2.1 collect-rest

∙ TransactionRessource.java : définir des ressources différentes pour le serveur REST Transaction

∙ CollectMain.java : créer & lancer le serveur d’application avec une configuration

4.2.2.2.2 collect-client

∙ CollectClientFactory.java : Afin de récupérer le client-collect , une factory a été mise en place.

4.2.3 COLLECT

4.2.3.1 L’application rest

4.2.3.1.1 collect : CollectMain

La méthode main avec l’argument String[] permet de lancer l’application avec Le premier argument qui contient le
nom du fichier de configuration collect.conf (il est templetiser avec ansible).

4.3 Common

4.3.1 Introduction

4.3.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

4.3.1.2 Utilitaires Commons

4.3.1.2.1 FileUtil

Cet utilitaire propose quelques méthodes pour manipuler des fichiers.

Attention : les méthodes « readFile » doivent être limitées en termes d’usage au strict minimum et pour des fichiers de
petites tailles.

4.3.1.2.2 LocalDateUtil

Cet utilitaire propose quelques méthodes pour manipuler des dates avec la nouvelle classe LocalDateTime.

4.3. Common 19

VITAM - Manuel de développement, Version 8.1.2

4.3.1.2.3 ServerIdentity

Cet utilitaire propose une implémentation de la carte d’identité de chaque service/serveur.

ServerIdentity contient le ServerName, le ServerRole, le siteId, serverId et le PlatformGlobalID

Pour une JVM, un seul ServerIdentity existe.

C’est un Common Private.

Par défaut cette classe est initialisée avec les valeurs suivantes : * ServerName (String) : hostname ou UnknownHost-
name si introuvable * ServerRole (String) : UnknownRole * ServerId (int) : MAC adresse partielle comme entier (31
derniers bits de la MAC) * SiteId (int) : Id du site (entier entre 0 et 15) . Les serveurs de 2 régions informatiques
(sites/salles) doivent avoir des Id différents * GlobalPlatformID (int) : nombre aggrégé du siteId et d’une partie du
ServerId

Il est important que chaque server à son démarrage initialise les valeurs correctement.

ServerIdentity serverIdentity = ServerIdentity.getInstance();
serverIdentity.setName(name).setRole(role).setPlatformId(platformId);
// or
ServerIdentity.getInstance().setFromMap(map);
// or
ServerIdentity.getInstance().setFromPropertyFile(file);

Où name, role et platformID viennent d’un fichier de configuration par exemple.

4.3.1.2.3.1 Usage

ServerIdentity serverIdentity = ServerIdentity.getInstance();
String name = serverIdentity.getName();
String role = serverIdentity.getRole();
int platformId = serverIdentity.getGlobalPlatformId();

4.3.1.2.3.2 Les usages principaux

∙ GUID pour PlatformId

∙ Logger and Logbook pour tous les champs

4.3.1.2.4 SystemPropertyUtil

Cet utilitaire propose quelques méthodes pour manipuler les Propriétés héritées du Système, notamment celle déduites
de « -Dxxxx » dans la ligne de commande Java.

Il intègre notamment : - String getVitamConfigFolder() - String getVitamDataFolder() - String getVitamLogFolder() -
String getVitamTmpFolder()

Les répertoires sont par défaut : - Config = /vitam/conf - Data = /vitam/data - Log = /vitam/log - Tmp = /vitam/data/tmp

Ils peuvent être dynamiquement surchargés par une option au lancement du programme Java : - -
Dvitam.config.folder=/path - -Dvitam.data.folder=/path - -Dvitam.log.folder=/path - -Dvitam.tmp.folder=/path

20 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.1.2.5 PropertiesUtils

Cet utilitaire propose quelques méthodes pour manipuler des fichiers de propriétés et notamment dans le répertoire
Resources.

Il intègre notamment : - File getResourcesFile(String resourcesFile) qui retourne un File se situant dans « resources
(classpath) /resourcesFile » - File findFile(String filename) qui retourne un File se situant dans l’ordre

∙ Chemin complet donné par resourcesFile
∙ Chemin complet donné par ConfigFolder + resourcesFile
∙ Chemin complet dans resources (classpath) /resourcesFile

∙ File fileFromConfigFolder(String subpath) qui retourne un File se situant dans « ConfigFolder + subpath » (non
checké)

∙ File fileFromDataFolder(String subpath) qui retourne un File se situant dans « DataFolder + subpath » (non
checké)

∙ File fileFromLogFolder(String subpath) qui retourne un File se situant dans « LogFolder + subpath » (non
checké)

∙ File fileFromTmpFolder(String subpath) qui retourne un File se situant dans « TmpFolder + subpath » (non
checké)

4.3.1.2.6 BaseXXX

Cet utilitaire propose quelques méthodes pour manipuler des Base16, Base32 et Base64.

4.3.1.2.7 CharsetUtils

Cet utilitaire propose quelques méthodes pour la gestion des Charset.

4.3.1.2.8 ParametersChecker

Cet utilitaire propose quelques méthodes pour gérer la validité des arguments dans les méthodes.

4.3.1.2.9 SingletonUtil

Cet utilitaire propose quelques méthodes pour obtenir des Singletons.

4.3.1.2.10 StringUtils

Cet utilitaire propose quelques méthodes pour manipuler des String.

4.3.1.3 GUID

Cf chapitre dédié.

4.3.1.4 Logging

Cf chapitre dédié.

4.3. Common 21

VITAM - Manuel de développement, Version 8.1.2

4.3.1.5 LRU

Cet utilitaire propose une implémentation en mémoire de Cache Last Recent Used.

Il est notamment utilisé dans la partie Metadata.

Son usage doit positionner une dimension maximale et un délai avant retrait :

∙ Les plus anciens sont supprimés lorsque la place manque

∙ Les plus anciens sont supprimés lorsque la méthode forceClearOldest() est appelé

4.3.1.6 Digest

Cet utilitaire propose les fonctionnalités de calculs d’empreintes selon différents formats.

Cf chapitre dédié.

4.3.1.7 Json

Cet utilitaire propose les fonctionnalités de manipulation de Json en utilisant Jackson.

Ce module propose une configuration par défaut pour Vitam.

4.3.1.8 Exception

L’exception parente Vitam VitamException s’y trouve. Toutes les exceptions Vitam en héritent.

4.3.1.9 Client

Le client parent Vitam BasicClient et son implémentation des méthodes commune AbstractClient s’y trouvent. Une
configuration commune SSLClientConfiguration complète le client Vitam.

4.3.2 Global Unique Identifier (GUID) pour Vitam

4.3.2.1 Spécifier ProcessId

Pour surcharger/spécifier le processId, qui par défaut prend la valeur du PID du processus Java, il faut utiliser la
property suivante :

-Dfr.gouv.vitam.processId=nnnnn

Où nnnnn est un nombre entre 0 et 2^22 (4194304).

4.3.2.2 GUID Factory

Usage :

Il faut utiliser le helper approprié en fonction du type d’objet pour lequel on souhaite créer un GUID.

22 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.2.2.1 Pour la partie interne Vitam

∙ Obligatoire en Interne Vitam : le ServerIdentity doit être initialisé (inutile en mode client Vitam)

ServerIdentity.getInstance.setFromMap(Map);
ServerIdentity.getInstance.setFromPropertyFile(File);
ServerIdentity.getInstance.setName(String).setRole(String).setPlatformId(int);

∙ Pour un Unit et son Unit Logbook associé :

GUID unitGuid = GUIDFactory.newUnitGUID(tenantId);

∙ Pour un ObjectGroup et son ObjectGroup Logbook associé :

GUID objectGroupGuid = GUIDFactory.newObjectGroupGUID(tenantId);
// or
GUID objectGroupGuid = GUIDFactory.newObjectGroupGUID(unitParentGUID);

∙ Pour un Object et son Binary object associé :

GUID objectGuid = GUIDFactory.newObjectGUID(tenantId);
// or
GUID objectGuid = GUIDFactory.newObjectGUID(objectGroupParentGUID);

∙ Pour une Opération (process) :

GUID operationGuid = GUIDFactory.newOperationIdGUID(tenantId);

∙ Pour un Request Id (X-Request-Id) :

GUID requestIdGuid = GUIDFactory.newRequestIdGUID(tenantId);

∙ Pour un SIP / Manifest / Seda like informations Id :

GUID manifestGuid = GUIDFactory.newManifestGUID(tenantId);

∙ Pour un Logbook daily Id (Operation, Write) :

GUID writeLogbookGuid = GUIDFactory.newWriteLogbookGUID(tenantId);

∙ Pour un storage operation Id :

GUID storageOperationGuid = GUIDFactory.newStorageOperationGUID(tenantId);

∙ Pour savoir si un GUID est par défaut associé à une Règle WORM :

GUID storageOperationGuid.isWorm();

4.3. Common 23

VITAM - Manuel de développement, Version 8.1.2

4.3.2.2.2 Pour la partie interne et public Vitam

∙ Pour récupérer un GUID depuis sa réprésentation :

GUID guid = GUIDReader.getGUID(stringGuid);
GUID guid = GUIDReader.getGUID(byteArrayGuid);

Où le « stringGuid » peut être dans sa forme BASE16 / BASE32 / BASE64 ou ARK.

4.3.2.3 Attention

∙ Personne ne devrait utiliser les helpers constructeurs directs (newUuid). * Ces méthodes sont réservées à des
usages spéciaux futurs non encore définis.

4.3.3 Digest

Ce package a pour objet de permettre les calculs d’empreintes au sein de Vitam.

Les formats supportés sont :

∙ MD5

∙ SHA-1

∙ SHA-256

∙ SHA-384

∙ SHA-512

4.3.3.1 Usage

Digest digest = new Digest(DigestType.MD5);
// One of
digest.update(File);
digest.update(byte []);
digest.update(ByteBuffer);
digest.update(String);
digest.update(InputStream);
digest.update(FileChannel);

// Or using helpers
Digest digest = Digest.digest(InputStream, DigestType);
Digest digest = Digest.digest(File, DigestType);

// Get the result
byte[] bresult = digest.digest();
String sresult = digest.digestHex(); // in Hexa format
String sresult = digest.toString(); // in Hexa format

// Compare the result: Note that only same DigestType can be used
boolean same = digest.equals(digest2);
boolean same = digest.equals(bresult);
boolean same = digest.equals(sresult);
boolean same = digest.equalsWithType(bresult, DigestType); // same as equals(bresult)
boolean same = digest.equalsWithType(sresult, DigestType); // same as equals(sresult)

24 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.4 Logging

Tous les logiciels Vitam utilisent le logger VitamLogger instantié via VitamLoggerFactory.

4.3.4.1 Initialisation

Dans la Classe contenant la méthode main : si Logback n’est pas l’implémentation choisie, il faut changer le Factory.

// Out of **main** method
private static VitamLogger logger;

// In the **main** method
VitamLoggerFactory.setDefaultFactory(another VitamLoggerFactory);

// Could be JdkLoggerFactory, Log4JLoggerFactory, LogbackLoggerFactory
logger = VitamLoggerFactory.getInstance(Class);
// or
logger = VitamLoggerFactory.getInstance(String);

Si l’implémentation est bien celle de Logback, cette initialisation peut être ignorée.

4.3.4.2 Usage

private static final VitamLogger LOGGER = VitamLoggerFactory.getInstance(Class);

LOGGER.debug(String messageFormat, args...);
// Note messageFormat supports argument replacement using '{}'
LOGGER.debug("Valeurs: {}, {}, {}", "value", 10, true);
// => "Valeur: value, 10, true"

Il est possible de changer le niveau de log :

VitamLoggerFactory.setLogLevel(VitamLogLevel);

5 niveaux de logs existent :

∙ TRACE : le plus bas niveau, ne devrait pas être activé en général

∙ DEBUG : le plus bas niveau usuel

∙ INFO : pour des informations explicatives ou contextuelles

∙ WARN : pour les points d’attentions (warning)

∙ ERROR : pour les erreurs

4.3.4.3 Pour l’usage interne Vitam

private static final VitamLogger LOGGER = VitamLoggerFactory.getInstance(Class);
static final VitamLoggerHelper LOGGER_HELPER = VitamLoggerHelper.newInstance();

LOGGER.debug(LOGGER_HELPER.format(message), args...);
// Allow special formatting and extra information to be set

4.3. Common 25

VITAM - Manuel de développement, Version 8.1.2

4.3.5 JunitHelper

4.3.5.1 MongoDb or Web Server Junit Support

Si dans un Web Server Junit, il est nécessaire d’activer un service utilisant un port, et ceci afin de favoriser un parallé-
lisme maximal des tests unitaires, il est demandé de procéder comme suit :

private static JunitHelper junitHelper;
private static int databasePort;
private static int serverPort;

// dans le @BeforeClass
// Créer un objet JunitHelper
junitHelper = new JunitHelper();

// Pour MongoDB (exemple)
databasePort = junitHelper.findAvailablePort();
final MongodStarter starter = MongodStarter.getDefaultInstance();
// On utilise le port
mongodExecutable = starter.prepare(new MongodConfigBuilder()

.version(Version.Main.PRODUCTION)

.net(new Net(databasePort, Network.localhostIsIPv6()))

.build());
mongod = mongodExecutable.start();

// Pour le serveur web (ici Logbook)
// On initialise le mongoDbAccess pour le service
mongoDbAccess =

MongoDbAccessFactory.create(
new DbConfigurationImpl(DATABASE_HOST, databasePort,

"vitam-test"));
// On alloue un port pour le serveur Web
serverPort = junitHelper.findAvailablePort();

// On lit le fichier de configuration par défaut présent dans le src/test/resources
File logbook = PropertiesUtils.findFile(LOGBOOK_CONF);
// On extraie la configuration
LogbookConfiguration realLogbook = PropertiesUtils.readYaml(logbook,
→˓LogbookConfiguration.class);
// On change le port
realLogbook.setDbPort(databasePort);
// On sauvegarde le fichier (dans un nouveau fichier différent) (static File)
newLogbookConf = File.createTempFile("test", LOGBOOK_CONF, logbook.getParentFile());
PropertiesUtils.writeYaml(newLogbookConf, realLogbook);

// On utilise le port pour RestAssured
RestAssured.port = serverPort;
RestAssured.basePath = REST_URI;

// On démarre le serveur
try {

vitamServer = LogbookApplication.startApplication(new String[] {
// On utilise le fichier de configuration ainsi créé
newLogbookConf.getAbsolutePath(),
Integer.toString(serverPort)});

((BasicVitamServer) vitamServer).start();
} catch (FileNotFoundException | VitamApplicationServerException e) {

(suite sur la page suivante)

26 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

LOGGER.error(e);
throw new IllegalStateException(

"Cannot start the Logbook Application Server", e);
}

// Dans le @AfterClass
// On arrête le serveur
try {

((BasicVitamServer) vitamServer).stop();
} catch (final VitamApplicationServerException e) {

LOGGER.error(e);
}
mongoDbAccess.close();
junitHelper.releasePort(serverPort);
// On arrête MongoDb
mongod.stop();
mongodExecutable.stop();
junitHelper.releasePort(databasePort);
// On efface le fichier temporaire
newLogbookConf.delete();

4.3.6 Client

4.3.6.1 But de cette documentation

Cette documentation indique comment utiliser le code commun du client Vitam pour créer son propre client Vitam.

4.3.6.2 Client Vitam

L’interface commune du client Vitam est : fr.gouv.vitam.common.client.BasicClient.

Elle mets à disposition les méthodes suivantes :

∙ la récupération du status du serveur distant auquel le client se connecte

∙ la récupération du chemin du serveur distant auquel le client se connecte

∙ l’arrêt du client

Une implémentation par défaut de ces méthodes est fournie dans la classe abstraite associée
fr.gouv.vitam.common.AbstractClient.

Chaque client Vitam doit créer sa propre interface qui hérite de l’interface BasicClient

public interface MyModuleClient extends BasicClient {
....

}

Chaque client Vitam doit créer au moins deux implémentations :

∙ le client production

class MyModuleClientRest extends AbstractClient implements MyModuleClient {
....

}

∙ le client bouchonné (Mock)

4.3. Common 27

VITAM - Manuel de développement, Version 8.1.2

class MyModuleClientMock extends AbstractClient implements MyModuleClient {
....

}

Une factory doit être mise en place pour récupérer l’instance du client adaptée. Par défaut, le client attends un fichier
de configuration mymodule-client.conf. S’il n’est pas présent, le client bouchonnée est renvoyé.

public class MyModuleClientFactory {
....

}

Elle doit pouvoir être utilisée de la manière suivante :

// Retrieve the default mymodule client
MyModuleClient client = MyModuleClientFactory.getInstance().getMyModuleClient();

4.3.6.3 Configuration

Une classe de configuration par défaut est fournie : fr.gouv.vitam.common.clientSSLClientConfiguration . Elle contient
les propriétés suivantes :

∙ serverHost : le nom d’hôte du serveur distant auquel le client va se connecter (Exemple : localhost)

∙ serverPort : le port du serveur distant auquel le client va se connecter (Exemple : 8082)

∙ serverContextPath : le context sur lequel est exposé le serveur distant auquel le client va se connecter
(Exemple : /)

∙ useSSL : booléen permettant de spécifier si le client doit utiliser le protocole HTTP (false) ou HTTPS (true)

Un fichier de configuration nommé mymodule-client.conf doit être présent dans le classpath de l’application utilisant
le client. Ce fichier de configuration est au format YAML et il doit contenir les propriétés définies par la classe de
configuration.

Note : Actuellement le mode HTTPS n’est pas encore implémenté. Ainsi une runtime exception est lancée si le client
est instancié avec une configuration dont le useSSL vaut true.

4.3.7 DirectedCycle

Vitam utilise DirectedCycle pour verifier la structure des arbres et de s’assurer qu’on n” a pas un cycle
dans le graphe.

4.3.7.1 Initialisation

Pour initialiser un objet DirectedCycle, il faut instancier un objet DirectedGraph à partir d’un fichier Json
(vous trouvrez ci-dessous un exemple).

File file = PropertiesUtils.getResourcesFile("ingest_acyc.json");
JsonNode json = JsonHandler.getFromFile(file);
DirectedGraph g = new DirectedGraph(json);
DirectedCycle graphe = new DirectedCycle(g);

28 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.7.2 Usage

Pour vérifier la présence d’un cycle dans le graphe

graphe..isCyclic() ;

La méthode isCyclic return true si on a un cycle.

Exemple de fichier json : ingest_acyc.json

{ « ID027 » : { }, « ID028 » : { « _up » : [« ID027 »]}, « ID029 » : {« _up » : [« ID028 »]}, « ID030 » : {« _up » :
[« ID027 »]}, »ID032 » : {« _up » : [« ID030 », « ID029 »] }, « ID031 » : {« _up » : [« ID027 »]}

}

4.3.7.3 Remarque

Pour Vitam, fonctionnellement il ne faut pas trouver des cycles au niveau des arbres des units. (au niveau du bordereau)

4.3.8 Graph

Vitam utilise le Graphe pour determiner l’ordre d’indexation en se basant sur la notion de chemin le plus
long (longest path)

4.3.8.1 Initialisation

Pour initialiser un objet Graph :

File file = PropertiesUtils.getResourcesFile("ingest_tree.json");
JsonNode json = JsonHandler.getFromFile(file);
Graph graph = new Graph(json);

4.3.8.2 Usage

Pour determiner l’ordre il faut avoir le chemin le plus long par rapport aux différentes racines :

graph.getGraphWithLongestPaths()

La méthode getGraphWithLongestPaths return un map qui contient l’ordre on key et la liste (Set) des units id en valeur

Exemple de resultat :

{0=[ID027], 1=[ID030, ID031, ID028], 2=[ID029], 3=[ID032]}

4.3.9 Code d’erreur Vitam

Afin d’harmoniser les erreurs un code d’erreur commun aux différents modules Vitam a été défini. Il est composé de
trois éléments aplhanumériques à deux caractères.

Exemple : 0A7E08 où 0A est le code service, 7E est le code domaine et 08 l’item.

4.3. Common 29

VITAM - Manuel de développement, Version 8.1.2

4.3.9.1 Les codes

4.3.9.1.1 Code service

Le code service identifie le service concerné par l’erreur. Tous les services sont listés dans l’énum ServiceName. On y
retrouve son code et sa description.

Attention, le code 00 est utilisé dans le cas où le service concerné ne se trouve pas dans l’énum. Il sert également aux
différents test, il ne faut pas le supprimer.

L’énum offre également la possibilité de retrouver un service via son code (getFromCode(String code)).

4.3.9.1.2 Code domaine

Le code domaine identifie le domaine concerné par l’erreur. Tous les domaines actuellement identifiés sont listés dans
l’énum DomainName. On y retrouve son code et sa description.

Attention, le code 00 est uniquement utilisé dans les tests. Il ne doit pas être utilisé dans le code de Vitam. Il ne
doit pas êre supprimé.

L’énum offre également la possiblité de retrouver un domaine via son code (getFromCode(String code)).

4.3.9.1.3 Code Vitam

Le code Vitam est donc composé du service, du domaine et d’un item. On retrouve les erreurs Vitam dans l’énum
CodeVitam. On y voit le service, le domaine, l’item, le status HTTP associé à cette erreur ainsi qu’un message.

A terme, le message sera une clef de traduction afin d’internationaliser les messages d’erreur.

Le code 000000 (service 00, domaine 00, item 00) est un code de test. Il ne faut pas l’utiliser dans le code Vitam ni
le supprimer.

4.3.9.1.4 Ajout d’élement dans les énums

Au fur et à mesure des développements, chaque développeur va être amené à ajouter une erreur. Il n’aura principale-
ment qu’à ajouter une ligne dans VitamCode. Cependant, le triplet service, domain, item est unique.

Pour garantir cette unicité, un test unitaire se charge de vérifier les trois énums : CodeTest.

Dans un premier temps sont validés les codes (2 caractères alphanumériques en majuscule) pour chaque énum. Ensuite
est vérifié l’unicité des codes pour chacune.

Ces tests n’ont pas à être modifiés ! S’ils ne passent plus après l’ajout d’une entrée, c’est que celle ci est incorrecte,
le test ne le sera jamais. Dans les logs de CodeTest vous trouverez la raison de l’erreur (code dupliqué et avec
lequel ou erreur dans le code).

4.3.9.2 Utilisation

Afin de récupérer un VitamCode, il suffit de passer par l’énum :

VitamCode vitamCode = VitamCode.TEST;

Il est également possible de le récupérer directement via son code à l’aide du helper VitamCodeHelper :

VitamCode vitamCode = VitamCodeHelper.getFrom("012AE5");

30 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

A partir des getter de l’énum VitamCode, il est possible de récupérer les différentes informations :

VitamCode vitamCode = VitamCode.TEST;
ServiceName service = vitamCode.getService();
DomainName domain = vitamCode.getDomain();
String item = vitamCode.getItem();
Status status = vitamCode.getStatus();
String message = vitamCode.getMessage();

Concernant le message, il est possible de lui mettre des paramètres (String.format()). Ainsi, via le helper, il est possible
de récupérer le message avec les paramètres insérés :

VitamCode vitamCode = VitamCode.TEST;
String message = VitamCodeHelper.getParametrizedMessage(vitamCode, "monParametre",
→˓"monAutreParametre");

Il est possible de récupérer un « log » formaté et paramétré telque « [codeVitam] message paramétré » :

String log = VitamCodeHelper.getLogMessage(VitamCode.TEST, param1, param2);

4.3.10 Common format identification

4.3.10.1 But de cette documentation

Cette documentation indique comment utiliser le code commun du format identifier pour éventuellement ajouter un
client pour un nouvel outil.

4.3.10.2 Outil Format Identifier

L’interface du format identifier est fr.gouv.vitam.common.format.identification.FormatIdentifier. Elle met à disposition
2 méthodes :

∙ status() qui renvoie le statut du format identifer

∙ analysePath(Path) qui renvoie une liste de formats potentiellement identifiés par l’outil.
Une implémentation Mock est présente : fr.gouv.vitam.common.format.identification.FormatIdentifierMock
Chaque nouvel outil doit implémenter l’interface :

public class FormatIdentifierSiegfried implements FormatIdentifier {
@Override
public FormatIdentifierInfo status() { //CALL THE TOOL AND GET THE STATUS }

@Override
public List<FormatIdentifierResponse> analysePath(Path path) { //CALL THE TOOL AND

→˓ANALYSE}
}

De plus, pour pouvoir être utilisé, l’outil doit être ajouté dans l’enum FormatIdentifierType :

public enum FormatIdentifierType {
MOCK,
SIEGFRIED

}

Une factory a été mise en place pour récupérer l’instance du client adaptée. En cas de nouvel outil, il faut la mettre à
jour :

4.3. Common 31

VITAM - Manuel de développement, Version 8.1.2

public class FormatIdentifierFactory {
......
private FormatIdentifier instanciate(String formatIdentifierId){
...
switch (infos.getType()) {

case MOCK:
return new FormatIdentifierMock();

case SIEGFRIED:
return new FormatIdentifierSiegfried(infos.getConfigurationProperties());

.....
}

}
}

4.3.10.3 Configuration

Dans /vitam/conf du serveur applicatif où sont déployés les services d’identification de formats, il faut un fichier
format-identifiers.conf. C’est un fichier YAML de configuration des services d’identification de format. Il possède
les configurations des services que l’on souhaite déployer sur le serveur.

Le code suivant contient un exemple de toutes les configurations possibles :

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: 55800
rootPath: /root/path
versionPath: /root/path/version/folder
createVersionPath: false

mock:
type: MOCK

Pour plus d’informations sur le sujet, voir la documentation sur l’exploitation.

4.3.11 Common-storage

Le common storage est un module commun pour plusieurs modules qui consiste à gérer des objets stockés dans un
container et/ou dans un répertoire, ce module propose plusieurs offres de stockage (Jclouds), par exemple filesystem,
Swift (open stack et ceph) et s3 configurables par code (java) ou par fichier de configuration. Dans les chapitres
suivants, on présentera les 3 modes de configuration.

4.3.11.1 Présentation des APIs Java

4.3.11.1.1 Introduction

Le Module common storage expose un ensemble des méthodes qui gèrent la création, la mise à jour , la suppression
des conteneurs, des répertoires et des objets. Vous trouverez ci-dessous la liste des méthodes avec leurs fonctions
attendues.

L’API principale est l’interface ContentAddressableStorage. Celle-ci a la hiérarchie de classe suivante :

∙ ContentAddressableStorageAbstract : classe abstraite implémentant quelques méthodes communes

32 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ HashFileSystem : implémentation d’un CAS sur FileSystem (via java.nio.*) avec un répertoire par sous-
répertoire permettant un stockage d’un grand nombre d’objets (jusqu’à 500e6 objets)

∙ ContentAddressableStorageJcloudsAbstract : classe abstraite implémentant la plupart des méthodes pour
une implémentation jclouds sous-jacente

∙ FileSystem : implémentation d’un CAS sur FileSystem (via jclouds) avec un répertoire à plat sous les
containers

∙ OpenstackSwift : classe d’implémentation permettant le stockage sur Swift (via jclouds)

∙ AmazonS3V1 : classe d’implémentation permettant le stockage sur S3 (via le sdk amazon s3 v1)

4.3.11.1.2 Liste des méthodes

∙ getContainerInformation : consulter les informations d’un conteneur (pour la version 0.14.0-SNAPSHOT)

∙ Paramètres :

∙ containerName : :String

∙ Retourner : (pour la version 0.14.0-SNAPSHOT) l’espace utilisé et l’espace disponible par région

∙ CreateContainer : créer un conteneur

∙ Paramètres :

∙ containerName : :String

∙ Retourner :

∙ getUriListDigitalObjectFromFolder :

∙ Paramètres :

∙ containerName : :String (le nom de conteneur à consulter)

∙ folderName : :String (le nom de répertoire à consulter pour lister les URIs des objets)

∙ Retourner :

∙ List<URI> : La liste des URIs des objets dans le répertoire cité ci-dessus.

∙ getObjectMetadatas : lire et récupérer les métadonnées d’un objet (le fichier ou le répertoire)

∙ Paramètres :

∙ containerName : :String (le nom de conteneur dans lequel qu’on stock l’object)

∙ objectId : :String (Id de l’object. S’il est null, c’est-à-dire, il est un répertoire)

∙ Retourner :

∙ MetadatasObject : La classe qui contient les informations de metadata

∙ objectName : l’ID du fichier

∙ type : le type (dossier comme Units, Binary, ObjectGroup, Reports, . . .)

∙ digest : l’empreinte

∙ fileOwner : propriétaire

∙ fileSize : taille du fichier

∙ lastAccessDate : date de dernier accès

∙ lastModifiedDate : date de modification des données

Dans le cas échéant, la méthode retourne une immutable empty list.

∙ uncompressObject : cette méthode extrait des fichiers compressés toute en indiquant le type de
l’archive, pour cette version (v0.14.0) supporte 4 types : zip, tar, tar.gz et tar.bz2.

-Paramètres :

4.3. Common 33

VITAM - Manuel de développement, Version 8.1.2

∙ containerName : :String : c’est le nom de container dans lequel on stocke les
objets

∙ folderName : :String : c’est le répertoire racine .

∙ archiveType : : String : c’est le nom ou le type de l’archive (exemple : application/zip
, application/x-tar)

∙ compressedInputStream : :InputStream c’est le stream des objets compressés

∙ retourner :

Dans le cas échéant (uncompress KO) la méthode génère une exception avec un message internal server.

4.3.11.2 Configuration

La première chose que nous devons faire est d’ajouter la dépendance maven dans le pom.xml du projet. Après il faut
configurer le contexte de stockage souhaité (filesystem/swift ceph/ swift openStack), (on traitera cette problématique
au chapitre 2.1 et 2.2)

<dependency>
<groupId>fr.gouv.vitam</groupId>
<artifactId>common-storage<artifactId>
<version>x.x.x</version>

</dependency>

La configuration de l’offre de stockage est basée sur plusieurs paramètres.

Les paramètres communs aux types d’offres sont :
∙ provider : : String : le type de l’offre de stockage (valeur par défaut si chaîne vide : filesystem) Les valeurs

possibles sont : - filesystem - openstack-swift - amazon-s3-v1

Pour une offre Filesystem, les paramètres de configuration sont :
∙ storagePath : : String : path de stockage pour l’offre FileSystem

Pour une offre Swift les paramètres de configuration sont :
∙ swiftKeystoneAuthUrl* : : String : URL d’authentification keystone

∙ swiftUser* : : String : le nom de l’utilisateur (sur rados, il prend la forme <tenant>$<user>)

Pour une offre S3 les paramètres de configuration sont :
∙ s3AccessKey : : String : Access Key ID

∙ s3SecretKey : : String : Secret Access key

∙ s3RegionName : : String : region (pour les requêtes signées en algorithme V4)

∙ s3Endpoint : : String : URL du stockage

∙ s3SignerType : : String [type de signature utilisé (cf documentation officielle Amazon sur la signature
des requêtes 11). Valeurs possibles :]

∙ “AWSS3V4SignerType” : signature V4 (valeur par défaut si chaîne vide)

∙ “S3SignerType” : signature V2

∙ s3TrustStore : : String : chemin vers le fichier TrustStore contenant le certificat racine de l’autorité du
certificat du stockage (obligatoire en cas de SSL)

∙ s3PathStyleEnabled : : Boolean [type d’accès aux buckets S3 (cf documentation officielle Amazon sur
l”hébergement virtuel de compartiments 12). Valeurs possibles :]

∙ “true” : l’accès en mode « path-style » (exemple d’URI : http://mys3domain/mybucket/
)

11. https://docs.aws.amazon.com/fr_fr/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version
12. https://docs.aws.amazon.com/fr_fr/AmazonS3/latest/dev/VirtualHosting.html

34 Chapitre 4. Détails par composant

https://docs.aws.amazon.com/fr_fr/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version
https://docs.aws.amazon.com/fr_fr/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version
https://docs.aws.amazon.com/fr_fr/AmazonS3/latest/dev/VirtualHosting.html

VITAM - Manuel de développement, Version 8.1.2

∙ “false” : l’accès en « virtual-hosted-style » (exemple d’URI : http://mybucket.
mys3domain/)

∙ s3MaxConnections : : Integer : nombre maximum de connexions HTTP ouvertes

∙ s3ConnectionTimeout : : Integer : temps maximum pour l’établissement d’une connexion avant d’aban-
donner (en millisecondes)

∙ s3SocketTimeout : : Integer : temps maximum pour le transfert de la donnée avant d’abandonner (en
millisecondes)

∙ s3RequestTimeout : : Integer : temps maximum pour l’exécution de la requête avant d’abandonner (en
millisecondes)

∙ s3ClientExecutionTimeout : : Integer : temps maximum pour l’exécution de la requête par le client java
avant d’abandonner (en millisecondes)

4.3.11.2.1 Configuration par code

4.3.11.2.1.1 Exemple filesystem

StorageConfiguration storeConfiguration = new StorageConfiguration().
→˓setProvider(StorageProvider.FILESYSTEM.getValue())
.setStoragePath("/");

4.3.11.2.1.2 Exemple SWIFT CEPH

StorageConfiguration storeConfiguration = new StorageConfiguration().
→˓setProvider(StorageProvider.SWIFT.getValue())
.setSwiftKeystoneAuthUrl("http://10.10.10.10:5000/auth/v1.0)
.setSwiftDomain(domain)
.setSwiftUser(user)
.setSwiftPassword(passwd);

4.3.11.2.1.3 Exemple SWIFT OpenStack

StorageConfiguration storeConfiguration = new StorageConfiguration().
→˓setProvider(StorageProvider.SWIFT.getValue())
.setKeystoneEndPoint("http://10.10.10.10:5000/auth/v1.0)
.setSwiftUid(swift)
.setSwiftSubUser(user)
.setCredential(passwd);

4.3.11.2.1.4 Exemple S3

Cet exemple correspond aux valeurs d’une image docker Openio.

StorageConfiguration storeConfiguration = new StorageConfiguration().
→˓setProvider(StorageProvider.AMAZON_S3_V1.getValue())
.setS3RegionName(Regions.US_WEST_1.getName());
.setS3Endpoint("http://127.0.0.1:6007");
.setS3AccessKey("demo:demo");

(suite sur la page suivante)

4.3. Common 35

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

.setS3SecretKey("DEMO_PASS");

.setS3PathStyleAccessEnabled(true);

4.3.11.2.2 Configuration par fichier

Exemple d’un fichier de configuration :

provider: openstack-swift
swiftKeystoneAuthUrl : http://10.10.10.10:5000/auth/v1.0
swiftDomain : vitam
swiftUser : swift
swiftPassword : password

Dans ce cas, on peut utiliser un Builder qui permet de fournir le context associé au provider.

ContentAddressableStorage storage=StoreContextBuilder.newStoreContext(configuration)

4.3.11.3 Présentation des méthodes dans SWIFT & FileSystem

4.3.11.3.1 Introduction

Il y a deux classes qui héritent les APIs. L’une utilise SWIFT et l’autre utilise FileSystem.

4.3.11.3.2 Liste des méthodes

4.3.11.3.2.1 getObjectInformation

∙ SWIFT : Obtenir l’objet par les APIs Swift

result.setFileOwner("Vitam_" + containerName.split("_")[0]);
result.setType(containerName.split("_")[1]);
result.setLastAccessDate(null);
if (objectId != null) {

SwiftObject swiftobject = getSwiftAPi()
.getObjectApi(swiftApi.getConfiguredRegions().iterator().next(),

→˓containerName).get(objectId);

result.setObjectName(objectId);
result.setDigest(computeObjectDigest(containerName, objectId,

→˓VitamConfiguration.getDefaultDigestType()));
result.setFileSize(swiftobject.getPayload().getContentMetadata().

→˓getContentLength());
result.setLastModifiedDate(swiftobject.getLastModified().toString());

} else {
Container container = getContainerApi().get(containerName);
result.setObjectName(containerName);
result.setDigest(null);
result.setFileSize(container.getBytesUsed());
result.setLastModifiedDate(null);

}

36 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ FileSystem : Obtenir le fichier de jclouds par le nom du conteneur et le nom du dossier

File file = getFileFromJClouds(containerName, objectId);
BasicFileAttributes basicAttribs = getFileAttributes(file);
long size = Files.size(Paths.get(file.getPath()));
if (null != file) {

if (objectId != null) {
result.setObjectName(objectId);
result.setDigest(computeObjectDigest(containerName, objectId,

→˓VitamConfiguration.getDefaultDigestType()));
result.setFileSize(size);

} else {
result.setObjectName(containerName);
result.setDigest(null);
result.setFileSize(getFolderUsedSize(file));

}
result.setType(containerName.split("_")[1]);
result.setFileOwner("Vitam_" + containerName.split("_")[0]);
result.setLastAccessDate(basicAttribs.lastAccessTime().toString());
result.setLastModifiedDate(basicAttribs.lastModifiedTime().toString());

}

4.3.11.4 Détail de l’implémentation HashFileSystem

Logique d’implémentation

∙ /<storage-path> : défini par configuration

∙ /container-name : sur les offres de stockage, cela est construit dans le CAS Manager par concaténation du
type d’objet et du tenant . Cette configuration n’est pas la configuration cible (notamment par rapport à
l’offre froide)

∙ /0/a/b/c/<fichier> : avec 0abc les 4 premiers hexdigits du SHA-256 du nom du fichier stocké

4.3.12 Métriques dans VITAM

4.3.12.1 Introduction

Les métriques dans VITAM sont développées en utilisant les libraries dropwizard. Depuis la release R14, la solution
logicielle VITAM intègre Prometheus et permet d’exposer les métriques déjà existantes via une API d’administration
/admin/v1/metrics. De nouvelles métriques techniques et métiers sont aussi développées et exposées via cette
API.

4.3.12.2 Fonctionnement des métriques dropwizard

Les métriques historiques dans VITAM sont développées en utilisant les libraries dropwizard et sont stockées dans le
package :

fr.gouv.common.metrics

Les registres de métriques et les reporters de métriques sont tous les deux contenus dans une classe VitamMetrics.
Cette classe doit être instanciée avec un VitamMetricsType qui peut être REST, JVM ou BUSINESS. Le type définira
les métriques enregistrées dans le registre interne de la classe.

La classe CommonBusinessApplication contient une Map statique de VitamMetrics qui est vide et initialisée à chaque
démarrage d’une application VITAM. Cette Map contient obligatoirement un VitamMetrics de type BUSINESS et peut

4.3. Common 37

VITAM - Manuel de développement, Version 8.1.2

accessoirement contenir les VitamMetrics de types JVM et/ou REST. Les métriques de types JVM et REST peuvent
être activées/désactivées depuis le fichier de conf (Cf. Configuration).

protected static final void clearAndconfigureMetrics()

Cette fonction permet de vider et de recharger les métriques à chaque création d’une application VITAM. Les reporters
de métriques (elasticsearch ou logback) sont démarrés lors du démarrage d’un serveur VITAM.

La fonction suivante de la classe CommonBusinessApplication quant à elle s’occupe du démarrage des reporters :

public final void startMetrics()

Note : Les VitamMetrics de type REST ou JVM n’ont pas à être modifiés pendant l’execution d’une application
VITAM.

4.3.12.2.1 Métriques métier

Les métriques métiers permettent aux développeurs d’enregistrer des métriques n’importe où dans le code, pour par
exemple suivre une variable ou bien chronométrer une fonction. Pour cela il suffit d’appeler la fonction statique
getBusinessMetricRegistry dans la classe CommonBusinessApplication, puis d’enregistrer une métrique.

CommonBusinessApplication.getBusinessMetricsRegistry().register("Running workflows",
new Gauge<Long>() {

@Override
public Long getValue() {

return runningWorkflows.get();
}

});

Avertissement : Avec la fonction register, si une métrique avec un nom identique est déjà enregistrée, alors l’an-
cienne métrique sera ecrasée par la nouvelle avec un avertissement dans les logs. En revanche, avec les fonctions
de création de métrique comme timer, meter. . ., une exception sera soulevée.

4.3.12.2.2 Reporters

2 reporters sont disponibles, un reporter Logback (toutes les métriques sont dumpées dans Logback) ou bien un reporter
ElasticSearch (toutes les métriques sont dumpées dans la base ElasticSearch Log). Le reporter est configurable avec
un interval de temps entre chaque reporting.

Avertissement : Les index ElasticSearch ne sont pas configurables pour les métriques. Ils se nomment respective-
ment : * metrics-vitam-rest-YYYY.MM.dd pour les métriques REST * metrics-vitam-jvm-YYYY.
MM.dd pour les métriques JVM * metrics-vitam-business-YYYY.MM.dd pour les métriques métier

4.3.12.2.3 Legacy

Pour celui ou celle qui souhaiterais continuer le développement du système de métriques au sein de VITAM, voici
quelques points qui peuvent être intéressants à développer :

38 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ Pour un reporter ElasticSearch, vérifier l’état de la connexion à chaque reporting et augmenter progressivement
le temps de reporting si la base de données n’est pas accessible.

∙ Permettre le chargement de reporters de manière générique, en se passant du switch dans VitamMetrics et abs-
traire tout ce qui concerne le reporting.

4.3.12.3 Prometeus

Depuis la release R14, la solution logicielle VITAM intègre Prometheus. A la différence des reporters ci-dessus qui dif-
fuse par un modèle push, prometheus serveur a besoin d’une API pour récupérer les métriques depuis les applications.
L’avatange du fonctionnement du Promtheus avec un modèle pull est multiple :

∙ Faciliter de lancer la supervision sur un post de dev lors du développement de nouvelles métriques

∙ L’inaccessiblé de l’API est une information important pour la supervision des composants VITAM (Composant
tombé).

∙ L’API peut être appelée depuis un navigateur.

Prometheus fonctionne aussi en mode push pour les traitement de type batch (Pour plus d’information voir Pushgate-
way).

4.3.12.3.1 API

La classe qui expose l’API est AdminStatusResource :

@Path("/metrics")
@GET
@Produces(TextFormat.CONTENT_TYPE_004)
public Response prometheusMetrics() {

return Response
.ok()
.type(TextFormat.CONTENT_TYPE_004)
.entity((StreamingOutput)

output -> {
try (final Writer writer = new OutputStreamWriter(output)) {

TextFormat.write004(writer,
CollectorRegistry.defaultRegistry.metricFamilySamples());

}
})

.build();
}

Avertissement : L’api ci-dessus est exposée sur l’interface d’admin uniquement (Ip admin et Port admin).

4.3.12.3.2 Configuration du serveur promtheus

Pour que le serveur prometheus récupère les métriques, il suffit de déclarer l’API ci-dessus dans sa configuration.
L’URL complète de cette API est http(s)://ip-admin-composant-vitam:port-admin/admin/v1/
metrics.

Il est possible de configurer promtheus pour utiliser Consul. Veillez-vous référer à la documentation officielle pour
plus de détails sur la configuration d’un serveur Prometheus

4.3. Common 39

VITAM - Manuel de développement, Version 8.1.2

4.3.12.3.3 Implémentation des métriques

La solution prometheus met à disposition des libraries clientes, implémentés en différents langages, pour faciliter le
développement de nouvelles métriques.

<!-- Prometheus common -->
<dependency>

<groupId>io.prometheus</groupId>
<artifactId>simpleclient_common</artifactId>
<version>${prometheus-version}</version>

</dependency>
<!-- Prometheus the client -->
<dependency>

<groupId>io.prometheus</groupId>
<artifactId>simpleclient</artifactId>
<version>${prometheus-version}</version>

</dependency>
<!-- Prometheus hotspot JVM metrics-->
<dependency>

<groupId>io.prometheus</groupId>
<artifactId>simpleclient_hotspot</artifactId>
<version>${prometheus-version}</version>

</dependency>
<!-- Prometheus get dropwizard metrics-->
<dependency>

<groupId>io.prometheus</groupId>
<artifactId>simpleclient_dropwizard</artifactId>
<version>${prometheus-version}</version>

</dependency>

4.3.12.3.3.1 Récupération des métriques déjà existante

Dans la classe CommonBusinessApplication, les VitamMetrics sont enveloppées par des clients prometheus pour les exposer à son format.

∙ La dépendance simpleclient_dropwizard permet facilement d’envelopper les métriques dropwizard déjà
existantes et de les exposer au format prometheus.

∙ La dépendance simpleclient_hotspot vient avec des métriques jvm prêtes à utiliser

/* Wrap up dropwizard metrics */
new DropwizardExports(vitamMetrics.getRegistry()).register();

/* Initialize JVM prometheus metrics */
DefaultExports.initialize();

4.3.12.3.3.2 Développement de nouvelles métriques prometheus

Prometheus dispose d’une CollectorRegistry instanciée par défaut au démarrage d’une application. Il suffit par la suite
de développer des métriques et de les enregistrer dans cette CollectorRegistry.defaultRegistry Quatre type de métriques
sont possible :

∙ Counter : Les métriques dont la valeur s’incrémente uniquement dans le temps (Exemple : Nombre de requêtes
sur une API donnée)

40 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ Gauge : Les métriques dont la valeur s’incrémente ou se décrémente dans le temps (Exemple : L’utilisation de
la RAM)

∙ Histogram : Permet de compter le nombre d’événements et la somme de la durée d’execution de ces événe-
ments. Des fonctions sont à appliquer sur ces métriques du côté prometheus serveur pour faire des aggregations,
moyenne, quantile, . . .

∙ Summary : A la différence de l’Histogramme, c’est l’application qui doit calculer des aggregation, moyenne,
quantiles, . . .

Ce qu’il faut retenir :
∙ Pour chacune des types de métriques, on peut définir des label. Une métrique avec deux labels par exemple

génère deux séries temporelles

∙ La métrique de type histogram, peut définir des buckets.

∙ Le nom de toutes les nouvelles métriques prometheus ajoutées sont listées dans la classe : VitamMetrics-
Names,

Avertissement : Veuillez renseigner les nouvelles métriques dans la classe VitamMetricsNames Afin de mieux
développer des métriques et de respecter les bonnes pratiques, veuillez vous référer à la documentation officielle
de prometheus https://prometheus.io/docs/practices/

La classe liste sous forme de constantes toutes les métriques prometheus ajoutées. Voici le contenu de cette classe :

public class VitamMetricsNames {

private VitamMetricsNames() {
// This class is only for constants

}

/*
* =================================

* Common

* ==================================

*/

/**
* Vitam requests size in bytes per tenant and method

* Type: Summary

* Labels: "tenant", "method"

*/
public static final String VITAM_REQUESTS_SIZE_BYTES = "vitam_requests_size_bytes

→˓";

/**
* Vitam responses size in bytes per tenant and method

* Type: Summary

* Labels: "tenant", "method

*/
public static final String VITAM_RESPONSES_SIZE_BYTES = "vitam_responses_size_

→˓bytes";

/**
* Vitam storage upload objects to offers size in bytes per tenant, strategy,

→˓offer_id, data_category, origin (normal, bulk, offer_sync), and per attempt

(suite sur la page suivante)

4.3. Common 41

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

* Type: Summary

* Labels: "tenant", "strategy", "offer_id", "data_category", "origin", "attempt"

*/
public static final String VITAM_STORAGE_UPLOAD_SIZE_BYTES = "vitam_storage_

→˓upload_size_bytes";

/**
* Vitam storage download objects from offers size in bytes per tenant, strategy,

→˓offer_id, origin of request (normal, traceability, offer_sync) and data_category

* Type: Summary

* Labels: "tenant", "strategy", "offer_id", "origin", "data_category"

*/
public static final String VITAM_STORAGE_DOWNLOAD_SIZE_BYTES = "vitam_storage_

→˓download_size_bytes";

/**
* Vitam alert service counter per log_level

* Type: Counter

* Labels: "log_level"

*/
public static final String VITAM_ALERT_COUNTER = "vitam_alert_count";

/**
* Vitam consistency errors counter

* Type: Counter

* Labels: "tenant", "service"

*/
public static final String VITAM_CONSISTENCY_ERRORS_COUNT = "vitam_consistency_

→˓errors_count";

/*
* =================================

* Processing

* ==================================

*/

/**
* Vitam operation count per state and status

* Type: Gauge

* Labels: "workflow", "state", "status"

*/
public static final String VITAM_PROCESSING_WORKFLOW_OPERATION_TOTAL = "vitam_

→˓processing_workflow_operation_total";

/**
* Current number of worker tasks in the queue

* Type: Gauge

* Labels: "worker_family"

*/
public static final String VITAM_PROCESSING_WORKER_TASK_IN_QUEUE_TOTAL =

"vitam_processing_worker_task_in_queue_total";

/**
* Current number of worker tasks instantiated by the distributor. In queue or

→˓waiting to be added to the queue (suite sur la page suivante)

42 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

* Type: Gauge

* Labels: "worker_family", "workflow", "step_name"

*/
public static final String VITAM_PROCESSING_WORKER_CURRENT_TASK_TOTAL =

"vitam_processing_worker_current_task_total";

/**
* Current number of workers

* Type : Gauge

* Labels: "worker_family"

*/
public static final String VITAM_PROCESSING_WORKER_REGISTERED_TOTAL = "vitam_

→˓processing_worker_registered_total";

/**
* Worker tasks execution duration. From call of worker until receiving the

→˓response. Task contains one or collection of elements to send to workers

* Type: Histogram

* Labels: "worker_family", "worker_name", "workflow", "step_name"

*/
public static final String VITAM_PROCESSING_WORKER_TASK_EXECUTION_DURATION_

→˓SECONDS =
"vitam_processing_worker_task_execution_duration_seconds";

/**
* Worker tasks waiting time since task creation until task dequeue from the

→˓queue. Task contains one or collection of elements to send to workers

* Type: Histogram

* Labels: "worker_family", "workflow", "step_name"

*/
public static final String VITAM_PROCESSING_WORKER_TASK_IDLE_DURATION_IN_QUEUE_

→˓SECONDS =
"vitam_processing_worker_task_idle_duration_in_queue_seconds";

/**
* ProcessWorkflow step execution duration. From call of distributor until

→˓receiving the response

* Type: Histogram

* Labels: "workflow", "step_name"

*/
public static final String VITAM_PROCESSING_WORKFLOW_STEP_EXECUTION_DURATION_

→˓SECONDS =
"vitam_processing_workflow_step_execution_duration_seconds";

/*
* =================================

* Metadata

* ==================================

*/

/**
* Vitam metadata effective log shipping histogram duration metric

* Type: Histogram

* Labels: "collection"

*/
(suite sur la page suivante)

4.3. Common 43

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

public static final String VITAM_METADATA_LOG_SHIPPING_DURATION = "vitam_metadata_
→˓log_shipping_duration";

/**
* Vitam metadata log shipping events counter for all events. Even for those with

→˓response already running

* Type: Counter

*/
public static final String VITAM_METADATA_LOG_SHIPPING_TOTAL = "vitam_metadata_

→˓log_shipping_total";

/**
* Vitam metadata reconstruction histogram metric

* Type: Histogram

* Labels: "tenant", "container"

*/
public static final String VITAM_RECONSTRUCTION_DURATION = "vitam_reconstruction_

→˓duration";
}

Deux façons d’implémenter les métriques prometheus :

∙ Soit en utilisant les classes déjà disponible. Ci-dessous des exemples de métriques développées pour
le composant processing

// Exemple d'une gauge
// Il suffit partout dans le code d'appeler WORKER_TASKS_IN_QUEUE.inc() et
→˓WORKER_TASKS_IN_QUEUE.dec()
public static final Gauge WORKER_TASKS_IN_QUEUE = Gauge.build()
.name("vitam_processing_worker_task_in_queue_total")
.labelNames("worker_family")
.help("Current number of worker tasks in the queue")
.register();

// Exemple d'un Histogram
// Pour l'histogramme on peut utiliser des buckets
// Pour chaque événement, si sa durée d'execution est inférieure la valeur
→˓de la bucket, le compteur du nombre d'événements pour cette bucket est
→˓incrémenté
public static final Histogram PROCESS_WORKFLOW_STEP_EXECUTION_DURATION_
→˓HISTOGRAM = Histogram.build()
.name("vitam_processing_workflow_step_execution_duration_seconds")
.help("ProcessWorkflow step execution duration. From call of distributor
→˓until receiving the response")
.labelNames("workflow", "step_name")
.buckets(.1, .25, .5, .75, 1, 2.5, 5, 7.5, 10, 30, 60, 120, 180, 300, 600,
→˓1800, 3600)
.register();

// Exemple d'utilisation d'Histogram
Histogram.Timer timer =

CommonProcessingMetrics.PROCESS_WORKFLOW_STEP_EXECUTION_DURATION_
→˓HISTOGRAM

.labels(workParams.getLogbookTypeProcess().name(), step.
→˓getStepName())

.startTimer();
try {

(suite sur la page suivante)

44 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// Process any action that we want to compute duration
} finally {

timer.observeDuration();
}

∙ Soit en étend la classe Collector

// Exemple d'une métrique du composant ‘processing‘
→˓ProcessWorkflowMetricsCollector.
public class ProcessWorkflowMetricsCollector extends Collector {

private static final ProcessWorkflowMetricsCollector instance = new
→˓ProcessWorkflowMetricsCollector();

private ProcessWorkflowMetricsCollector() {
// Private constructor for singleton
register();

}
public static ProcessWorkflowMetricsCollector getInstance() {

return instance;
}
@Override
public List<MetricFamilySamples> collect() {

// Collect
return xxxx.collect();

}
}

4.3.13 Common-private

4.3.13.1 Génération de certificats et de keystore

4.3.13.1.1 Présentation

Nous avons besoins de certificats & keystore pour la procédure d’authentification client-serveur. Ce document présente
comment nous les crééons

1. Pour rappel, nous avons besoins de différents keystore :

∙ keystore.jks : contient le certificat de la clé privé du serveur

∙ truststore.jks : contient la chaîne des CAs qui génère ce certificat de clients & serveurs

∙ granted_certs.jks : list de certificats du client qui sont autorisés à faire des requêtes vers le serveur

∙ le client qui doit présenter sa clé privée & le certificat,lors d’une requête d’authentification.

2.Création des certificats Comme il n’y a pas de PKI, nous utilisons le xca pour générer des certificats et pour les tests.
Nous créons l’ensemble des certificats suivants en utilisant le xca.

∙ VitamRootCA : certificat auto-signé, modèle de certificat : CA, X509v3 Basic Constraints Extensions : Autorité
de Certification

∙ VitamIntermediateCA : certificat signé par VitamRootCA, modèle de certificat : CA, X509v3 Basic Constraints
Extensions : Autorité de Certification

∙ IngestExtServer : certificat signé par VitamIntermediateCA , modèle de certificat : https_server, X509v3 Basic
Constraints Extensions : Entité Finale

∙ client : certificat signé par VitamIntermediateCA , modèle de certificat : https_client, X509v3 Basic Constraints
Extensions : Entité Finale

4.3. Common 45

VITAM - Manuel de développement, Version 8.1.2

∙ client_expired : certificat signé par VitamIntermediateCA , modèle de certificat : https_client, X509v3 Basic
Constraints Extensions : Entité Finale

∙ client_notgranted : certificat signé par VitamIntermediateCA , modèle de certificat : https_client, X509v3 Basic
Constraints Extensions : Entité Finale

Une fois qu’on a créé ces certificats, nous exportons ces certificats soit en format crt, pem ou p12 pour des utilisations
différentes

3. Création des keystores vides Nous utilisons le keytool pour créer les keystores

keytool -genkey -alias mydomain -keystore keystore.jks keytool -delete -alias mydomain -keystore keystore.jks

keytool -genkey -alias mydomain -keystore truststore.jks keytool -delete -alias mydomain -keystore truststore.jks

keytool -genkey -alias mydomain -keystore granted_certs.jks keytool -delete -alias mydomain -keystore gran-
ted_certs.jks

4. Import des certificats

∙ truststore.jks [importer VitamIntermediateCA.crt, VitamRootCA.crt] keytool -import -trustcacerts -alias Vi-
tamRootCA -file VitamRootCA.crt -keystore truststore.jks keytool -import -trustcacerts -alias VitamInter-
mediateCA -file VitamIntermediateCA.crt -keystore truststore.jks

∙ keystore.jks importer la clé privée et le certificat du serveur keytool -v -importkeystore -srckeystore Inges-
tExtServer.p12 -srcstoretype PKCS12 -destkeystore keystore.jks -deststoretype JKS keytool -import -
trustcacerts -alias IngestExtServer -file IngestExtServer.crt -keystore truststore.jks

∙ granted_certs.jks importer des certificats client.crt et client_expired.crt

5. Utilisation des certificats client. exporter en format p12 ou pem selon des buts d’utilisations.

4.3.13.2 esapi utilisation

<?xml version="1.0" encoding="UTF-8"?>
<policy>

<settings>
<mode>redirect</mode>
<error-handling>

<default-redirect-page>/security/error.jsp</default-redirect-
→˓page>

<block-status>403</block-status>
</error-handling>

</settings>
<outbound-rules>

<add-header name="FOO" value="BAR" path="/.*">
<path-exception type="regex">/marketing/.*</path-exception>

</add-header>
</outbound-rules>

</policy>

4.3.13.3 Format Identifiers

4.3.13.3.1 But de cette documentation

Cette documentation indique comment utiliser les services d’identification de format et comment créer sa propre
implémentation.

46 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.13.3.2 Format Identifier

L’interface commune du service d’identification des formats est : fr.gouv.vitam.common.format.identification.FormatIdentifier.

Elle mets à disposition les méthodes suivantes :

∙ la récupération du status du logiciel auquel le service se connecte

∙ l’identification du format d’un fichier par le logiciel auquel le service se connecte

Les implémentations de l’interface sont :

∙ pour l’implémentation Mock : fr.gouv.vitam.common.format.identification.FormatIdentifierMock

∙ pour l’implémentation du logiciel Siegfried : fr.gouv.vitam.common.format.identification.FormatIdentifierSiegfried

Il sera possible d’en implémenter d’autres.

4.3.13.3.2.1 Implémentation Mock

Implémentation simple renvoyant des réponses statiques.

4.3.13.3.2.2 Implémentation Siegried

Implémentation basique utilisant un client HTTP.

4.3.13.3.3 Format Identifier Factory

Afin de récupérer l’implémentation configurée une factory a été mise en place.

4.3.13.3.3.1 Configuration

Cette factory charge un fichier de configuration « format-identifiers.conf ». Ce fichier contient les configurations des
services d’identificaton de format identifiées par un id :

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: 55800
rootPath: /root/path
versionPath: /root/path/version/folder
createVersionPath: false

mock:
type: MOCK

Le type est obligatoire et doit correspondre à l’enum fr.gouv.vitam.common.format.identification.model.FormatIdentifierType.

Les autres données sont spécifiques à chaque implémentation du service d’identification de format.

Si le fichier n’est pas présent au démarrage du serveur, aucune configuration n’est chargée par la factory.

4.3. Common 47

VITAM - Manuel de développement, Version 8.1.2

4.3.13.3.3.2 Méthodes

Pour récupérer un service d’identification de formats :

FormatIdentifier siegfried = FormatIdentifierFactory.getInstance().
→˓getFormatIdentifierFor("siegfried-local");

Pour ajouter une configuration mock :

FormatIdentifierConfiguration mock = new FormatIdentifierConfiguration();
siegfried.setType(FormatIdentifierType.MOCK);
FormatIdentifierFactory.getInstance().addFormatIdentifier("mock", mock);

Pour ajouter une configuration siegfried :

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: 55800
rootPath: /root/path
versionPath: /root/path/version/folder
createVersionPath: false

client : http correspond au client HTTP à lancer (ce dernier effectue des requêtes HTTP pour analyser les fichiers)
host/port correspond au le serveur sur lequel Siegfried est installé. rootPath correspond au chemin vers les fichiers
analysables par Siegfried. versionPath correspond au chemin vers un dossier vide utilisé pour requêter la version de
Siegfried. createVersionPath : Si false le dossier doit pré-existant sur le server sur lequel tourne Siegfried. Sinon, le
client siegfried tente de créer automatiquement le dossier en local.

FormatIdentifierConfiguration siegfried = new FormatIdentifierConfiguration();
siegfried.setType(FormatIdentifierType.SIEGFRIED);
FormatIdentifierFactory.getInstance().addFormatIdentifier("siegfried-local",
→˓siegfried);

Pour supprimer une configuration :

FormatIdentifierFactory.getInstance().removeFormatIdentifier("siegfried-local");

4.3.13.4 Introduction

4.3.13.4.1 But de cette documentation

L’ensemble de ces documents est le manuel de développement du module Graph, qui représente le métier fonctionnel
de US story #510 de projet VITAM, dont le but et de définir un niveau d’indexation de chaque Unit aprés avoir créer
un arbre à partir de fichier SEDA.

Le manuel se compose de : - DAT présente l’architecture technique du module au niveau des packages, classes.

4.3.13.5 DAT : module Graph

Ce document présente l’ensemble de manuel développement concernant l’algorithme de graph qui représente le story
#510, qui contient :

48 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.13.5.1 modules & packages

4.3.13.5.1.1 Modules et packages

Au présent : nous proposons le schéma ci-dessous représentant le module principal et ses sous modules.

graph

∙ DirectedCycle : Directed cycle detection : un graphe orienté donné a un cycle dirigé? Si oui, trouver un tel cycle.
DirectedCycle.java résout ce problème en utilisant la recherche en profondeur d’abord.

Depth-first orders : fait de recherche en profondeur d’abord sur chaque sommet exactement une fois.
Trois ordres de sommet sont d’un intérêt dans des applications typiques :
Preorder : Mettre le sommet(vertex) sur une file d’attente avant les appels récursifs. Postorder : Mettre
le sommet(vertex) sur une file d’attente après les appels récursifs. Reverse postorder : Mettre le
sommet(vertex) sur une pile après les appels récursifs.
Le Depth-first search est l’algorithme de recherche des composantes fortement connexes. L’algo-
rithme consiste à démarrer d’un sommet et à avancer dans le graphe en ne repassant pas deux fois par
le même sommet. Lorsque l’on est bloqué, on “”revient sur ses pas”” jusqu’à pouvoir repartir vers
un sommet non visité. Cette opération de “”retour sur ses pas”” est très élégamment prise en charge
par l’écriture d’une procédure récursive.

Après la parse de Unit recursive et la creation d’arbre orienté.Le choix de la racine de départ de l’arbre orienté se fait
en faisant le test récursive si l’élément ne possède pas un up alors c’est un racine .

∙ DirectedGraph : Un graphe orienté (ou digraphe) est un ensemble de sommets et une collection de bords orientés
qui relie chacun une paire ordonnée de sommets.

Un bord dirigé pointe du premier sommet de la paire et les points au deuxième sommet de la paire.

∙ Graph Un graphe est composé d’un ensemble de sommets et un ensemble d’arêtes . Chaque arête représente une
liaison entre deux sommets.

Deux sommets sont voisins s’ils sont reliés par un bord , et le degré d’un sommet est le nombre
de ses voisins. Graph data type. Graph-processing algorithms généralement d’abord construit une
représentation interne d’un graphe en ajoutant des arêtes (edges), puis le traiter par itération sur les
sommets et sur les sommets adjacents à un sommet donné.
L’algorithme de chemin le plus long est utilisé pour trouver la longueur maximale d’un graph donné.
La longueur maximale peut être mesuré par le nombre maximal d’arêtes ou de la somme des poids
dans un graph pondéré.
L’algorithme de chemin le plus long permet de définir dans notre cas le niveau d’indexation de chaque
Unit .

L’algorithme de parcours en profondeur (ou DFS, pour Depth First Search) est un algorithme de parcours d’arbre, et
plus généralement de parcours de graphe, qui se décrit naturellement de manière récursive. Son application la plus
simple consiste à déterminer s’il existe un chemin d’un sommet à un autre.

4.3.13.6 Paramètres

4.3.13.6.1 Présentation

Dans tout le projet Vitam sont utilisés différents paramètres transmis aux différentes classes ou au différentes mé-
thodes. Afin de ne pas bloquer toute évolution, il est recommandé d’utiliser une classe de paramètres (afin d’éviter de
modifier le nombre de paramètres en signature de méthodes) ou d’utiliser une Map.

4.3. Common 49

VITAM - Manuel de développement, Version 8.1.2

4.3.13.6.2 Principe

L’idée ici est de mettre en place une mécanique de paramètres commune à tous les modules Vitam. Pour se faire, une
interface VitamParameter a été créée. Afin de créer une nouvelle classe de paramètre, il faut alors implémenter cette
interface qui retourne une Map de paramètre et un Set de noms de paramètre obligatoires. Cette interface est générique
et prend comme typage une énum qui dispose du nom des paramètres.

Une classe utilitaire, ParameterHelper a été mise en place afin de vérifier les champs obligatoires. Elle s’appuie sur les
deux méthodes définies dans l’interface VitamParameter.

4.3.13.6.3 Mise en place

4.3.13.6.3.1 Nom des paramètres

Nous souhaitons mettre en place une classe de paramètre pour le module storage, StorageParameter. Il faut dans un
premier temps une énum disposant des noms de paramètre.

public enum StorageParameterName {
/**
* Nom du premier paramètre

**/
field1,
/**
* Nom du deuxième paramètre

**/
field2,
/**
* Nom du troisième paramètre

**/
field3;

}

4.3.13.6.3.2 Interface

Ensuite, une interface va définir les différentes methodes nécéssaires à la classe de paramètre (« définition du contrat »)
tout en héritant de l’interface VitamParameter (afin que la classe implémentant cette nouvelle interface implémente les
deux méthodes getMapParameters et getMandatoriesParameters.

/**
* Exemple d'interface de paramètres

**/
public interface StorageParameters extends VitamParameter<StorageParameterName> {

/**
* Put parameterValue on mapParameters with parameterName key

*

* If parameterKey already exists, then override it (no check)

*
* @param parameterName the key of the parameter to put on the parameter map

* @param parameterValue the value to put on the parameter map

* @return actual instance of WorkerParameter (fluent like)

* @throws IllegalArgumentException if the parameterName is null or if
→˓parameterValue is null or empty

**/

(suite sur la page suivante)

50 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

StorageParameters putParameterValue(StorageParameterName parameterName, String
→˓parameterValue);

/**
* Get the parameter according to the parameterName

*
* @param parameterName the wanted parameter

* @return the value or null if not found

* @throws IllegalArgumentException throws if parameterName is null

**/
String getParameterValue(StorageParameterName parameterName);
/**
* Set from map using String as Key

*
* @param map the map parameters to set

* @return the current instance of WorkerParameters

* @throws IllegalArgumentException if parameter key is unknown or if the map is
→˓null

**/
StorageParameters setMap(Map<String, String> map);
/**
* Get the field1 value

*
* @return the field1's value

**/
String getStorageParameterField1();

}

4.3.13.6.3.3 Possibilité d’avoir une classe abstraite

Le but est d’implémenter cette interface. Cependant, il est possible de vouloir plusieurs classes de paramètres en fonc-
tion des besoins. Il est alors possible de mettre en place une classe abstraite qui implémente les méthodes communes
aux différentes classes de paramètre (par exemple les getters / setters).

abstract class AbstractStorageParameters implements StorageParameters {
@JsonIgnore
private final Map<StorageParameterName, String> mapParameters = new TreeMap<>();
@JsonIgnore
private Set<StorageParameterName> mandatoryParameters;
AbstractStorageParameters(final Set<StorageParameterName> mandatory) {

mandatoryParameters = mandatory;
}
@JsonCreator
protected AbstractStorageParameters(Map<String, String> map) {

mandatoryParameters = StorageParametersFactory.getDefaultMandatory();
setMap(map);

}
@JsonIgnore
@Override
public Set<StorageParameterName> getMandatoriesParameters() {

return Collections.unmodifiableSet(new HashSet<>(mandatoryParameters));
}
@JsonIgnore
@Override
public Map<StorageParameterName, String> getMapParameters() {

return Collections.unmodifiableMap(new HashMap<>(mapParameters));
(suite sur la page suivante)

4.3. Common 51

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

}
@JsonIgnore
@Override
public WorkerParameters putParameterValue(StorageParameterName parameterName,

→˓String parameterValue) {
ParameterHelper.checkNullOrEmptyParameter(parameterName, parameterValue,

→˓getMandatoriesParameters());
mapParameters.put(parameterName, parameterValue);
return this;

}
@JsonIgnore
@Override
public String getParameterValue(StorageParameterName parameterName) {

ParametersChecker.checkParameter(String.format(ERROR_MESSAGE, "parameterName
→˓"), parameterName);

return mapParameters.get(parameterName);
}
@JsonIgnore
@Override
public StorageParameters setMap(Map<String, String> map) {

ParametersChecker.checkParameter(String.format(ERROR_MESSAGE, "map"), map);
for (String key : map.keySet()) {

mapParameters.put(WorkerParameterName.valueOf(key), map.get(key));
}
return this;

}
@JsonIgnore
@Override
public String getField1() {

return mapParameters.get(StorageParameterName.field1);
}

}

4.3.13.6.3.4 Possibilité d’avoir une factory

On voit dans le code d’exemple l’utilisation d’une factory qui permet d’obetnir la bonne implémentation de la classe
de paramètres. En effet, au travers de la factory il est facilement possible de mettre en place les champs requis en
fonction des besoins. Par exemple, certains paramètres peuvent être obligatoire pour toutes les implémentations alors
que certains sont en plus requis pour certaines implémentations. Voir ici s’il n’est pas possible de faire une factory
commune.

public class WorkerParametersFactory {
private static final Set<StorageParameterName> genericMandatories = new HashSet<>

→˓();
static {

genericMandatories.add(StorageParameterName.field1);
genericMandatories.add(StorageParameterName.field2);

}
private StorageParametersFactory() {

// do nothing
}
// Méthodes de la factory
// ...

}

52 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.13.6.3.5 Code exemple

Ensuite, là où les paramètres sont nécéssaires, il suffit d’utiliser l’interface afin d’être le plus générique possible.

public void methode(StorageParameters parameters) {
// Check des paramètres
ParameterHelper.checkNullOrEmptyParameters(parameters);
// Récupération des paramètres
String value = parameters.getField1();
String value 2 = parameters.get(StorageParameterName.field2);
// etc...

}
// Exemple d'ajout de champs requis
public void methode2() {

Set<StorageParameterName> mandatoryToAdd = new Set<>();
mandatoryToAdd.put(StorageParameterName.field3);
// Initialisation des paramètres
StorageParameters parameters = StorageParameterFactory.

→˓newStorageParameters(mandatoryToAdd);
// etc..

}

4.3.13.6.4 Exemple d’utilisation dans le code Vitam

Il est possible de retrouver l’utilisation des paramètres génériques Vitam dans les modules suivants :

∙ Processing

∙ Logbook

4.3.13.7 Uniform Resource Identifier (URI) (vitam)

UriUtils Utilisé pour retirer le dossier racine du chemin d’un URI

Dans le cadre de vitam Dossier racine : sip Dossier des objets numériques : content

sip/content

4.3.13.7.1 fonctions

UriUtils.splitUri(String uriString)

4.3.13.8 Configuration de apache shiro

TODO : présentation de apache shiro, configuration, . . .

4.3.13.9 Présentation authentification via certificats

Afin de pouvoir authentifier des clients via des certificats valides il suffit de bien configurer shiro. Pour ce faire vitam
utilise le fichier shiro.ini qui a la forme suivante.

4.3. Common 53

VITAM - Manuel de développement, Version 8.1.2

[main]
x509 = fr.gouv.vitam.common.auth.web.filter.X509AuthenticationFilter
x509.useHeader = false
x509credentialsMatcher = fr.gouv.vitam.common.auth.core.authc.
→˓X509CredentialsSha256Matcher
x509Realm = fr.gouv.vitam.common.auth.core.realm.X509KeystoreFileRealm
x509Realm.grantedKeyStoreName = path/granted_certs.jks
x509Realm.grantedKeyStorePassphrase = password
x509Realm.trustedKeyStoreName = path/truststore.jks
x509Realm.trustedKeyStorePassphrase = password
x509Realm.credentialsMatcher = $x509credentialsMatcher
securityManager.realm = $x509Realm
securityManager.subjectDAO.sessionStorageEvaluator.sessionStorageEnabled = false
[urls]
/ingest-ext/v1/**= x509

4.3.13.10 Décryptage de shiro.ini

[main] Contient les déclaration de filters et classes comme par exemple X509AuthenticationFilter,
X509CredentialsSha256Matcher, X509KeystoreFileReal, . . . La clé (x509, x509Realm) sont custom et on peut
donner le nom qu’on veut, par contre securityManager est un mot clé shiro. La ligne securityManager.realm =
$x509Realm passe à shiro le Realm qu’on veut utiliser, ceci dit, les clé custom peut être passé à shiro de la même
façon.

[urls] Pour une url donnée on dit quel filter utiliser, exemple : /ingest-ext/v1/= x509 signifie que l’on veut utiliser le
filter x509 pour toutes les urls de type /ingest-ext/v1/

4.3.13.11 Utilisation des certificats

Vitam a une implémentation de filter pour utiliser des certificats x509 afin d’authentifier des clients.

X509AuthenticationFilter (filter par defaut)

∙ Activation du filter dans le fichier shiro.ini : x509 = fr.gouv.vitam.common.auth.web.filter.X509AuthenticationFilter

∙ Ce filter récupère les certificats fournis dans la requête :

X509Certificate[] clientCertChain = (X509Certificate[]) request.
→˓getAttribute("javax.servlet.request.X509Certificate");

∙ Si des certificats sont trouvé alors un token est crée qui sera passé à la méthode qui s’occupe d’authentifier un
client.

new X509AuthenticationToken(clientCertChain, getHost(request));

∙ X509AuthenticationFilter peut aussi authentifier via un certificat passé dans le header. La variable « useHea-
der » est égale à false par défaut. Donc cette option est désactivé par défaut. Si useHeader= true (qu’on peut
spécifier dans shiro.ini : x509.useHeader = false dans l’exemple ci-dessus) et qu’aucun cetificat n’est fourni
dans l’attribute de la requête javax.servlet.request.X509Certificate alors il bascule vers une authentification via
le header. Le nom du header est X-SSL-CLIENT-CERT, et il doit avoir comme valeur un certificat valide au
format pem. Le certificat pem est ensuite converti vers un X509Certificate qui sera utilisé pour créer le token
d’authentification. Ci-dessous une snipet de code qui permets de récupérer la valeur du certificat depuis le header
et le convertir au bon format.

∙ Attention, jetty n’accepte pas les retour à la ligne dans le header, d’où la nécessité d’encoder le pem en base 64.
X509AuthenticationFilter s’occupe de déterminer si le certificat passé dans le header est encodé ou non en base
64 et fera en sorte d’accepter même les certificats non encodés.

54 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

final HttpServletRequest httpRequest = (HttpServletRequest) request;
String pem = httpRequest.getHeader(X_SSL_CLIENT_CERT);
byte[] pemByte = null;
if (null != pem) {

try {
try {

pemByte = Base64.getDecoder().decode(pem);
} catch (IllegalArgumentException ex) {

// the pem is not base64 encoded
pemByte = pem.getBytes();

}
final InputStream pemStream = new ByteArrayInputStream(pemByte);
final CertificateFactory cf = CertificateFactory.getInstance("X.

→˓509");
final X509Certificate cert = (X509Certificate) cf.

→˓generateCertificate(pemStream);
clientCertChain = new X509Certificate[] {cert};

} catch (Exception ce) {
throw new ShiroException(ce);

}
}

∙ Il faut noter que l’authentification via un certificat passé dans le header n’est pas sécurisée (moins sécurisée
que la solution via l’attribute de la requête). En effet, il peut y avoir une injection lors de l’acheminement
de la requête depuis un client vers un serveur jetty. Nous recommendons donc l’utilisation de certificats dans
l’attribute de la requête.

4.3.13.12 Présentation

Nous proposons le filtre de sécurité qui permet de contrôler les requêtes vers vitam pour éviter les vulnaribilités et
faille de sécurité. Le fitre sera contrôler : - le Header de la requête - le Parameter URI - le Body

4.3.13.13 Classes de filtres

Nous proposons trois filtres différents dans les classe comme suits :
∙ SanityCheckerCommonFilter.class : le filtre commmun pour contrôler le header, parametre URI et ceux de la

requête. Ce filtre intègre aussi le contrôle XSS au niveau des header.
∙ SanityCheckerInputStreamFilter.class : filter body de type Inputstream
∙ SanityCheckerJsonFilter.class : filtre body de type Json

La logique est fait une contrôle et si c’est KO, une réponse de status 412 (PRECONDITION_FAILED) sera retourné.

4.3.13.14 Implémenter des filters

Le filtre sera ajouté dans registerInResourceConfig de chaque serveur application sous le syntaxe par exemple

serviceRegistry.register(AccessInternalClientFactory.getInstance())
.register(SanityCheckerCommonFilter.class)

4.3.13.15 Appliquer le filtre pour Vitam

∙ le filtre commun SanityCheckerCommonFilter sera appliqué pour les modules suivants : AccessExternal, Inges-
tExternal, Workspace, Metadata

4.3. Common 55

VITAM - Manuel de développement, Version 8.1.2

∙ le filtre body Json SanityCheckerJsonFilter et body Inputstream SanityCheckerInputStreamFilter seront appli-
qué pour les modules AccessExternal, IngestExternal, Metadata

4.3.13.16 Présentation

Un filtre sur la valeur du tenant, passée dans les headers, a été ajouté pour pouvoir interdire toute requête n’indiquant
pas de tenant, ou indiquant un tenant invalide.

4.3.13.17 Classe de filtre

Une classe de filtre a été ajoutée :

TenantFilter : on vérifie la présence du header X-Tenant-Id dans la requête. Ensuite, on s’assure que la valeur transmise
est bien un Integer. Le contrôle est effectué, s’il est KO (tenant non valide), une réponse PRECONDITION_FAILED
(code 412) sera retournée.

On vérifie ensuite la cohérence du X-Tenant-Id dans la requête, par rapport à la liste des tenants disponibles dans
VITAM. Le contrôle est effectué, s’il est KO (tenant non présent dans la liste des tenants), une réponse UNAUTHO-
RIZED (code 401) sera retournée.

4.3.13.18 Ajout du filtre

Le filtre est ajouté dans setFilter(ServletContextHandler context) de chaque serveur d’application :

// chargemenet de la liste des tenants de l'application
JsonNode node = JsonHandler.toJsonNode(getConfiguration().getTenants());
context.setInitParameter(GlobalDataRest.TENANT_LIST, JsonHandler.unprettyPrint(node));
context.addFilter(TenantFilter.class, "/*", EnumSet.of(

DispatcherType.INCLUDE, DispatcherType.REQUEST,
DispatcherType.FORWARD, DispatcherType.ERROR, DispatcherType.ASYNC));

4.3.13.19 Modules Vitam impactés

Le filtre sera appliqué pour les modules AccessExternal et IngestExternal.

4.3.13.20 Présentation

La classe SanityChecker est une classe utilisée pour nettoyer les fichiers à importer dans la solution logicielle Vitam
(XML, JSON, . . .), en supprimant les balises HTML afin de renforcer la sécurité du système.

4.3.13.20.1 Utilisation

1. Rejet d’un référentiel CSV contenant une injection

public static final void checkHTMLFile(File file) throws
→˓InvalidParseOperationException, IOException {

try (final Reader fileReader = new FileReader(file)) {
try (final BufferedReader bufReader = new BufferedReader(fileReader)) {

String line = null;
while ((line = bufReader.readLine()) != null) {

(suite sur la page suivante)

56 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

checkParameter(line.split(","));
}

}
}

}

2. Rejet d’un référentiel Json contenant une injection

if (json.isArray()) {
ArrayNode nodes = (ArrayNode) json;
for (JsonNode element : nodes) {

checkJsonSanity(element);
}

} else {
final Iterator<Map.Entry<String, JsonNode>> fields = json.fields();
while (fields.hasNext()) {

final Map.Entry<String, JsonNode> entry = fields.next();
final String key = entry.getKey();
checkSanityTags(key, getLimitFieldSize());
final JsonNode value = entry.getValue();

if (value.isArray()) {
ArrayNode nodes = (ArrayNode) value;
for (JsonNode jsonNode : nodes) {

if (!jsonNode.isValueNode()) {
checkJsonSanity(jsonNode);

} else {
validateJSONField(value);

}
}

} else if (!value.isValueNode()) {
checkJsonSanity(value);

} else {
validateJSONField(value);

}
}

}

4.3.13.21 Présentation

La configuration commune des serveurs de Vitam

4.3.13.21.1 Classe de configuration

DefaultVitamApplicationConfiguration contient 2 paramètres obligatoires :

_ Le nom du fichier de la configuration jetty

_ La liste des tenants applicatifs

4.3.13.21.2 Implémentation dans les serveurs de Vitam

∙ Les fichiers de configuration des serveurs doivent étendre cette configuration commune.

4.3. Common 57

VITAM - Manuel de développement, Version 8.1.2

4.3.13.22 Implémentation de l’éxécution des requêtes mono-query DSL

4.3.13.22.1 Implémentation des query builder

Pour construire dynamiquement une requête mono-query, on peut utiliser les builders proposés ci-dessous :

Insert : [filter, data]

∙ Il élabore la requête d’insertion. Il contient le filtre et les données à insérer

Select : [query, filter, projection]

∙ Il élabore la requête de recherche. Contient le query, le filtre et la projection

Update : [query, filter, actions]

∙ Il élabore la requête de mise à jour. Contient le query, le filtre et les actions

Delete : [query, filter]

∙ Il élabore la requête de suppression. Contient le query, le filtre

Select selectQuery = new Select(requestInJson)
ou
Select selectQuery = new Select().setQuery(query).setfilter(filter).setData(data);

Update updateQuery = new Update(requestInJson)
ou
Update updateQuery = new Update().setQuery(query).setfilter(filter).addActions(data);

Insert insertQuery = new Insert(requestInJson)

ou

Insert insertQuery = new Insert().setData(data).setfilter(filter);

Delete deleteQuery = new Delete(requestInJson)
ou
Delete deleteQuery = new Delete().setQuery(query).setfilter(filter);

4.3.13.22.2 Implémentation de DbRequestSingle

DbRequestSingle est une classe pour éxécuter les requêtes DSL mono-query.

Pour l’initialiser, il faut utiliser le constructeur avec une collection de Vitam.

Le résultat de l’éxécution est un objet DbRequestResult qui contient les informations suivantes :

∙ boolean wasAcknowledged : l’information reconnue pour la suppression et la mise à jour

∙ long count : le nombre d’éléments insérés, trouvés, supprimés ou mis à jour

∙ Map<String, List<String>> diffs : la différence entre ancien et nouvelle valeur de l’action mise à jour

∙ MongoCursor<VitamDocument<?>> cursor : le cursor mongo de l’opération de recherche

DbRequestSingle dbrequest = new DbRequestSingle(collection.getVitamCollection());
Insert insertquery = new Insert();
insertquery.setData(arrayNode);
DbRequestResult result = dbrequest.execute(insertquery);

L’implémentation du sort est disponible sur les requêtes MongoDB et ElasticSearch.

58 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.3.13.23 Implémentation de l’authentification

4.3.13.23.1 Implémentation de l’authentification (MongoDbAccess)

L’authentification est le processus de vérification de l’identité du client, donc vous avez besoin d’utiliser quatre para-
mètres dans la fichier de configuration

« dbAuthentication », « dbUserName », « dbName », « dbPassword »

La gestion de l’authentification doit être débrayable – Si « dbAuthentication » est égal à « false », il doit être possible
de continuer à utiliser des bases de données Mongo sans authentification.

Si « dbAuthentication » est égal à « true », il faut créer le MongoClient contenant MongoCredential qui représente les
informations d’identification pour l’authentification auprès d’un serveur mongo, ainsi que la source des informations
d’identification et le mécanisme d’authentification à utiliser.

Ici, Les utilisateurs « dbUserName » se lient à une base de données spécifique « dbName ». Il a besoin du mot de passe
« dbPassword » pour entrer dans la base et CRUD.

public static MongoClient createMongoClient(DbConfiguration configuration,
→˓MongoClientOptions options) {

List<MongoDbNode> nodes = configuration.getMongoDbNodes();
List<ServerAddress> serverAddress = new ArrayList<ServerAddress>();
for (MongoDbNode node : nodes){

serverAddress.add(new ServerAddress(node.getDbHost(), node.getDbPort()));
}
if (configuration.isDbAuthentication()) {

// create user with username, password and specify the database name
MongoCredential credential = MongoCredential.createCredential(

configuration.getDbUserName(), configuration.getDbName(), configuration.
→˓getDbPassword().toCharArray());

// create an instance of mongoclient
return new MongoClient(serverAddress, Arrays.asList(credential), options);

} else {
return new MongoClient(serverAddress, options);

}
}

– List<ServerAddress> serverAddress : La liste des adresses du serveur qui permet la base de données mongodb
de connecter plusieurs nœuds

– Arrays.asList(credential) : La liste des informations d’identification que ce client authentifie toutes les connexions
avec

4.3.13.24 Implémentation du secret de la plateforme

4.3.13.24.1 Présentation

Le secret de plateforme permet de se protéger contre des erreurs de manipulation et de configuration en séparant les
environnements de manière logique (secret partagé par l’ensemble de la plateforme mais différent entre plateforme).

4.3.13.24.2 Implémentation

∙ Un Header X-Request-Timestamp contenant le timestamp de la requête sous forme epoch (secondes depuis
1970)

4.3. Common 59

VITAM - Manuel de développement, Version 8.1.2

∙ Un Header X-Platform-ID qui est SHA256(« <methode> ;<URL>;<Valeur du header X-Request-
Timestamp> ;<Secret partagé de plateforme> »).

Par contre, mettre le secret de plateforme à la fin permet de limite les attaques par extension.

Si on veut assurer une sécurité additionnelle, il est possible de transmettre un hash des valeurs suivantes :

∙ URI + paramètres de l’URI

∙ Header Timestamp

∙ Secret de plateforme en clair non transmis (connus par les participants de la plateforme)

=> Hash (URI + paramètres (dans l’ordre alphabétique) + Header Timestamp + secret non transmis) Ce Hash est
transmis dans le Header : X-Platform-Id

Le contrôle est alors le suivant :

1) Existence de X-Platform-Id et Timestamp ; Dans le cas contraire, la requête est refusée.

2) Vérification que Timestamp est distant de l’heure actuelle sur le serveur requêté de moins de x secondes (|
Timestamp - temps local | < x s). Si la différence de temps est supérieure au seuil acceptable
(10s par défaut), alors des erreurs sont tracées dans les logs et des alertes sont remontées dans le dashboard
Kibana « Alertes de sécurité ». Au delà d’un seuil critique (60s par défaut), la requête est refusée.

3) Calcul d’un Hash2 = Hash(URI+paramètres (dans l’ordre alphabétique) + Header Timestamp + secret non trans-
mis) et vérification avec la valeur Hash transmise ; En cas d’échec de validation, la requête est refusée.

4.4 Functional administration

4.4.1 Introduction

L’ensemble de ces documents est le manuel de développement du module functional-administration, qui représente
le métier fonctionnel de l’user story #71 de projet VITAM, dont le but et de réaliser des opérations sur le format
référentiels de fichier auprès de la base de données (insert/recherche (par id ou par condtion)/delete).

Le manuel se compose de deux parties - DAT présente l’architecture technique du module au niveau des packages,
classes - REST-RAML explique comment on utitlise des différents service proprosés par module - détail d’utilisation
du client

4.4.2 DAT : module functional-administration

Ce document présente l’ensemble du manuel développement concernant le développment du module functional-
administration qui identifie par la user story #71, qui contient :

∙ modules & packages

∙ classes métiers

4.4.2.1 Modules et packages

functional-administration

∙ functional-administration-common : contenant des classes pour des traitements communs concernant le format
référentiels, l’opération auprès de la base de données

∙ functional-administration-format : fournir des traitements de base pour les formats référentiels de VITAM

∙ functional-administration-format-api : définitions des APIs

60 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ functional-administration-format-core : implémentations des APIs
∙ functional-administration-format-import

∙ functional-administration-rule : fournir des traitements de base pour la gestion de règles administratives
∙ functional-administration-rule-api : Définition des APIs
∙ functional-administration-rule-core : Impélmentation des APIs

∙ functional-administration-accession-register : fournir des traitements de base pour la gestion des registres de
fonds

∙ functional-administration-accession-register-core : Impélmentation des traitements des registres de fonds
∙ functional-administration-rest : le serveur REST de functional-administration qui donnes des traitement sur les

traitements de format référentiel et gestion de règles administratives.
∙ functional-administration-client : client functional-administration qui sera utilisé par les autres modules pour les

appels de traitement sur le format référentiel & gestion de règles.
∙ functional-administration-contract : fournis les traitements de base pour les contrat d’accès et les contrat d’en-

trées
∙ functional-administration-profile : fournis les traitements de base pour les profile.
∙ functional-administration-context : fournis les traitements de base pour les contextes

4.4.2.2 Classes métiers

Dans cette section, nous présentons quelques classes principales dans des modules/packages abordés ci-dessus.

4.4.2.2.1 functional-administration-common

fr.gouv.vitam.functional.administration.common
∙ FileFormat.java :

une extension de VitamDocument définissant le référentiel des formats.
∙ ReferentialFile.java :

interface définissant des opérations liées au référentiel des format : importation du fichier PRONOM, vérificaton du
fichier PRONOM soumis, recherche d’un format existant et suppression du référentiel des formats.

∙ IngestContract.java :
Le modèle de données des contracts d’entrée, ce modèle étend VitamDocument.

∙ AccessContract.java :
Le modèle de données des contracts d’accès, ce modèle étend VitamDocument.

∙ ManagementContract.java :
Le modèle de données des contracts de gestion, ce modèle étend VitamDocument.

∙ Profile.java :
Le modèle de données des profiles, ce modèle étend VitamDocument.

∙ Context.java :
Le modèle de données des contextes, ce modèle étend VitamDocument.

fr.gouv.vitam.functional.administration.common.embed ProfileFormat.class : Une enum embeded dans le profile qui
sert à définir le format du fichier profile (xsd, rng) ProfileStatus.class : Une enum embeded dans le profile qui sert à
définir le status (ACTIVE, INACTIVE)

fr.gouv.vitam.functional.administration.common.exception : définir des exceptions concernant de opération sur le ré-
férentiel des formats

fr.gouv.vitam.functional.administration.common.server les classe de traitement auprès de la base de données mongodb
pour les opérations de référentiel de format.

4.4. Functional administration 61

VITAM - Manuel de développement, Version 8.1.2

∙ FunctionalAdminCollections.java :

définir la collection dans mongodb pour des données de formats référentiels

∙ MongoDbAccessReferential.java :

interface définissant des opérations sur le format de fichier auprès de la base mongodb : insert d’une base de PRONOM,
delete de la collection, recherche d’un format par son Id dans la base,recherche des format par conditions

∙ MongoDbAccessAdminImpl.java :

une implémentation de l’interface MongoDbAccessReferential en extension le traitementMongoDbAccess commun
pour mongodb

4.4.2.2.2 functional-administration-format

∙ functional-administration-format-api

∙ functional-administration-format-core

∙ PronomParser.java : le script de traitement permettant de de récupérer l’ensemble de format en
format json depuis d’un fichier PRONOM stantard en format XML contient des différents formats
référentiels

∙ ReferentialFormatFileImpl.java : implémentation de base des opération sur le format référentiel de
fichier à partir d’un fichier PRONOM jusqu’à la base MongoDB.

∙ functional-administration-format-import

4.4.2.2.3 functional-administration-rest

∙ AdminManagementResource.java : définir des ressources différentes pour le serveur REST functional-
administration

∙ AdminManagementApplication.java : créer & lancer le serveur d’application avec une configuration

∙ ContractResource.java : Définir l’endpoints de l’api rest des contrats (entrée et accès)

∙ ProfileResource.java : Définir l’endpoint de l’api rest du profile

∙ ContextResource.java : Définir l’endpoint de l’api rest du contexte

4.4.2.2.4 functional-administration-client

∙ AdminManagementClientRest.java : créer le client de et des fonctionnalités en se connectant au serveur REST

∙ AdminManagementClientMock.java : créer le client et des fonctionnalités en se connectant au mock de serveur

4.4.2.2.5 functional-administration-rules

∙ functional-administration-rules-api

∙ functional-administration-rules-core

∙ RulesManagerParser.java :permett de de parser le fichier de référentiel de règle de gestion
d’extension .CSV et récupérer le contenu en ArrayNode

∙ RulesManagerFileImpl.java : implémentation de base des opération sur les paramètres de
référentiel de regle de gestion à partir de l’array Node générer après le parse de CSV File
jusqu’à la base MongoDB.

62 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Le contrôle au niveau de RulesManagerFileImpl de fichier CSV a été mis à jour .
Définition d’un référentiel valide en se basant sur les critères ci_dessous :

Chaque RuleId doit être UNIQUE dans le référentiel RuleType doit être dans l’énumération suivante,
non sensible à la casse : (AppraisalRule, AccessRule, StorageRule, DisseminationRule, Classifica-
tionRule, ReuseRule) RuleDuration :

∙ Depuis le fichier CSV, peut être un entier positif ou nul ou « unlimited » (insensible à la
casse). La valeur réelle de l’enregistrement dans la collection est laissée à la discrétion
des équipes de développements (ex « -1 » si on veut garder une valeur numérique)

∙ Permettre les manipulations sur des nombres (plus grand que.. plus petit que. . . Et
calcul de date). Actuellement le champ est de type string, ce qui semble poser de
nombreuses contraintes

RuleMeasurement :

RuleMeasurement doit être dans l’énumération suivante, non sensible à la casse :
(year, month, day) RuleMeasurement peut aussi avoir comme valeur, non sensible
à la casse « second ». Cette demande est dans l’optique de la story #740 et n’a
de sens qu’à des fins de tests. L’association de RuleDuration et RuleMeasurement
doit être inférieure ou égale à 999 ans. (Mettre « 15000 jours est donc autorisé)
L’unité de mesure (RuleMeasurement) doit être écrite en français dans l’interface,
comme c’est déjà le cas actuellement : année(s), mois, jour(s), seconde(s)
Dans le cas des règles unlimited

∙ La valeur que doit renvoyer l’API lorsque la règle a une durée “unlimited” dé-
pend du choix de design effectué pour l’enregistrement de la valeur “unlimited”

∙ Dans l’IHM standard, la date de fin doit être au choix marquée comme :

∙ « Illimitée (date de début inconnue) » : dans le cas où la date de fin n’est pas
connue car la startDate n’est pas connue

∙ « Illimitée (règle à durée illimitée) » : dans le cas où la date de fin ne peut pas
être calculée car la durée de la règle est “unlimited”

∙ Les durées des règles du fichier en cours d’import doivent être strictement supérieures
ou égales aux durées minimales demandées dans la configuration du tenant, pour cette
catégorie de règle sur ce tenant (la durée de la règle est la valeur de la durée RuleDu-
ration + l’unité de mesure RuleMeasurement.)

4.4.2.2.6 functional-administration-accession-register

∙ functional-administration-accession-register-api

∙ functional-administration-accession-register-core

∙ ReferentialAccessionRegisterImpl.java :implémentation de base des opération sur la collection re-
gistre de fond .

permet de créer une collection registre de fond et de faire la recherche par Service Producteur et l’affichage
de détaile.

4.4.2.2.7 functional-administration-contract

fr.gouv.vitam.functional.administration.contract.api

∙ ContractService.java : Interface définissant les différentes opérations sur les contrats (contrat d’accès et contrat
d’entrée)

4.4. Functional administration 63

VITAM - Manuel de développement, Version 8.1.2

fr.gouv.vitam.functional.administration.contract.core

∙ AccessContractImpl.java : Classe d’implémentation pour la gestion des contrats d’accès

∙ ContractStatus.java : Enum pour les différents status des contrat d’accès et des contrat d’entrées

∙ ContractValidator.java : Interface fonctionnelle de validations des contrats

∙ GenericContractValidator.java : Interface fonctionnelle de validations des contrats

∙ IngestContractImpl.java : Classe d’implémentation pour la gestion des contrats d’entrées

∙ ManagementContractImpl.java : Classe d’implémentation pour la gestion des contrats de gestion

4.4.2.2.8 functional-administration-profile

fr.gouv.vitam.functional.administration.profile.api

∙ ProfileService.java : Interface définissant les différentes opérations sur les profiles.

fr.gouv.vitam.functional.administration.profile.api.impl

∙ ProfileServiceImpl.java : Implémentation du service ProfileService.

fr.gouv.vitam.functional.administration.profile.core

∙ ProfileManager.java : Gère toutes les opérations du logbook et toutes les opérations de validation concernant les
profiles. Lors de la validation, il vérifie (si déjà existence dans la base de données, champs obligatoires, fichiers
au format xsd ou rng valides, ..).

∙ ProfileValidator.java : Interface fonctionnelle de validations des contrats

4.4.2.2.9 functional-administration-context

fr.gouv.vitam.functional.administration.context.api

-ContextService.java : Interface définissant les différentes opérations sur les contextes

fr.gouv.vitam.functional.administration.context.core

-ContextServiceImpl.java : Implémentation du Service ContextService -ContextValidator.java : Interface fonctionnelle
de validations des contextes

4.4.2.2.10 functional-administration-security-profile

fr.gouv.vitam.functional.administration.profile.api.impl

∙ SecurityProfileService.java : Service gérant les différentes opérations sur les profiles de sécurité.

fr.gouv.vitam.functional.administration.security.profile.core

4.4.3 Administration-Management-Common

Parent package : fr.gouv.vitam.functional.administration

Package proposition : fr.gouv.vitam.functional.administration.common
Ce package implémente les différentes opérations sur le module functional-administration (insert, delete, select

pour les formats, les règles de gestion et les registres de fonds)

64 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.4.3.1 1. Modules et packages

—fr.gouv.vitam.functional.administration.common : contenant des modèles de document MongoDb
—fr.gouv.vitam.functional.administration.common.client.model : contenant les modèles de la réponse du
client —fr.gouv.vitam.functional.administration.common.exception : contenant les exceptions du module
—fr.gouv.vitam.functional.administration.common.server : contenant les classes pour l’accès aux bases de don-
nées

4.4.3.2 2. Classes

Dans cette section, nous présentons quelques classes principales dans les modules/packages abordés ci-dessus.

4.4.3.2.1 2.1 Class ElasticsearchAccessFunctionalAdmin

Class ElasticsearchAccessFunctionalAdmin : il s’agit de la classe qui permet de gérer les requêtes de functio-
nal.administration à la base de données ElasticSearch Les différents traitements sont l’ajout, la recherche et la sup-
pression.

Pour la recherche :

∙ La méthode search(final FunctionalAdminCollections collection, final QueryBuilder query, final QueryBuilder
filter) permet de chercher dans l’index Elasticsearch avec le query et le filter.

Pour l’insert :

∙ La Méthode addIndex(final FunctionalAdminCollections collection) permet d’ajouter un index dans Elastic-
search

∙ La Méthode addEntryIndexes(final FunctionalAdminCollections collection, final Map<String, String> mapIdJ-
son) permet d’insérer les indexes dans l’index ElasticSearch.

Pour le delete :

∙ La Méthode deleteIndex(final FunctionalAdminCollections collection) permet de supprimer un index dans Elas-
ticsearch.

4.4.3.2.2 2.2 Class MongoDbAccessAdminImpl

∙ La Méthode insertDocuments(ArrayNode arrayNode, FunctionalAdminCollections collection)
permet d’insérer un ensemble d’entrées dans mongodb et les indexe dans ElasticSearch (seulement pour les
formats et les règles de gestion) .

∙ La Méthode MongoCursor<?> findDocuments(JsonNode select, FunctionalAdminCollections collection)
permet de chercher les documents dans mongoDb (pour les formats et les règles de gestion. On cherche d’abord
dans Elasticsearch pour récupérer identifiant unique puis cherche dans mongoDb).

∙ La Méthode public void updateDocumentByMap(Map<String, Object> map, JsonNode obj-
Node,FunctionalAdminCollections collection, UPDATEACTION operator)
permet de mettre à jour un ensemble d’entrées dans les document mongodb et l’index ElasticSearch (seulement
pour les formats et les règles de gestion).

∙ La Méthode public void updateData(JsonNode update, FunctionalAdminCollections collection)
permet de mettre à jour une entrée dans un document mongodb via une requête au format json

∙ La Méthode deleteCollection(FunctionalAdminCollections collection)
permet de supprimer un ensemble d’entrées dans monfoDb et l’index ElasticSearch (seulement pour les formats
et les règles de gestion).

3. Mapping elasticsearch des documents (recherche rapprochée)

4.4. Functional administration 65

VITAM - Manuel de développement, Version 8.1.2

Cette section concerne le mapping elasticsearch des documents géré au niveau functional administration. Mais c’est
la même règle partout ailleur.

Pour qu’un document soit analysé par elasticsearch et que la recherche rapprochée marche il faut ce qui suit :

∙ Ajouter un paramètre typeunique au document concerné. Ce paramètre est utilisé par elasticsearch.

Exemple : le document profile contient bien un paramètre :

public static final String TYPEUNIQUE = "typeunique";

∙ Créer dans le dossier resources les fichiers mapping au format json.

profile-es-mapping.json, accesscontract-es-mapping.json,

Exemple de fichier json de mapping elasticsearch :

{
"properties": {
"Name": {

"type": "string"
},
"Status": {

"type": "string",
"index": "not_analyzed"

},
"CreationDate": {

"type": "date",
"format": "strict_date_optional_time"

},
"LastUpdate": {
"type": "string",
"index": "not_analyzed"

}
}

}

∙ Ces fichers sont ensuite chargé au niveau de ElasticsearchAccessFunctionalAdmin.

∙ Dans la méthode getMapping de ElasticsearchAccessFunctionalAdmin, il faut rajouter le document concerné,
ainsi récupérer le mapping correspondant.

private String getMapping(FunctionalAdminCollections collection) throws IOException {
if (collection.equals(FunctionalAdminCollections.PROFILE)) {

return ElasticsearchUtil.transferJsonToMapping(FileRules.class.
→˓getResourceAsStream(MAPPING_PROFILE_FILE_JSON));

}
return "";

}

∙ Dans la méthode getTypeUnique ajouter TYPEUNIQUE du document concerné.

private String getTypeUnique(FunctionalAdminCollections collection) {
if (collection.equals(FunctionalAdminCollections.PROFILE)) {

return PROFILE.TYPEUNIQUE;
}
return "";

}

66 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Attention :

∙ Il faut supprimer l’index s’il existe déjà pour qu’il puisse être crée avec les bon mappings.

∙ Si on supprime l’index, il faut ré-indexer les données de la base de données.

4.4.4 Administration-Management-client

4.4.5 Utilisation

4.4.5.1 Paramètres

Administration-Management-client-format Les paramètres sont les InputStreams du fichier Pronom pour l’import ou la
validation. Pour la recherche des formats, les paramètres sont les requête DSL construites par les builders de common-
database

Administration-Management-client-rules Les paramètres sont les InputStreams du fichier CSV pour l’import ou la
validation. Pour la recherche des règles, les paramètres sont les requête DSL construites par les builders de common-
database

Administration-Management-client-accession-register Les paramètres sont les InputStreams du fichier pour l’import
ou la validation. Pour la recherche des registres, les paramètres sont les requête DSL construites par les builders de
common-database

4.4.5.2 La factory

Afin de récupérer le client, une factory a été mise en place.

// Récupération du client
AdminManagementClient client = AdminManagementClientFactory.getInstance().
→˓getAdminManagementClient();

4.4.5.2.1 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
AdminManagementClientFactory.setConfiguration(AdminManagementClientFactory.
→˓AdminManagementClientType.MOCK_CLIENT, null);
// Récupération explicite du client mock
AdminManagementClient client = AdminManagementClientFactory.getInstance().
→˓getLogbookClient();

4.4.5.3 Le client

Pour instancier son client en mode Production :

// Ajouter un fichier functional-administration-client.conf dans /vitam/conf
// Récupération explicite du client
AdminManagementClient client = AdminManagementClientFactory.getInstance().
→˓getAdminManagementClient();

Le client propose actuellement les méthodes :

4.4. Functional administration 67

VITAM - Manuel de développement, Version 8.1.2

Status status();
void checkFormat(InputStream stream);
void importFormat(InputStream stream);
void deleteFormat();
JsonNode getFormatByID(String id);
JsonNode getFormats(JsonNode query);
checkRulesFile(InputStream stream);
importRulesFile(InputStream stream);
deleteRulesFile();
JsonNode getRuleByID(String id);
JsonNode getRule(JsonNode query);
createorUpdateAccessionRegister(AccessionRegisterDetail register);
JsonNode getAccessionRegister(JsonNode query);
JsonNode getAccessionRegisterDetail(JsonNode query);

Status importContexts(List<ContextModel> ContextModelList)
RequestResponse<ContextModel> updateContext(String id, JsonNode queryDsl)
RequestResponse<ContextModel> findContexts(JsonNode queryDsl)
RequestResponse<ContextModel> findContextById(String id)

4.5 IHM demo

4.5.1 Introduction

4.5.1.1 But de cette documentation

L’ensemble de ces documents est le manuel de développement du module IHM-logbook, qui représente le métier
fonctionnel de US story #90 de projet VITAM, dont le but et de faire affichers des logs des opérations et effectuer la
recherche sur ces logs.

Le manuel se compose de deux parties - DAT présente l’architecture technique du module au niveau des packages,
classes - REST-RAML explique comment on utitlise des différents service proprosés par module

4.5.2 IHM Front

4.5.2.1 Cette documentation décrit la partie front/Angular de l’ihm et en particulier sa configuration
et ses modules.

4.5.2.1.1 Utils et général / Composition du projet Angular

TODO

4.5.2.1.1.1 Composition du projet

NPM + Bower : npm est utilisé pour gérer les dépendances liées au build de l’application (par exemple la minification),
tandis que bower est utilisé pour gérer les dépendances de l’appication (par exemple angular, moment.js, . . .) Pour
construire le projet, l’outil gulp a été mis en place. Celui permet d’automatiser les tâches permettant d’arriver à la
construction d’un livrable contenant les fichiers html, javascript et css minifiés. La commande “gulp package” permet
de construire le projet.

Tests unitaires : Voir ihm-tests.rst

68 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.5.2.1.1.2 Gulp et déploiement à chaud

Le déploiement à chaud est possible via la commande “gulp serve”. Si un fichier est modifié pendant que le serve est
lancé, les modifications seront automatiquement mises à jour. Le backend ciblé peut être spécifié en ajoutant un fichier
local.json (Voir local.json.sample) et en modifiant la propriété target.

4.5.2.1.1.3 Karma et Tests unitaires

Les tests unitaires se lances via les commandes :

∙ “gulp tests” : Lance un serveur (basé sur le module karma serveur) + les tests karma (Unitaires) et Protractor
(e2e)

∙ “gulp testKarma” : Lance les tests unitaires seules (Nécéssite un serveur lancé)

∙ “gulp testProtractor” : Lance les tests end to end seuls (Nécéssite un serveur lancé)

4.5.2.1.1.4 Qualité du code Javascript

La qualité du code javascript est validée grâce au module lint. Pour celà, il suffit de lancer la commande “gulp lint”.

4.5.2.1.1.5 Modèle MVC

Le front va petit à petit être migré vers une architecture reprenant le modèle MVC :

∙ Une couche Modèle, récupérant les données depuis l’API vitam (Server d’app + dossier resources Angular)

∙ Une couche Service, traitant les promesses des resources ou proposant des méthodes utilitaires

∙ Une couche Vues, proposant l’affichage d’une page avec son controller associé

Au final l’arbo type des fichiers devrait être la suivante :

/app => Fichiers de conf globaux du projet (bower/npm/jshint/index.html/. . .)

/core => Fichiers de configuration globaux
(core.module.js, main.controller.js,
app.config.js, app.module.js, . . .) /static
=> Fichiers de traductions front (Key=value
pour les champs statiques de l’IHM)
/services => Services utilitaires parta-
gés de l’application (Faire des modules
pour chaque services si externalisables)
/directives => Directives utilitaires parta-
gés de l’application (Faire des modules
pour chaque directives si externalisables)
/filters => Filtres utilitaires partagés de
l’application?

/resources accession-register.resource.js => Une mé-
thode par endpoint du server d’app (Search
/ GetAll / GetDetails / . . .) archive-
unit.resource.js => Une méthode par end-
point du server d’app (Search / GetArchive
/ GetDetails / . . .) . . .

4.5. IHM demo 69

VITAM - Manuel de développement, Version 8.1.2

/services accession-register.service.js => Une ou plu-
sieurs méthodes par méthode de la resource
fund-register archive-unit.service.js => Une
ou plusieurs méthodes par méthode de la re-
source archive-unit . . .

/pages (Nom à valider)

/accession-register-detail => Controller + Template de la page Détails
de Registre de Fonds /archive-unit => Controller + Template de la
page archive-unit . . .

/styles /css /img /fonts => A migrer dans le /css?

4.5.2.1.1.6 Internationalisation

Cette partie est gérée par le module angular-translate

Pour ajouter une traduction, ajouter une clé valeur dans le fichier static/languages_<lang>.json L’entrée être formatée
de la manière suivante « <pageGroup>.<pageDetail>.<bloc>.<key> »= »<value> » où :

∙ <pageGroup> est le groupe de page ou du module dans l’application (Exemple archiveSearch ou administration)

∙ <pageDetail> est le nom de page dans le groupe (Exemple managementRules ou archiveUnitDetails)

∙ <bloc> est le nom du bloc dans la page (Exemple searchForm ou technicalMetadata)

∙ <key> est le nom de la clé (Exemple “id” ou “evDetData”)

Si possible essayez de regrouper les clés définies par groupe/detail/bloc/ordre alphabetique pour s’y re-
trouver.

Pour utiliser une traduction, utilisez dans une instruction angular de votre HTML le filtre translate :

<div>{{'archiveSearch.searchForm.id' | translate}}</div>

Si votre key est dynamique et présente dans une variable, il est possible d’inserer du js en plus de la chaine :

<div>{{'archive.archiveUnitDetails.technicalMetadata.' + metadata[$index] | translate}
→˓}</div>

Enfin il est également possible de faire le traitement de traduction en js en appliquant le filtre :

Note : $filter doit avoir été injecté

var translatedLabel = $filter('translate')('archiveSearch.searchForm.id');

À faire : Rendre dynamique la langue choisi pour les traductions (actuellement static FR)

À faire : Utiliser la langue de fallback fr (ou autre?)

À faire : Une grosse partie des constantes (js) et des String statiques (html) devraient être mises dans ces fichiers

70 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

À faire : Récupérer la liste des valeurs du référentiel VITAM (Build / Appel API)

4.5.3 Modules IHM Front

Cette documentation décrit les principaux modules réutilisables de l’IHM front (js)

4.5.3.1 Module archive-unit

Ce module ne comprends pas le module “archive-unit-search” Ce module permet le processing et l’affichage des
données liées à une Archive Unit. Les directives utilisées sont :

∙ display-field qui permet d’afficher un champ en prenant en compte le mode édition

∙ display-fieldtree qui permet d’afficher un ensemble de champs en utilisant le directive display-field avec des
paramètres standards pour chaque champ

4.5.3.1.1 Directive display-field

Cette directive permet d’afficher un champ “simple” en mode visualisation ou edition. Un champ “simple” est un
champ qui à simplement une valeur (Texte/nombre) et pas de sous-élément.

Usages : Pour utiliser cette directive il suffit d’appeler la balise “<display-field” en spécifiant les parametres suivants :

∙ field-label : Surcharge du nom du label

∙ field-object : L’ensemble des propriétés de l’objet. Doit contenir au moins :

– isModificationAllowed : vrai si le champ est éditable – isFieldEdit : vrai si le champ est en cours d’édition –
fieldValue : La valeur affichée du champ

∙ edit-mode : Vrai si le formulaire est en mode édition

∙ field-size : La valeur du XX dans la classe CSS de bootstrap col-md-XX.

∙ intercept-user-change : Fonction de callback à appeler lorsque la champ est modifié Cette fonction doit
prendre un fieldSet en paramètres.

Il est également possible de donner une valeur de surcharge pour la valeur du champ grâce à ce dernier paramètre :

∙ display-value : Affiche une valeur spécifique à la place de fieldValue (Le mode édition reprends la valeur réelle)

Exemple :

<div class="col-xs-12">
<div class="form-group col-md-6">

<display-field field-label="'Service producteur'" field-size="'11'"
intercept-user-change="$ctrl.interceptUserChanges(fieldSet)"
field-object="$ctrl.mainFields['OriginatingAgency'].content[0]" edit-mode="

→˓$ctrl.isEditMode">
</display-field>

</div>
</div>

4.5. IHM demo 71

VITAM - Manuel de développement, Version 8.1.2

4.5.3.1.2 Directive display-fieldtree

Cette directive permet d’afficher un champ et leurs sous élément si nécessaire de manière récursive. - field-object :
L’ensemble des propriétés de l’objet. Doit contenir au moins :

– isModificationAllowed : vrai si le champ est éditable – isFieldEdit : vrai si le champ est en cours d’édition –
fieldValue : La valeur affichée du champ – typeF : Le type de champ

“P” correspond à un champs “parent” avec des sous éléments. “S” correspond à un champ simple.
– content : Tableau de fieldObject contenant les enfants de ce champ.

∙ edit-mode : Vrai si le formulaire est en mode édition
∙ intercept-user-change : Fonction de callback à appeler lorsque la champ est modifié.

Cette fonction doit prendre un fieldSet en paramètres.
Exemple :

<div class="row archiveDesc panel-collapse collapse in" id="{{'box' + key}}">
<div ng-repeat="fieldSet in $ctrl.managmentItems">

<display-fieldtree intercept-user-change="$ctrl.interceptUserChanges(fieldSet)
→˓"

field-object="fieldSet" edit-mode="$ctrl.isEditMode">
</display-fieldtree>

</div>
</div>

4.5.3.1.3 Affichage des Libéllés des champs

La fonction self.displayLabel du controller archive-unit permet de récupérer la valeur française des champs à afficher.
∙ key : nom technique du champ à afficher
∙ parent : nom technique de son parent direct.

permet de reconstituer la clé parent.key pour les champs “parent”
∙ constantes : Nom du fichier de constantes à utiliser.

Cela permet d’avoir plusieurs _id (par exemple) en fonction du context. Les fichiers de constantes
sont définis dans archive-unit.constant.js. Les clés des constantes équivalent à « key » pour les champs
simples et à “parent.key” pour les champs parent.

∙ retourne le label si présent dans le fichier de constantes ou la clé (key) sinon.
Exemple :

var key = fieldSet.fieldId;
var parent = fieldSet.parent;
var constants = ARCHIVE_UNIT_MODULE_OG_FIELD_LABEL;
fieldSet.fieldName = self.displayLabel(key, parent, constants);

4.5.3.2 Affichage dynamiqueTable

Cette directive permet de dynamiser les tableaux de données pour sélectionner les colonnes à afficher.
∙ custom-fields : Ce sont les champs dynamiques pour le tableau.

Ces objets doivent au moins avoir les champs “id” (Valeur technique et unique) et “label” (Valeur affichable à
l’utilisateur).

selected-objects : Ce sont les objets sélectionnés à afficher. L’objet en etrée peut être un tableau vide et
sera nourri par la directive

72 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Attention, pour des raisons d’ergonomie, il est demandé d’ajouter la classe CSS “dynamic-table-box” au div “panel-
default” englobant. Cela permet à ce div de devenir dynamique et de dépasser de la page si plus de colones sont
affichés. Ainsi la scrollbar horizontale est accessible directement.

4.5.3.3 Service de recherche

Le service ProcessSearchService (process-search.service.js) permet de factoriser les actions de recherche et de globa-
liser son fonctionnement. Tout écran de recherche doit l’utiliser.

Il met à disposition une fonction d’initialisation (initAndServe) du service de recherche qui renvoie 3 functions pos-
sibles :

∙ processSearch - Lance la requête HTTP et traite le comportement d’erreur si besoin (Affichage du message /
vider les résultats / . . .)

∙ reinitForm - Efface tout les champs de recherche pour reprendre les valeurs initiales des champs et relance une
recherche (si besoin).

∙ onInputChange - Fonction qui peut être appelée par le contrôleur lors d’une modification d’un champ pour
déclancher une réinitialisation de la recherche si le formulaire est revenu à son état initial.

Aussi, en plus des autres paramètres (voir JS doc de la fonction initAndServe), l’initialisation prends en paramètre un
objet “searchScope” qui doit être lié au scope et doit être de la forme suivante :

searchScope = {
form: {/* Valeurs initiales des champs de recherche (seront donc mises à jour par

→˓la vue et par le service) */},
pagination: { /* Valeurs des variables de pagination */ },
error: { /* Mise à jour des message d'erreur */ },
response: { /* */ }

}

Ce service permet d’effectuer les actions suivantes de manière uniforme quelque soit le controller qui l’appelle :

∙ Obliger d’utiliser la chaîne de fonctions fournies (Evite d’avoir une implem differente sur chaque controller)

∙ Gérer la réinitialisation des messages d’erreur lors du lancement d’une nouvelle recherche (searchScope.error)

∙ Gérer la réinitialisation du nombre de résultats lors de chaque recherches (searchscope.response)

∙ Gestion de la recherche automatique à l’initialisation de la page (Ou à la réinitialisation du formulaire)

Par la suite, ce service pourra être complété par des directives (liste non exaustive) pour automatiser l’affichage des
informations similaires :

∙ Messages d’erreur (On peut imaginer une directive à assossier à un formulaire qui affiche les boutons d’ef-
factement multi-champs, le bouton de résultat et le message d’erreur en se basant sur le searchScope.form et
searchScope.error)

∙ Affichage des résultats (On peut imaginer une directive se basant sur searchScope.response déffinissant un pat-
tern pour le tableau de résultat et le titre + Nb résultats).

∙ Gestion de la pagination (On peut imaginer une directive se basant sur le searchScope.pagination et search-
Scope.response pour calculer les éléments de pagination).

4.5.3.4 Service d’affichage des mesures d’un objet physique

Le service uneceMappingService à pour but d’aller chercher les unitées de mesures contenu dans le fichiers unece.json
pour l’afficher dans une valeur compréhensible pour les utilisateurs

4.5. IHM demo 73

VITAM - Manuel de développement, Version 8.1.2

4.5.4 IHM Front - Tests

4.5.4.1 Cette documentation décrit la partie tests (unitaires et end to end) du front/Angular de l’ihm.

Il est possible de lancer tout les tests via la commande gulp tests (Protractor nécessite Chrome). Un npm install est
nécessaire.

4.5.4.1.1 Tests unitaires

4.5.4.1.1.1 Installation / Lancement des tests unitaires

Karma est installé automatiquement avec les autres dépendances via la commande npm install. Le lancement des tests
s’effectue vià la commande gulp testKarma

4.5.4.1.1.2 Informations sur la configuration des tests unitaires

La configuration des tests unitaires se trouve dans webapp/karma.conf.js

En particulier, la partie “files” définit les fichiers à charger pour les tests unitaires. Il sera nécessaire d’en ajouter lors
de l’ajout de prochaines fonctionnalités et tests unitaires.

4.5.4.1.1.3 Exemples de tests unitaires

4 samples de tests ont étés implémentés pour montrer ce qu’il est globalement possible de faire :

Base beforeEach (Charger un service) / Test de retour de valeur en fonction du paramètre
Exemples : date-validator.service.js / response-validator.service.js

Espion SpyOn permettant de vérifier qu’une fonction est bien appelée comme il faut
Exemple : load-static-value.service.js (Test nombre appel) / response-validator.service.js (Bon paramètres)

HTTPMock httpBackend permettant de mocker un appel rest / afterEach permettant de vérifier les appels traités
Exemple : accession-register.service.js

CallMock initialisation d’un controller / mock de l’appel des méthodes d’un service / cohérence des résultats
accession-register-details.controller.js

4.5.4.1.2 Tests end to end

4.5.4.1.2.1 Initialisation / Lancement des tests e2e

Pour le moment, il est nécessaire d’avoir un environement lancé dans le serveur d’App pour servir les resources. Un
gulp serve devrait régler le problème.

[Inutile si lancé via gulp]Installation de protractor

npm install -g protractor@2
protractor --version

Cette commande devrait avoir installer un “webdriver-manager” (Sélénium).

[Inutile si lancé via gulp]Il est nécessaire de le mettre à jour et de le lancer pour lancer les tests e2e.

74 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

node_modules/protractor/bin/webdriver-manager update
node_modules/protractor/bin/webdriver-manager start

Si une erreur “info : driver.version : unknown” est remontée, vérifier la compatibilité entre votre navigateur Chrome et
son plugin ChromeDriver. Si besoin, modifiez le fichier webapp/node_modules/protractor/config.json, et mettez à jour
la propriété « chromedriver » avec une valeur compatible (2.27 pour les plus récent). Cette modification “hardcodded”
doit être faite après chaque mise à jour de npm (npm install).

[Inutile si lancé via gulp]Le lancement des tests end to end se font grâce à la commande suivante :

protractor protractor.conf.js

Il est également possible de le lancer via gulp via la commande :

gulp testProtractor

Il est possible de surcharger divers arguments grâce aux arguments suivants (donnés à titre d’exemple :

∙ –baseUrl=”http://localhost:8082/ihm-demo/# !” Permet de modifier l’URL de base utilisée. Peut par exemple
servir a lancer les tests e2e sur le serveur de recette.

∙ –params.<paramName>=”<paramValue>” Permet de modifier un paramètre de la configuration protractor (pa-
rams)

∙ –suite=”<maSuite>” Permet d’utiliser seulement une ou plusieurs suites de tests plutôt que de lancer toute la
baterie.

Ces paramètres sont aussi settables dans le json de configuration gulp de la tache testProtractor.

4.5.4.1.2.2 Informations sur la configuration des tests e2e

La configuration définit des batteries de tests (suites). Lors de l’ajout d’un test e2e, il est nécessaire d’ajouter une
entrée dans les suites en précisant les fichiers à éxécuter.

La configuration permet aussi de :

∙ Définir un login/password (Via la surcharge des params userName/password)

∙ Utiliser ou non le mode mock http (Via la surcharge du param mock)

4.5.4.1.2.3 Exemple d’utilisation des outils e2e

Création de fonctions réutilisables dans chaque test :

∙ Création d’un fichier utils/*.function.js

∙ Création d’une fonction éxportée via module.exports

∙ Import des fonctions dans le test via require(“./path/to/file”) ;

Sélection des éléments

∙ Sélection d’une balise a laquelle le modèle associé est variable.name (<input ng-model= »variable.name » />)

– element(by.model(“variable.name”))

∙ Sélection d’une balise grâce à son identifiant (<div id= »navbar »></div>)

– element(by.id(“navbar”)) ;

∙ Sélection d’une balise contenant un attribut “type” et une valeur “submit” (<button type= »submit » />)

– element(by.css(“[type= »submit »]”))

∙ Sélection d’une balise grâce à son tag ()

4.5. IHM demo 75

http://localhost:8082/ihm-demo

VITAM - Manuel de développement, Version 8.1.2

– element(by.css(“ul”)) ;

∙ Sélection multiple d’éléments ()

– element.all(by.css(“li”)) ;

∙ Sélection d’un sous élément (<div> <p>xxx</p><p>yyy</p> <button/> </div>)

– var div = element(by.css(“div”)) ; – div.element(by.css(“button”)) ; / div.all(by.css(“p”)) ;

∙ Sélection d’une partie d’un ensemble d’éléments (<p>xxx</p> <p>yyy</p> <p>zzz</p>)

∙ var ps = element.all(by.css(“p”)) ;

∙ var firstP = ps.first() ; // xxx

∙ var pNumber1 = ps.get(1) ; // yyy

∙ var lastP = ps.last() ; // zzz

Conclusion :

∙ Selection classique : element(by.xxx()) ;

∙ Sélection multiple : element.all(by.yyy()) ;

∙ Sélections Chaînées : element(by.xxx()).all(by.yyy()).get(2).element(by.zzz()) ;

Récupérations des propriétés configurés dans protractor.conf.js :

∙ browser.baseUrl (L’url configurée)

∙ browser.params.paramName (Récupère le paramètre paramName)

Actions / promise et Expects :

∙ Les actions sur un élément (item.click() / item.count() / . . .) renvoient une promise qu’il faut traiter dans un then
si on veut enchainer une action ou récupérer une valeur.

∙ Les expects expect(item.count())toBe(2) ; traitent la promise de la bonne manière pour comparer la valeur.

Mock HTTP :

∙ Exemple simple dans login ou on configure le httpMocker dans beforeEach si le mode mock est activé.

∙ Exemple plus complexe dans accession-register où on renvoie une réponse en fonction des paramètres.

4.5.5 DAT : module IHM logbook operations

Ce document présente l’ensemble de manuel développement concernant le développment du module ihm-demo qui
représente le story #90, qui contient :

∙ modules & packages

∙ classes métiers

4.5.5.1 Modules et packages

Au présent : nous proposons le schéma ci-dessous représentant le module principal et ses sous modules.

ihm-demo

∙ ihm-demo-core : le traitement essentiel pour construire des requêtes DSL depuis des données saisies dans l’in-
terface web

∙ ihm-demo-web-application : le serveur d’application web qui fournit des services au client pour les traitements
sur la recherche de logbook des opérations

Depuis ces deux modules, nous proposons deux packages correspondants :

ihm-demo-core –> fr.gouv.vitam.ihmdemo.core ihm-demo-web-application –> fr.gouv.vitam.ihmdemo.appserver
ihm-demo-web-application –> webapp (resources)

76 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.5.5.2 Classes de métiers

Cette section, nous présentons les classes/fonctions principales dans chaque module/package qui permettent de réaliser
l’ensemble de tâches requis par User Story #90.

4.5.5.2.1 Partie Backend

ihm-demo-core : CreateDSLClient.java La classe a pour l’objecttif de création d’une requête DSL à partir de l’en-
semble de données de critères saisies depuis l’interface web du client. Les données en paramètres sont représentées
dans un Map de type de String.

ihm-demo-web-application

∙ ServerApplication.java : créer & lancer le serveur d’application avec un configuration en paramètre

∙ WebApplicationConfig.java :

créer la configuration pour le serveur d’application en utilisant différents paramètres : host, port, context

∙ WebApplicatationResource.java :

définir des ressources différentes pour être utilisé par les contrôles de la partie Fontend. Le détail sur la resource de
l’application serveur sera présenté dans le document RAML associé ihm-logbook-rest.rst.

4.5.5.2.2 Partie Frontend

La partie Fontend web se trouve dans le sous module ihm-demo-web-application. Ce fontend web est développé en
AngularJS. Dans cette partie, nous trouvons des composants différents

∙ views

∙ modules

∙ controller js

4.5.6 ihm-demo

4.5.6.1 Présentation

Ce document présente le schéma de rest resources défini qui sera appelé par le backend de l’application web.

package :* fr.gouv.vitam.api | Package proposition : fr.gouv.vitam.metadata.rest

Module pour le module opération : api / fr.gouv.vitam.ihmdemo.appserver

4.5.6.2 Services

4.5.6.3 Rest API

URL Path : /

POST /archivesearch/units -> la recherche des métadata

POST /logbook/operations -> Recherche dans logbook par un nom (critère).

4.5. IHM demo 77

VITAM - Manuel de développement, Version 8.1.2

Cela retourne l’ensemble de logbook opération (avec id opération)
POST /logbook/operations/{idOperation} –> Recherche de logbook de l’opération

de logbook par idOperation
POST /admin/formats -> Recherche des formats par DSL
POST /admin/formats/{idFormat} -> Recherche d’un formats par son id
POST /format/check -> Validation du fichier PRONOM
POST /format/import -> Import des formats dans le fichier PRONOM
DELETE /format/delete -> Supprimmer tous les format dans la base de données
PUT /archiveupdtae/units/{id} -> update des métadata
POST /admin/accession-register -> Recherche dans AccessionRegisterSummary par un critère potentiel

Cela retourne une liste d’AccessionRegisterSummary (Si recherche par Service producteur, liste de 1 élément)
POST /admin/accession-register/detail -> Recherche dans AccessionRegisterDetail par un id de service producteur
(critère)

Cela retourne une liste d’AccessionRegisterDetail correspondant au Service producteur donné

4.5.7 IHM Front - Requêtes HTTP et Tenant ID

4.5.7.1 Cette documentation décrit le process de récupération / sélection et communication du te-
nant ID depuis IHM-DEMO front vers les API publiques VITAM

4.5.7.1.1 Gestion du tenantId

4.5.7.1.1.1 Coté front

Actuelement, le tenantID est sauvegardé dans le navigateur client sous forme de cookie au moment de la connexion.

4.5.7.1.1.2 Coté serveur d’app

4.5.7.1.2 Création de requêtes HTTP utilisant un tenantID (front)

4.5.7.1.2.1 Utilisation de ihmDemoClient

Le service ihmDemoClient permet d’instancier un client HTTP préconfiguré pour dialoguer avec le serveur d’app
IHM-DEMO. Ce dernier contient entre autre : - La racine de l’url à appeler (Exemple : ihm-demo/v1/api) - Un inter-
cepteur permettant d’ajouter le HEADER X-request-id à chaque requêtes.

4.5.7.1.2.2 Requêtes http personnalisées

Si nécessaire il est possible d’utiliser $http ou un autre procédé pour faire votre requête HTTP. Dans ce cas, il est
possible de récupérrer la clé et la valeur du header via la ligne de code suivante :

var key = loadStaticValues.loadFromFile().then(function(response) {
return response.data.headers;

});
var value = authVitamService.cookieValue(authVitamService.COOKIE_TENANT_ID);

78 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Note : Les services authVitamService et loadStaticValues doivent avoir été injectés.

4.5.8 Gestion des droits sur IHM demo

4.5.8.1 Cette documentation décrit la gestion des droits sur IHM-demo.

La gestion des droits (authorisations et habilitations) sur IHM demo (et VITAM en génénral) se fait grâce à shiro.

4.5.8.1.1 Gestion des autorisations

Les utilisateurs sont définis dans le fichier shiro.ini sous la forme d’un login suivi du mot de passé encodé avec
l’algorithme md5.

4.5.8.1.2 Gestion des permissions

Sur chaque endpoint (couple URI / verbe HTTP), qui correpond à une méthode Java, on définit une permission grâce
à l’annotation RequiresPermissions.

Par convention, la permission est nommée en fonction de l’URI est du verbe HTTP correspondant. Par exemple, la
permission définissant la lecture sur l’URL /logbook est : logbook :read. Si une l’URL possède une sous collection, par
exemple /logbook/operations, alors le nom de la permission pour lire les informations est : logbook :operation :read.

La correspondance entre les verbes HTTP et les permissions est la suivante : - GET : read - POST : update - PUT :
create - DELETE : delete

Par contre, dans le cas ou on utilise un POST pour de la lecture (cas typique du DSL), on nommera quand même la
permission avec read.

Au niveau du fichier shiro.ini, dans la section roles, on définit trois rôles (admin, user et guest), auxquels on associe
les différentes permissions définies précédemment.

Enfin, dans la section users, on associe le rôle à un utilisateur.

4.5.9 IHM Filter for X-Request-ID

4.5.9.1 Description

En cas d’erreur technique, depuis le IHM demo, nous pouvons trouver le X-Request-ID affiché dans un popup. Le
code d’erreur a une valeur 500 renvoyé par les APIs externes.

4.5.9.2 Côté serveur

Le filtre RequestIdContainerFilter (package fr.gouv.vitam.common.server.*) est ajouté dans l’ap-
plication serveur IHM demo pour envoyer X-Request-ID dans le VitamSession en cas d’erreur.
(fr.gouv.vitam.common.server.RequestIdHeaderHelper est mis à jour pour traiter des X-Request-ID en cas d’erreur)

4.5. IHM demo 79

VITAM - Manuel de développement, Version 8.1.2

4.5.9.3 Côté IHM Front

On ajoute aussi un intercepteur filter pour récupérer le X-Request-ID dans le cas d’erreur dans la session. On utilise
d’un intercepteur angular sur $httpProvider.

4.5.10 IHM Demo serveur

4.5.10.1 IhmMain

L’application web IHM Demo est utilisée pour lancer le serveur

VitamStarter.createVitamStarterForIHM(WebApplicationConfig.class,
→˓configurationFile,
BusinessApplication.class, AdminApplication.class, Lists.newArrayList());

4.5.10.2 Classe BusinessApplication

La classe BusinessApplication possède les singletons qui contiennent les ressources de l’application web IHM Demo.

final WebApplicationConfig configuration =
PropertiesUtils.readYaml(yamlIS, WebApplicationConfig.class);

Set<String> permissions =
PermissionReader.getMethodsAnnotatedWith(WebApplicationResource.class,

→˓RequiresPermissions.class);
commonBusinessApplication = new CommonBusinessApplication();
singletons = new HashSet<>();
singletons.addAll(commonBusinessApplication.getResources());
singletons.add(new WebApplicationResource(configuration, permissions));

4.5.10.3 Configuration

Le fichier de configuration se nomme ihm-demo.conf et contient les paramètres suivants :

∙ port, serverHost, jettyConfig, tenants

∙ baseUrl, baseUri, baseUriV2 (qui configure jetty pour l’IHM-V1 et l’IHM-V2)

∙ authentication (ajoute le filtre shiro si le booléen est à « true »)

4.6 IHM demo

4.6.1 IHM Front

4.6.1.1 Cette documentation décrit la partie front/Angular de l’IHM et en particulier sa configuration
et ses idéologies architecturales

4.6.1.1.1 Utils et général / Composition du projet Angular

Voici l’architecture des dossiers et fichiers composant l’application front IHM-recette (à partir de ihm-recette/ihm-
recette-web-front)

∙ e2e Pour le moment inutilisé, pourra être utilisé pour les tests d’intégration end 2 end

80 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ src Dossier contenant les sources du projet
∙ app Dossier contenant les sources typescript des composants du projet
∙ assets Dossier contenant des fichiers statiques utilisés dans l’IHM recette (images, polices, . . .)
∙ deb Dossier contenant des fichiers spécifiques utiles à la génération des packages debian
∙ environments Dossier contenant des règles spécifiques utilisés pour les builds en dev ou en prod
∙ styles.css Feuille de styles globale des composants de l’application. Les modifications sur ce fichiers

doivent EXCLUSIVEMENT être faites à partir du build de theme.scss (Voir Build CSS)
∙ main.ts Point d’entrée de l’application
∙ test.ts Fichier de configuration des tests unitaires définissant entre autre les fichiers à inclure dans les tests.

∙ themes Dossier contenant les pattern du thème vitam
∙ vitam-red Dossier contenant le thème rouge pour l’IHM recette

∙ theme.scss Fichier définissant des couleurs et des règles spécifiques au thème rouge pour l’IHM
recette

∙ _theme.scss Fichier définissant un template commun à tous les thèmes pour générer les thèmes vitam.
∙ karma.conf.js Fichier de configuration du framework de lancement des tests unitaires.
∙ package.json Fichier de configuration des dépendances npm et des scripts utilisés pour les builds

(dev/prod/tsts/. . .)
∙ pom.xml Fichier de configuration du build maven
∙ proxy.conf.json Fichier de configuration du proxy utilisé sur poste de dev. Utilisé dans un des scripts du pa-

ckage.json.
∙ tslint.json Fichier de configuration du formatage des fichiers typeScript.
∙ zip-conf.xml Fichier de configuration du packaging du build front. Utilisé dans le pom.xml.

Voici l’architecture théorique des composants de l’application (à partir de ihm-recette/ihm-recette-web-front/src/app)
∙ common Dossier contenant les composants globaux réutilisables pour l’ensemble des pages.

Cela peut par exemple être le bandeau du menu ou un service de gestion des requêtes HTTP.
∙ componant-name Dossier contenant un composant global tel que le menu, le fil d’ariane ou encore un

composant d’affichage des données.
∙ service-name.service.ts Fichier contenant un service utilitaire
∙ class-name.ts Fichier contenant une classe utilisée dans plusieurs composants

∙ theme1 Dossier contenant des composant sur un même theme (Pour l’ihm recette, nous aurons le theme d’administration, de sécurisation et de tests).

∙ page1 Dossier contenant le composant d’une des pages de l’application.
Ce composant à des particularités spécifiques (Voir « Composant de Page »)
∙ component1 Dossier contenant un des sous-composant utilisé dans la page1. Ce composant à des

particularités spécifiques (Voir « Sous Composant »)
∙ page1.component.css Fichier contenant le style spécifique au composant page1. Le style définit

ici n’est ni utilisable par les autres pages, ni par les sous-composants de la page1.
∙ page1.component.html Fichier contenant le template HTML du composant page1. Les sous-

composants peuvent êtres appelés ici grace à la balise <vitam-composant-name />
∙ page1.component.spec.ts Fichier contenant les tests unitaires du composant page1.
∙ page1.component.ts Fichier contenant la logique du composant page1. Les appels au(x) services

sont à faire ici.
∙ page1.service.ts Fichier contenant un service d’appels HTTP et/ou d’utilitaire pour le composant

page1. Ce service à des particularités spécifiques (Voir « Service Composant »)
∙ class-name.ts Fichier contenant une classe utilisée seulement dans la page1.

Il peut s’agir d’une classe définissant les propriétés de la structure utilisée pour les appels HTTP
du service.

∙ theme1.service.ts Fichier contenant un service utilitaire global aux pages de ce thème.
∙ class-name.ts Fichier contenant une classe utilisée dans plusieurs composants du thème.

4.6. IHM demo 81

VITAM - Manuel de développement, Version 8.1.2

4.6.1.1.1.1 Builds et lancement des tests

NPM : npm est utilisé pour gérer les dépendances de l’application. Le fichier package.json définit deux types de
dépendances :

∙ devDependencies : Dépendances utilisées pour les tests unitaire, le build ou la vérification du code. Ces dépen-
dances ne sont pas utilisés par l’application finale en prod.

∙ dependencies : Dépendances utilisées par l’application finale en prod. Ils peuvent être des composants, des
classes ou des utilitaires de l’application.

Important : Lors de la récupération de la branche, il est important de télécharger une première fois toutes les dépen-
dances grâce à la commande npm install

Des scripts ont étés définis dans le fichier package.json. Ces scripts sont utilisables via la commande npm run <script-
Name>.

Scripts pour le developpement (A executer, sans erreurs avant toute demande de MR) :

∙ start : Lance la commande ng serve –proxy-config proxy.conf.json qui permet de déployer l’application à chaud
en utilisant un proxy pour les appels vers le backoffice.
Un watch est fait sur les fichiers sous le dossier src. Tout fichiers modifiers sous src mettra à jour, à chaud,
l’application front.

∙ test : Lance la commande ng test qui lance les tests unitaire aussi bien sur Chrome que sur PhantomJS. Un watch
est également activé pour relancer les tests su un fichier est modifié.

∙ lint : Lance la commande ng lint qui permet de vérifier les fichiers

Les scripts suivantes sont utilisés par le build maven :

∙ prod : Lance la commande ng build –env=prod qui permet de builder l’application pour une cible de production
(Actuelement similaire au script build qui lance ng build –env=dev

∙ inttest : Lance la commande ng test –single-run=true –browsers PhantomJS –watch=false qui permet de lancer
les tests unitaire une seule fois sur PhantomJS.

La configuration du proxy se fait dans le fichier proxy.conf.json. Pour le moment, aucun fichier de surcharge sur poste
de dev n’est prévue pour avec des modifications locales ignorées par le git.

Build du css : Pour mettre à jour le CSS (styles.css) il faut :

∙ Update theme in themes/vitam-red/theme.scss or template in themes/_theme.scss

∙ Generate css with the command line sass themes/vitam-red/theme.scss :src/styles.css

∙ Remove src/styles.css.map before commit

Le build maven lance le script inttest dans la phase test (-DskipTests permet donc d’ignorer les TU front) Les com-
mandes suivantes peuvent être lancés pour faire des packages rpm/debian :

∙ mvn clean install rpm:rpm

∙ mvn clean install jdeb:jdeb

4.6.1.1.1.2 Composant de Page

Les composant de page ont pour but de :

∙ Initialiser les composant communs (fil d’ariane, titre, . . .) à toute les pages (Héritage de PageComponent)

∙ Récupérer les données utiles en faisant appel au service (HTTP GET)

∙ Traiter les données si besoin (Utiliser des services utilitaires pour les gros traitement des données)

∙ Appeler des sous-composants pour afficher les donénes sur la page (Injecter des donénes / fonctions dans les
sous-composants appelés)

Le composant de page doit hériter du composant PageComponent (app/common/page/page-component) et utiliser
pageOnInit(). Cela permet d’initialiser le fil d’ariane et la titre sur toute les pages.

82 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.6.1.1.1.3 Service de Composant

Les service doit utiliser le resourcesService qui ajoute de lui même les headers importants (tenant) et qui connais le
path vers les api vitam. Les service doit définir l’api sur laquelle taper dans url. Elle sera concatenée avec le base
URL (qui termine par un /) Enfin, pour les requêtes GET, le service doit appliquer un plainToClass() pour transformer
l’objet en une classe définie

Exemple : resourcesService.get(“contrats”).map((x)=>x.json()).map((json) => plainToClass(Contract, json.$results))

Les services du composant ont dont principalement un rôle de gestion des requêtes HTTP et du format de la réponse.
Ils peuvent aussi avoir quelques fonctions utilitaires pour parser/préparer la réponse pour le composant.

4.6.1.1.1.4 Sous Composant

Les sous-composant ont pour but de :

∙ Être initialisés grâce à des objets injectés par le composant parent,

∙ Faire le rendement graphique d’une partie de la page (partie potentiellement répétée plusieurs fois sur la page),

∙ Utiliser des services d’affichage des données ou des composants graphiques,

∙ Faire des actions (potentielle utilisation du service du composant pour les appels PUT/POST/DELETE).

Le sous-composant ne devrait pas :

∙ Avoir de logique ni de traitement (Il doit se contenter d’afficher ce que le composant de page et ses services ont
calculés pour lui),

∙ Utiliser le service pour des appels HTTP GET (C’est le rôle du composant de page).

4.6.2 ihm-recette

4.6.2.1 Présentation

Ce document présente le schéma des points d’API défini qui sera appelé par le frontend de l’application web.

package :* fr.gouv.vitam.api | Package proposition : fr.gouv.vitam.metadata.rest

Module pour le module opération : api / fr.gouv.vitam.ihmrecette.appserver

4.6.2.2 Services

4.6.2.3 Rest API

URL Path : /

GET /messages/logbook -> récupère les traductions liées aux status des journaux d’opération
GET /stat/{id_op} -> N’est pas utilisé par le front
POST /operations/traceability -> force une sécurisation des journaux d’opération
POST /logbooks -> N’est pas utilisé par le front
GET /logbooks -> N’est pas utilisé par le front
GET /logbooks/{idOperation} -> N’est pas utilisé par le front
GET /logbooks/{idOperation} -> N’est pas utilisé par le front

4.6. IHM demo 83

VITAM - Manuel de développement, Version 8.1.2

GET /logbooks/{idOperation}/content -> N’est pas utilisé par le front
POST /accesscontracts -> Récupère les contrats d’accès valides
POST /dslQueryTest -> Envoie une requête DSL de test attendant un json de réponse en résultat

DELETE /delete/deleteTnr -> Vide toutes les colelctions sur tous les tenants et sans vérifications pour les TNR
DELETE /delete -> Vide toutes les collections (sauf formats) pour le tenant donné

DELETE /delete/formats -> Vide la collection des formats sur tout les tenants
DELETE /delete/rules -> Vide la collection des règles de gestion sur le tenant donné
DELETE /delete/accessionregisters -> Vide la collection des registres des fonds sur le tenant donné
DELETE /delete/logbook/operation -> Vide la collection des journaux d’opération sur le tenant donné
DELETE /delete/logbook/lifecycle/unit -> Vide la collection des cycles de vie des unités archivistiques sur le tenant
donné
DELETE /delete/logbook/lifecycle/objectgroup -> Vide la collection des cycles de vie des groupes d’objets sur le
tenant donné
DELETE /delete/masterdata/ingestContract -> Vide la collection des contrats d’entrée sur le tenant donné
DELETE /delete/masterdata/accessContract -> Vide la colelction des contrats d’accès sur le tenant donné
DELETE /delete/metadata/objectgroup -> Vide la collection des groupes d’objets sur le tenant donné
DELETE /delete/metadata/unit -> Vide la collection des unités archivistiques sur le tenant donné
DELETE /delete/masterdata/profile -> Vide la collection des profiles sur le tenant donné

4.6.3 IHM Recette serveur

4.6.3.1 IhmRecette

L’application web IHM Recette est utilisée pour lancer le serveur.

VitamStarter.createVitamStarterForIHM(WebApplicationConfig.class,
→˓configurationFile,
BusinessApplication.class, AdminApplication.class, Lists.newArrayList());

4.6.3.2 Classe BusinessApplication

La classe BusinessApplication possède les singletons qui contiennent les ressources de l’application web IHM re-
cette(WebApplicationResource) pour :

∙ Supprimer des collections vitam (WebApplicationResourceDelete)

∙ Gérer les tests système(ApplicativeTestResource)

∙ Définir les performances(PerformanceResource)

commonBusinessApplication = new CommonBusinessApplication();
singletons = new HashSet<>();
singletons.addAll(commonBusinessApplication.getResources());

final WebApplicationResourceDelete deleteResource = new
→˓WebApplicationResourceDelete(configuration);

final WebApplicationResource resource = new WebApplicationResource(configuration.
→˓getTenants(), configuration.getSecureMode());

singletons.add(deleteResource);

(suite sur la page suivante)

84 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

singletons.add(resource);

Path sipDirectory = Paths.get(configuration.getSipDirectory());
Path reportDirectory = Paths.get(configuration.getPerformanceReportDirectory());

if (!Files.exists(sipDirectory)) {
Exception sipNotFound =

new FileNotFoundException(String.format("directory %s does not exist",
→˓sipDirectory));

throw Throwables.propagate(sipNotFound);
}

if (!Files.exists(reportDirectory)) {
Exception reportNotFound =

new FileNotFoundException(format("directory %s does not exist",
→˓reportDirectory));

throw Throwables.propagate(reportNotFound);
}

PerformanceService performanceService = new PerformanceService(sipDirectory,
→˓reportDirectory);

singletons.add(new PerformanceResource(performanceService));

String testSystemSipDirectory = configuration.getTestSystemSipDirectory();
String testSystemReportDirectory = configuration.getTestSystemReportDirectory();
ApplicativeTestService applicativeTestService =

new ApplicativeTestService(Paths.get(testSystemReportDirectory));

singletons.add(new ApplicativeTestResource(applicativeTestService,
testSystemSipDirectory));

4.6.3.3 Configuration

Le fichier de configuration se nomme ihm-recette.conf :

4.6.3.3.1 Fichier ihm-recette.conf

#jinja2: lstrip_blocks: True
serverHost: {{ ip_service }}
port: {{ vitam_struct.port_service }}

baseUrl: "/{{ vitam_struct.baseuri }}"
baseUri: "/{{ vitam_struct.baseuri }}"

jettyConfig: jetty-config.xml
authentication: true
enableXsrFilter: true
enableSession: true

secureMode:
{% for securemode in vitam_struct.secure_mode %}
- {{ securemode }}
{% endfor %}

(suite sur la page suivante)

4.6. IHM demo 85

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

sipDirectory: {{ vitam_folder_data }}/test-data
performanceReportDirectory: {{ vitam_folder_data }}/report/performance

testSystemSipDirectory: {{ vitam_folder_data }}/test-data/system
testSystemReportDirectory: {{ vitam_folder_data }}/report/system
ingestMaxThread: {{ ansible_processor_cores * ansible_processor_threads_per_core + 1 }
→˓}

#
workspaceUrl: {{vitam.workspace | client_url}}

Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
Actually need this field for compatibility
dbName: admin
@integ: parametrize it !
masterdataDbName: masterdata
logbookDbName: logbook
metadataDbName: metadata
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data']['admin']['user'] }}
dbPassword: {{ mongodb['mongo-data']['admin']['password'] }}

ElasticSearch
clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for server in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[server]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}

Functional Admin Configuration
functionalAdminAdmin:

functionalAdminServerHost: {{ vitam.functional_administration.host }}
functionalAdminServerPort: {{ vitam.functional_administration.port_admin }}
adminBasicAuth:

userName: {{ admin_basic_auth_user }}
password: {{ admin_basic_auth_password }}

ES index configuration
functionalAdminIndexationSettings:

default_config:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_replicas | default('2') }}

{% for collection in ["accesscontract", "accessionregisterdetail",
→˓"accessionregistersummary", "accessionregistersymbolic", "agencies",
→˓"archiveunitprofile", "context", "fileformat", "filerules", "griffin",
→˓"ingestcontract", "managementcontract", "ontology", "preservationscenario", "profile
→˓", "securityprofile","schema"] %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection] is defined %}

(suite sur la page suivante)

86 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

{{ collection }}:
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓shards is defined %}
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.masterdata[collection].

→˓number_of_shards }}
{% endif %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓replicas is defined %}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.

→˓masterdata[collection].number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

metadataIndexationSettings:
default_config:
unit:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.unit.
→˓number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓unit.number_of_replicas | default('2') }}

mappingFile: {{ vitam.ihm_recette.elasticsearch_mapping_dir }}/unit-es-mapping.
→˓json

objectgroup:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_replicas | default('2') }}
mappingFile: {{ vitam.ihm_recette.elasticsearch_mapping_dir }}/og-es-mapping.

→˓json

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}
number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

(suite sur la page suivante)

4.6. IHM demo 87

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}
- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}
number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}
elasticsearchConfigurationFile: {{ vitam_folder_conf }}/elasticsearch-settings/
→˓elasticsearch-configuration.json
logbookIndexationSettings:

default_config:
logbookoperation:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_replicas | default('2') }}

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}

(suite sur la page suivante)

88 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

∙ port, serverHost, jettyConfig, tenants, secureMode

∙ baseUrl, baseUri (qui configure jetty)

∙ authentication (ajoute le filtre shiro si le booléen est à « true »)

∙ dbName, masterdataDbName, logbookDbName, metadataDbName, mongoDbNodes, clusterName, elastic-
searchNodes

∙ testSystemSipDirectory, testSystemReportDirectory

∙ sipDirectory, performanceReportDirectory

4.7 Ingest

4.7.1 Introduction

L’ensemble de ces documents est le manuel de développement du module ingest, qui représente le métier fonctionnel
de l’user story #84 de projet VITAM, dont le but et de réaliser des opérations sur le dépôt de document SIP vers la
base de données MongoDb (upload SIP).

Le module est divisé en deux sous modules : ingest-internal et ingest-external. Le module ingest-internal fournnit les
fonctionalités pour des traitements internes de la plate-forme Vitam, autrement dit il n’est visible que pour les appels
internes de Vitam. Le module ingest-external fournit des services pour les appels extérieur de la plate-forme cela veux
dire qu’il est visible pour les appels de l’extérieur de Vitam.

Le manuel se compose de deux parties - DAT présente l’architecture technique du module au niveau des packages,
classes - REST-RAML explique comment on utitlise des différents service proprosés par module - détail d’utilisation
du client

4.7.2 DAT : module ingest-internal

Ce document présente l’ensemble du manuel développement concernant le développment du module ingest-internal
qui est identifié par le user story #84, qui contient :

∙ modules & packages

∙ classes métiers

4.7. Ingest 89

VITAM - Manuel de développement, Version 8.1.2

4.7.2.1 Modules et packages

ingest-internal

∙ ingest-internal-common : contenant des classes pour les traitements commons de modules ingest-internal

∙ ingest-internal-model : définir les modèles de données utilisé dans le module

∙ ingest-internal-api : définir des APIs de traitement dépôt des SIP vers le base MongoDb

∙ ingest-internal-core : implémentation des APIs

∙ ingest-internal-rest : le serveur REST de ingest-internal qui donnes des traitement sur dépôt de document SIP.

∙ ingest-internal-client : client ingest-internal qui sera utilisé par les autres modules interne de VITAM pour le
service de dépôt des SIPs

4.7.2.2 Classes métier

Dans cette section, nous présentons quelques classes principales dans des modules/packages qu’on a abordé ci-dessus.

4.7.2.2.1 ingest-internal-model

∙ UploadResponseDTO.java : définir le modèle de réponse sur l’opération de dépôt SIP (upload). Il contient
l’information sur le nom de fichier SIP, le code de retour VITAM, le code de retour HTTP, le message et le status.

4.7.2.2.2 ingest-internal-api

∙ UploadService.java : interface pour le service de dépôt interne.

4.7.2.2.3 ingest-internal-core

∙ MetaDataImpl.java : implémenter des fonctionnalités de traitement sur le métadata, pré-défini dans -
MetaData.java

4.7.2.2.4 ingest-internal-rest

∙ IngestInternalRessource.java : définir des ressources différentes pour le serveur REST ingest-
internal

∙ IngestInternalApplication.java : créer & lancer le serveur d’application avec une configuration

4.7.2.2.5 ingest-internal-client

∙ IngestInternalClient.java : interface client IngestInternal

∙ IngestInternalInternalClientMock.java : mock client ingest-internal

∙ IngestInternalClientRest.java : le client ingest-internal et des fonctionnalités en se connectant au
serveur REST

90 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.7.3 DAT : module ingest-external

Ce document présente l’ensemble du manuel développement concernant le développment du module ingest-external
qui identifié par la user story #777 (refacto ingest), qui contient :

∙ modules & packages

∙ classes métiers

4.7.3.1 Modules et packages

ingest-external

∙ ingest-external-common : contenant des classes pour les traitements commons de modules ingest-external : code
d’erreur, configuration et le script de scan antivirus

∙ ingest-external-api : définir des APIs de traitement dépôt des SIP vers le base MongoDb

∙ ingest-external-core : implémentation des APIs

∙ ingest-external-rest : le serveur REST de ingest-external qui donnes des traitement sur dépôt de document SIP.

∙ ingest-external-client : client ingest-external qui sera utilisé par les autres application externe de VITAM

4.7.3.2 Classes métiers

Dans cette section, nous présentons quelques classes principales dans des modules/packages qu’on a abordé ci-dessus.

4.7.3.2.1 ingest-external-common

fr.gouv.vitam.ingest.external.common.util

∙ JavaExecuteScript.java : classe java exécute l’anti-virus pour détecter des virus de fichiers.

fr.gouv.vitam.ingest.external.common.model.response

∙ IngestExternalError.java : modèle de réponse d’erreur sur la request de dépôt ingest

4.7.3.2.2 ingest-external-api

∙ IngestExternal.java : interface pour le service de dépôt externe.

∙ IngestExternalOutcomeMessage.java : définir message de réponse du résultat de scan virus

4.7.3.2.3 ingest-external-core

∙ IngestExternalImpl.java : implémenter des fonctionnalités de traitement sur le dépôt SIP , pré-défini
dans -IngestExternal.java

4.7.3.2.4 ingest-external-rest

∙ IngestExternalRessource.java : définir des ressources différentes pour le serveur REST ingest-
external

∙ IngesteEternalApplication.java : créer & lancer le serveur d’application avec une configuration

4.7. Ingest 91

VITAM - Manuel de développement, Version 8.1.2

4.7.3.2.5 ingest-external-client

∙ IngestExternalClient.java : interface client Ingestexternal
∙ IngestExternalexternalClientMock.java : mock client ingest-external
∙ IngestExternalClientRest.java : le client ingest-external et des fonctionnalités en se connectant au

serveur REST ingest-external

4.7.4 ingest-internal-client

4.7.5 Utilisation

4.7.5.1 Paramètres

Les paramètres sont les InputStreams du fichier SIP pour le dépôt dans la base VITAM

4.7.5.2 La factory

Afin de récupérer le client, une factory a été mise en place.

// Récupération du client ingest-internal
IngestInternalClient client = IngestInternalClientFactory.getInstance().
→˓getIngestInternalClient();

4.7.5.2.1 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
IngestInternalClientFactory.setConfiguration(IngestInternalClientFactory.
→˓IngestInternalClientType.MOCK_CLIENT, null);
// Récupération explicite du client mock
IngestInternalClient client = IngestInternalClientFactory.getInstance().
→˓getIngestInternalClient();

4.7.5.3 Le client

Pour instancier son client en mode Production :

// Ajouter un fichier functional-administration-client.conf dans /vitam/conf
// Récupération explicite du client
IngestInternalClient client = IngestInternalClientFactory.getInstance().
→˓getIngestInternalClient();

Le client propose trois méthodes :

Status status();
UploadResponseDTO upload(String archiveMimeType,List<LogbookParameters>
→˓logbookParametersList, InputStream inputStream);
// Télécharger un object du serveur sauvegardé de l'operation upload ci-dessus avec
→˓son ID et type
Response downloadObjectAsync(String objectId, IngestCollection type)

92 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Cette méthde (à la version 0.9.0) capable de télécharger un sip compressé en 3 formats (zip, tar, tar.gz)

∙ Paramètres :

∙ archiveMimeType : : String (mimetype de l’archive ;par exemple application/x-tar)

∙ logbookParametersList : : List<LogbookParameters>

∙ inputStream : InputStream (stream de sip compressé dont le format doit être zip, tar ou tar.gz)

∙ Retourne : ATR en format xml

∙ Exceptions :

4.7.6 ingest-external-client

4.7.7 Utilisation

4.7.7.1 Paramètres

Les paramètres sont les InputStreams du fichier SIP pour le dépôt dans la base VITAM

4.7.7.2 La factory

Afin de récupérer le client, une factory a été mise en place.

// Récupération du client ingest-external
IngestExternalClient client = IngestExternalClientFactory.getInstance().
→˓getIngestExternalClient();

4.7.7.2.1 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
IngestExternalClientFactory.setConfiguration(IngestExternalClientFactory.
→˓IngestExternalClientType.MOCK_CLIENT, null);
// Récupération explicite du client mock
IngestExternalClient client = IngestExternalClientFactory.getInstance().
→˓getIngestExternalClient();

4.7.7.3 Le client

Pour instancier son client en mode Production :

// Ajouter un fichier functional-administration-client.conf dans /vitam/conf
// Récupération explicite du client
IngestExternalClient client = IngestExternalClientFactory.getInstance().
→˓getIngestExternalClient();

Le client propose les méthodes suivantes :

4.7. Ingest 93

VITAM - Manuel de développement, Version 8.1.2

// ingest upload file in local and launch an ingest workflow
RequestResponse<Void> ingest(VitamContext vitamContext, InputStream stream,

String contextId,
String action)
throws IngestExternalException;

// Download object stored by ingest operation
Response downloadObjectAsync(VitamContext vitamContext, String objectId,

IngestCollection type)
throws VitamClientException;

4.7.8 ingest-external-antivirus

Dans cette section, nous expliquons comment utiliser et configurer le script d’antivirus pour le service ingest-external.
1. Configuration pour ingest-external : ingest-external.conf

Dans ce fichier de configuration, nous précisons le nom du script antivirus utilisé, et le timeout pour
le scan. Le script utilisé actuellement est scan-clamav.sh utilisant l’antivirus ClamAV.
Le paramètre “timeoutScanDelay” est utilisé comme timeout du traitement de l’antivirus. Il faut
choisir une valeur (en millisecondes) en fonction de la performance de l’antivirus et de la somme des
tailles de binaires que l’on doit pouvoir traiter simultanément sur le composant ingest-external. La
valeur par défaut est de 60000 millisecondes.

antiVirusScriptName : scan-clamav.sh
timeoutScanDelay : 60000

2. Script d’antivirus scan-clamav.sh
Le script permettant de lancer d’un scan d’un fichier envoyé avec l’antivirus ClamAV et retourner le
résulat :

-1 : Analyse non effectuée 0 : Analyse OK - no virus 1 : Virus trouvé et corrigé 2 : Virus trouvé mais non
corrigé 3 : Analyse NOK
Ce fichier est mis dans le répertoire vitam/conf avec le droit d’exécution.

3. Lancer le script en Java et intégration

JavaExecuteScript.java (se trouve dans ingest-external-common) permettant de lancer le script de clamav en Java en
prenant des paramètres d’entrées : le script utilisé, le chemin du fichier à scanner et le temps limité d’un scan Pour
l’intégration dans ingest-external, ce script est appelé dans l’implémentation des APIs de ingest-externe. la section
suivant montre comment on appelle le script depuis ingest-external en Code.

antiVirusResult = JavaExecuteScript.executeCommand(antiVirusScriptName, filePath,
→˓timeoutScanDelay);
.......
switch (antiVirusResult) {

case STATUS_ANTIVIRUS_OK:
LOGGER.info(IngestExternalOutcomeMessage.OK_VIRUS.toString());
// nothing to do, default already set to ok
break;

case STATUS_ANTIVIRUS_WARNING:
case STATUS_ANTIVIRUS_KO:

LOGGER.error(IngestExternalOutcomeMessage.KO_VIRUS.toString());
antivirusParameters.setStatus(StatusCode.KO);
antivirusParameters.putParameterValue(LogbookParameterName.outcomeDetail,

messageLogbookEngineHelper.getOutcomeDetail(SANITY_CHECK_SIP,
→˓StatusCode.KO));

(suite sur la page suivante)

94 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

antivirusParameters.putParameterValue(LogbookParameterName.
→˓outcomeDetailMessage,

messageLogbookEngineHelper.getLabelOp(SANITY_CHECK_SIP, StatusCode.KO));
isFileInfected = true;
break;

case STATUS_ANTIVIRUS_NOT_PERFORMED:
case STATUS_ANTIVIRUS_NOT_PERFORMED_2:

LOGGER.error(IngestExternalOutcomeMessage.FATAL_VIRUS.toString());
antivirusParameters.setStatus(StatusCode.FATAL);
antivirusParameters.putParameterValue(LogbookParameterName.outcomeDetail,

messageLogbookEngineHelper.getOutcomeDetail(SANITY_CHECK_SIP,
→˓StatusCode.FATAL));

antivirusParameters.putParameterValue(LogbookParameterName.
→˓outcomeDetailMessage,

messageLogbookEngineHelper.getLabelOp(SANITY_CHECK_SIP, StatusCode.
→˓FATAL));

isFileInfected = true;
break;

}
}

..
→˓...................

4.7.9 INGEST

4.7.9.1 L’application rest

4.7.9.1.1 ingest-internal : IngestInternalApplication

La méthode startApplication avec l’argument String[] permet aux tests unitaires de démarrer sur un port spécifique,
le deuxième argument. Le premier argument contient le nom du fichier de configuration ingest-internal.conf (il est
templetiser avec ansible).

4.7.9.1.2 ingest-external : IngestExternalApplication

même chose que pour IngestInternalApplication et avec ingest-external.conf à la place de ingest-internal.conf.

4.8 Security-Internal

4.8.1 Introduction

4.8.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

4.8. Security-Internal 95

VITAM - Manuel de développement, Version 8.1.2

4.8.2 Certificats

4.8.2.1 Utilisation

Plusieurs opérations sont supportées pour la gestion des certificats SIA et personnels. Les certificats sont stockées dans
la base Identity dans les collections Certificate et PersonalCertificate respectivement.

Les certificats SIA sont rattachés à un SIA donné (IHM, ou autre client d’appel à Vitam) et sont utilisés pour appeler
Vitam via une connexion TLS. Ils sont récupérés par les couches « *-external » de vitam afin de les valider auprès du
security-internal. Le certificat SIA est attaché à un contexte auquel il donne accès.

Les certificats personnels sont utilisés pour les endpoints externes de Vitam qui nécessitent une authentification forte
(aussi appelée authentification personae). Le module security-internal doit être interrogé pour vérifier si telle permis-
sion du endpoint nécessite ou pas l’authentification personnel. Le cas échéant, il convient de les valider auprès du
security-internal.

4.8.2.1.1 La factory

Afin de récupérer le client ainsi que la bonne classe de paramètre, une factory a été mise en place. Actuellement, elle
ne fonctionne que pour le journal des opérations.

// Récupération du client
InternalSecurityClientFactory.changeMode(ClientConfiguration configuration)
InternalSecurityClient client = InternalSecurityClientFactory.getInstance().
→˓getClient();

4.8.2.2 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
InternalSecurityClientFactory.changeMode(null)
// Récupération explicite du client mock
InternalSecurityClient client = InternalSecurityClientFactory.getInstance().
→˓getClient();

Pour instancier son client en mode Production :

// Changer la configuration du Factory
InternalSecurityClientFactory.changeMode(ClientConfiguration configuration);
// Récupération explicite du client
InternalSecurityClient client = InternalSecurityClientFactory.getInstance().
→˓getClient();

4.8.2.3 Le client

Le client propose plusieurs méthodes pour la vérification des certificats SIA et personnels.

// Récupération du client
InternalSecurityClient client = InternalSecurityClientFactory.getInstance().
→˓getClient();
// Vérifier un certificat SIA
byte[] certificate = ...;

(suite sur la page suivante)

96 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

Optional<IdentityModel> identity = client.findIdentity(certificate);
// Vérifier si un endpoint donné nécessite un authentification personae
String permission = "...";
IsPersonalCertificateRequiredModel isPersonalCertificateRequired

= client.isPersonalCertificateRequiredByPermission(permission);
// Vérifier un certificat personae
byte[] personalCertificate = ...;
client.checkPersonalCertificate(certificate, permission);

4.9 Logbook

4.9.1 Introduction

4.9.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

4.9.2 Logbook

4.9.3 Utilisation

4.9.3.1 Paramètres

Les paramètres sont représentés via une interface LogbookParameters sous le package
fr.gouv.vitam.logbook.common.parameters.

L’idée est de représenter les paramètres sous forme de Map<LogbookParameterName, String>.

Une methode getMapParameters() permet de récuperer l’ensemble de ces paramètres. Une methode getMandatories-
Parameters() permet de récuperer un set de paramètre qui ne doivent pas être null ni vide.

On retrouve une implémentation dans la classe LogbookOperationParameters qui représente les paramètres pour
journaliser une opération.

Il existe egalement une Enum LogbookParameterName qui permet de définir tous les noms de paramètres possible.
Elle permet de remplir la map de paramètres ainsi que le set permettant de tester les paramètres requis.

4.9.3.2 La factory

Afin de récupérer le client ainsi que la bonne classe de paramètre, une factory a été mise en place. Actuellement, elle
ne fonctionne que pour le journal des opérations.

// Récupération du client
LogbookOperationsClientFactory.changeMode(ClientConfiguration configuration)
LogbookOperationsClient client = LogbookOperationsClientFactory.getInstance().
→˓getClient();
// Récupération de la classe paramètre
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookOperationParameters();
// Utilisation des setter : parameters.putParameterValue(parameterName,
→˓parameterValue);

(suite sur la page suivante)

4.9. Logbook 97

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

parameters.putParameterValue(LogbookParameterName.eventTypeProcess,
LogbookParameterName.eventTypeProcess.name())
.putParameterValue(LogbookParameterName.outcome,
LogbookParameterName.outcome.name());
// Usage recommandé : utiliser le factory avec les arguments obligatoires à remplir
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookOperationParameters(args);
// Des helpers pour aider
parameters.setStatus(LogbookOutcome).getStatus();
parameters.setTypeProcess(LogbookTypeProcess).getTypeProcess();
parameters.getEventDateTime();
parameters.setFromParameters(LogbookParameters).
→˓getParameterValue(LogbookParameterName);

4.9.3.2.1 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
LogbookOperationsClientFactory.changeMode(null)
// Récupération explicite du client mock
LogbookOperationsClient client = LogbookOperationsClientFactory.getInstance().
→˓getClient();

Pour instancier son client en mode Production :

// Changer la configuration du Factory
LogbookOperationsClientFactory.changeMode(ClientConfiguration configuration);
// Récupération explicite du client
LogbookOperationsClient client = LogbookOperationsClientFactory.getInstance().
→˓getClient();

4.9.3.3 Le client

Le client propose actuellement quatre méthodes : create, update, selectOperation et selectOperationbyId

Le mock de create et upadate ne vérifie pas l’identifiant (eventIdentifier) ni la date (evendDateTime). En effet, il ne
doit pas exister pour le create et inversement pour l’update.

Chacune de ces méthodes prend en arguement la classe paramètre instanciée via la factory et peuplée au besoin.

Le mock de selectOperation retourne un JsonNode qui contient MOCK_SELECT_RESULT_1 et
MOCK_SELECT_RESULT_2

Le mock de selectOperationbyId retourne un JsonNode qui contient seulement MOCK_SELECT_RESULT_1. En
effet, chaque opération a un identifiant unique.

Chacune de ces méthodes prend en arguement une requête select en String

// Récupération du client
LogbookOperationsClient client = LogbookOperationsClientFactory.getInstance().
→˓getClient();

// Récupération de la classe paramètre
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookOperationParameters(); (suite sur la page suivante)

98 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// Utilisation des setter : parameters.putParameterValue(parameterName,
→˓parameterValue);

// create
client.create(parameters);
// possibilité de réutiliser le même parameters
// Utilisation des setter : parameters.putParameterValue(parameterName,
→˓parameterValue);
// update
client.update(parameters);

// select opération
client.selectOperation(String select);
// select opération par id
client.selectOperationbyId(String select);

4.9.3.3.1 Exemple d’usage générique

// Récupération du client
LogbookOperationsClient client = LogbookOperationsClientFactory.getInstance().
→˓getClient();

// Récupération de la classe paramètre
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookOperationParameters();
// Utilisation des setter : parameters.putParameterValue(parameterName,
→˓parameterValue);
parameters.putParameterValue(LogbookParameterName.eventIdentifierProcess,

GUIDFactory.newOperationId(tenant).getId())
.setStatus(outcome).setTypeProcess(type);

// create global du processus AVANT toute opération sur ce processus
parameters.setStatus(LogbookOutcome.STARTED);
client.create(parameters);

// et maintenant append jusqu'à la fin du processus global
LogbookParameters subParameters = LogbookParametersFactory.
→˓newLogbookOperationParameters();
// Récupère les valeurs du parent: attention à resetter les valeurs propres !
subParameters.setFromParameters(parameters);
// Event GUID
subParameters.putParameterValue(LogbookParameterName.eventIdentifier,

GUIDFactory.newOperationIdGUID(tenantId).getId());
// Event Type
subParameters.putParameterValue(LogbookParameterName.eventType,

"UNZIP");
// Et autres paramètres
...
// Unsip
subParameters.setStatus(LogbookOutcome.OK);
// Sous opération OK
client.update(subParameters);

// Autres Opérations

(suite sur la page suivante)

4.9. Logbook 99

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// Fin Opération Globale
// create global du processus AVANT toute opération sur ce processus
parameters.setStatus(LogbookOutcome.OK);
client.update(parameters);

// Quand toutes les opérations sont terminées
client.close();

4.9.3.3.2 Exemple Ingest

// Available informations
// TenantId
int tenantId = 0;
// Process Id (SIP GUID)
String guidSip = "xxx";
// X-Request-Id
String xRequestId = "yyy";
// Global Object Id: in ingest = SIP GUID

// Récupération du client
LogbookOperationsClient client =
LogbookOperationsClientFactory.getInstance().getClient();

// Récupération de la classe paramètre avec ou sans argument
LogbookParameters parameters =
LogbookParametersFactory.newLogbookOperationParameters();
LogbookParameters parameters =
LogbookParametersFactory.newLogbookOperationParameters(eventIdentifier,
eventType, eventIdentifierProcess, eventTypeProcess,
outcome, outcomeDetailMessage, eventIdentifierRequest);

// Utilisation du setter
// Event GUID
parameters.putParameterValue(LogbookParameterName.eventIdentifier,
GUIDFactory.newOperationIdGUID(tenantId).getId());
// Event Type
parameters.putParameterValue(LogbookParameterName.eventType,
"UNZIP.STARTED");
// Event Identifier Process
parameters.putParameterValue(LogbookParameterName.eventIdentifierProcess,
guidSip);
// Event Type Process
parameters.setTypeProcess(LogbookTypeProcess.INGEST);
// X-Request-Id
parameters.putParameterValue(LogbookParameterName.eventIdentifierRequest,
xRequestId);
// Global Object Id = SIP GUID for Ingest
parameters.putParameterValue(LogbookParameterName.objectIdentifier,

(suite sur la page suivante)

100 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

guidSip);

// Lancement de l'opération
// Outcome: status
parameters.setStatus(LogbookOutcome.OK);
// Outcome detail message
parameters.putParameterValue(LogbookParameterName.outcomeDetailMessage,
"One infotmation to set before starting the operation");

// 2 possibilities
// 1) Démarrage de l'Opération globale (eventIdentifierProcess) dans INGEST première
→˓fois
client.create(parameters);
// 2) update global process Operation (same eventIdentifierProcess) partout ailleurs
client.update(parameters);

// Run Operation
runOperation();

// Finalisation de l'opération, selon le statut
// Set Event Type
parameters.putParameterValue(LogbookParameterName.eventType,
"UNZIP");
// 1) Si OK
parameters.setStatus(LogbookOutcome.OK);
// 2) Si non OK
parameters.setStatus(LogbookOutcome.ERROR);
parameters.putParameterValue(LogbookParameterName.outcomeDetail,
"404_123456"); // 404 = code http, 123456 = code erreur Vitam

// Outcome detail message
parameters.putParameterValue(LogbookParameterName.outcomeDetailMessage,
"One infotmation to set after the operation");
// update global process operation
client.update(parameters);

// When all client opération is done
client.close();

4.9.3.3.3 Exemple ihm-demo-web-application

@POST
(suite sur la page suivante)

4.9. Logbook 101

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

@Path("/logbook/operations")
@Produces(MediaType.APPLICATION_JSON)
public Response getLogbookResult(String options)

// Traduction de Mappeur à la requête DSL
Map<String, String> optionsMap = JsonHandler.getMapStringFromString(options);
query = CreateDSLClient.createSelectDSLQuery(optionsMap);

// Récupération du client
LogbookOperationsClient logbookClient = LogbookOperationsClientFactory.getInstance().
→˓getLogbookOperationClient();

// Sélection des opérations par la requête DSL
result = logbookClient.selectOperation(query);

@POST
@Path("/logbook/operations/{idOperation}")
@Produces(MediaType.APPLICATION_JSON)
public Response getLogbookResultById(@PathParam("idOperation") String operationId,
→˓String options)

// Récupération du client
LogbookClient logbookClient = LogbookClientFactory.getInstance().
→˓getLogbookOperationClient();

// Sélection des opérations par ID
result = logbookClient.selectOperationbyId(operationId);

4.9.3.4 Données

La recherche des logbook de type TRACEABILITY passent par ElasticSearch, il faut faire attention à ce que le requête
contenant des filtres de type « OrderBy » correspondent bien a des champs définit dans le mapping de l’index Elastic :
LogbookOperation.MAPPING.

4.9.4 Logbook-lifecycle

4.9.5 Utilisation

4.9.5.1 Paramètres

Les paramètres sont représentés via une interface LogbookParameters sous le package
fr.gouv.vitam.logbook.common.parameters.

L’idée est de représenter les paramètres sous forme de Map<LogbookParameterName, String>.

Une methode getMapParameters() permet de récuperer l’ensemble de ces paramètres. Une methode getMandatories-
Parameters() permet de récuperer un set de paramètre qui ne doivent pas être null ni vide.

On retrouve une implémentation dans la classe LogbookLifeCycleObjectGroupParameters qui représente les para-
mètres pour journaliser un cycle de vie d’object group. LogbookLifeCycleUnitParameters qui représente les para-
mètres pour journaliser un cycle de vie d’archive unit.

Il existe egalement une Enum LogbookParameterName qui permet de définir tous les noms de paramètres possible.
Elle permet de remplir la map de paramètres ainsi que le set permettant de tester les paramètres requis.

102 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.9.5.2 La factory

Afin de récupérer le client ainsi que la bonne classe de paramètre, une factory a été mise en place.

// Récupération du client
LogbookLifeCyclesClientFactory.changeMode(ClientConfiguration configuration)
LogbookLifeCycleClient client = LogbookLifeCyclesClientFactory.getInstance().
→˓getClient();
// Récupération de la classe paramètre pour Object Group
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookLifeCycleObjectGroupParameters();
// Récupération de la classe paramètre pour Archive Unit
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookLifeCycleUnitParameters();
// Utilisation des setters pour Object Group et Archive Unit : parameters.
→˓putParameterValue(parameterName, parameterValue);
parameters.putParameterValue(LogbookParameterName.agentIdentifier,

SERVER_IDENTITY.getJsonIdentity());
parameters.putParameterValue(LogbookParameterName.eventDateTime,

LocalDateUtil.nowFormated());
// Usage recommandé : utiliser le factory avec les arguments obligatoires à remplir

// Object Group
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookLifeCycleObjectGroupParameters(args);
// Archive Unit
LogbookParameters parameters = LogbookParametersFactory.
→˓newLogbookLifeCycleUnitParameters(args);
// Des helpers pour aider
parameters.setStatus(LogbookOutcome).getStatus();
parameters.setTypeProcess(LogbookTypeProcess).getTypeProcess();
parameters.getEventDateTime();
parameters.setFromParameters(LogbookParameters).
→˓getParameterValue(LogbookParameterName);

4.9.5.2.1 Le Mock

Par défaut, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
LogbookLifeCyclesClientFactory.changeMode(null)

// Récupération explicite du client mock
LogbookClient client = LogbookLifeCyclesClientFactory.getInstance().getClient();

Pour instancier son client en mode Production :

// Changer la configuration du Factory
LogbookLifeCyclesClientFactory.changeMode(ClientConfiguration configuration)
// Récupération explicite du client
LogbookLifeCyclesClient client = LogbookLifeCyclesClientFactory.getInstance().
→˓getClient();

4.9.5.3 Le client

Le client propose actuellement six méthodes : create, update, commit, rollback, selectOperation et selectLifeCycles et
selectLifeCyclesById

4.9. Logbook 103

VITAM - Manuel de développement, Version 8.1.2

// TODO

Cas d’usage provenant de processing.

4.10 Metadata

4.10.1 Métadata - Introduction

L’ensemble de ces documents est le manuel de développement du module Metadata, qui représente le métier fonction-
nel de l’user story #70 de projet VITAM, dont le but et de réaliser des opérations sur la métatadata auprès de la base
de données (insert/update/select/delete).

Le manuel se compose de deux parties - DAT présente l’architecture technique du module au niveau des packages,
classes - REST-RAML explique comment on utitlise des différents service proprosés par module

4.10.2 DAT : module metadata

Ce document présente l’ensemble du manuel développement concernant le développment du module metadata qui
identifié par la user story #70, qui contient :

∙ modules & packages

∙ classes métiers

4.10.2.1 Modules et packages

metadata

∙ metadata-api : définir des APIs de traitement des requêtes un utilisant la base de données choisie

∙ metadata-core : implémentation des APIs

∙ metadata-rest : le serveur REST de métadata qui donnes des traitement sur les requêtes DSL

∙ metadata-client : client métadata qui sera utilisé par les autres modules pour faire des requête DSL sur le méta-
data

4.10.2.2 Classes métiers

Dans cette section, nous présentons quelques classes principales dans des modules/packages qu’on a abordé ci-dessus.

4.10.2.2.1 metadata-api

∙ MetaData.java : définir des interface métiers pour le métadata

4.10.2.2.2 metadata-core

∙ MetaDataImpl.java : implémenter des fonctionnalités de traitement sur le métadata, pré-défini dans -
MetaData.java

104 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.10.2.2.3 metadata-rest

∙ MetaDataRessource.java : définir des ressources différentes pour le serveur REST métadata

∙ MetaDataApplication.java : créer & lancer le serveur d’application avec une configuration

4.10.2.2.4 metadata-client

∙ MetaDataClient.java : créer le client et des fonctionnalités en se connectant au serveur REST

4.10.3 Métadata

4.10.3.1 Utilisation

4.10.3.1.1 Paramètres

4.10.3.1.2 Le client

Le client propose actuellement différentes méthodes : insert et selection des units, select des objectGroups.

Il faut ajouter la dependance au niveau de pom.xml

<dependency>
<groupId>fr.gouv.vitam</groupId>
<artifactId>metadata-client</artifactId>
<version>${project.version}</version>

</dependency>

4.10.3.1.2.1 Créer le client metadata

En deux étapes :

∙ chargement de la configuration en utilisant une des méthodes suivantes :
∙ MetaDataClientFactory.changeMode(new ClientConfigurationImpl(server, port)) ;

∙ MetaDataClientFactory.changeMode(ConfigurationFilePath) ;)‘‘

∙ création du client final MetaDataClient metadataClient = MetaDataClientFactory.getInstance().getClient() ;

4.10.3.1.2.2 Accéder aux fonctionnalités

le client métadata fournit les foncitonnalités suivantes : insérer un ArchiveUnit, insérer un ObjectGroup et
sélectionner un métadata (archiveUnit). Le détail de l’utilisation de chaque fonctionnalité est ci-dessous.

4.10.3.1.2.3 Insérer des ArchiveUnits

try {
JsonNode result= metadataClient.insertUnit(JsonNode insertQuery)

} catch (InvalidParseOperationException e) {
LOG.error("parsing error", e);

(suite sur la page suivante)

4.10. Metadata 105

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

throw e;
} catch (MetaDataExecutionException e) {

LOG.error("execution error", e);
throw e;

} catch (MetaDataDocumentSizeException e) {
LOG.error("document size input error", e);
throw e;

} catch (MetaDataAlreadyExistException e) {
LOG.error("data already exists error", e);
throw e;

} catch (MetaDataNotFoundException e) {
LOG.error("not found parent/path error", e);
throw e;

}
}

Paramètre d’entrée est une requête DSL de type JsonNode, indiquant la requête sur la collection Unit.

Un exemple de la requête paramètrée est le suivant :

{
"$root" : [],
"$queries": [{ "$path": "aaaaa" }],
"$filter": { },
"$data": { "_id": "value" }

}

Cette fonction retourne une réponse de type JsonNode contenant les informations : code de retour en cas d’erreur, la
requête effectuée sur la collection . . .

4.10.3.1.2.4 Insérer des ObjectGroups

try {
JsonNode result= metadataClient.insertObjectGroup(JsonNode

→˓insertQuery)
} catch (InvalidParseOperationException e) {

LOG.error("parsing error", e);
throw e;

} catch (MetaDataExecutionException e) {
LOG.error("execution error", e);
throw e;

} catch (MetaDataDocumentSizeException e) {
LOG.error("document size input error", e);
throw e;

} catch (MetaDataAlreadyExistException e) {
LOG.error("data already exists error", e);
throw e;

} catch (MetaDataNotFoundException e) {
LOG.error("not found parent/path error", e);
throw e;

}

Paramètre d’entrée est une requête DSL de type JsonNode, indiquant la requête sur la collection ObjectGroup.

Un exemple de la requête paramètrée est le suivant :

106 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

{
"$root" : [],
"$queries": [{ "$exists": "value" }],
"$filter": { },
"$data": { "_id": "objectgroupValue" }

}

Cette fonction retourne une réponse de type JsonNode contenant les informations : code de retour en cas d’erreur, la
requête effectuée sur la collection . . .

4.10.3.1.3 Sélection des ArchiveUnits

try {
// return JsonNode
jsonNode = metaDataClient.selectUnits(

accessModuleBean != null ? accessModuleBean.getRequestDsl() : "");
} catch (InvalidParseOperationException e) {
LOG.error("parsing error", e);
throw e;
} catch (MetadataInvalidSelectException e) {
LOG.error("invalid select", e);
throw e;
} catch (MetaDataDocumentSizeException e) {
LOG.error("document size problem", e);
throw e;
} catch (MetaDataExecutionException e) {
LOG.error("metadata execution problem", e);
throw e;
} catch (IllegalArgumentException e) {
LOG.error("illegal argument", e);
throw new AccessExecutionException();
} catch (Exception e) {
LOG.error("exeption thrown", e);
throw e;

}

4.10.3.1.4 Sélection d’un ObjectGroup

try {
JsonNode selectQuery;
String objectGroupId;
// return JsonNode
jsonNode = metaDataClient.selectObjectGrouptbyId(selectQuery, objectGroupId);

} catch (InvalidParseOperationException e) {
LOG.error("parsing error", e);
throw e;

} catch (MetadataInvalidSelectException e) {
LOG.error("invalid select", e);
throw e;

} catch (MetaDataDocumentSizeException e) {
LOG.error("document size problem", e);
throw e;

} catch (MetaDataExecutionException e) {

(suite sur la page suivante)

4.10. Metadata 107

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

LOG.error("metadata execution problem", e);
throw e;

} catch (IllegalArgumentException e) {
LOG.error("illegal argument", e);
throw new AccessExecutionException();

} catch (MetadataInvalidSelectException e) {
LOG.error("invalid selection", e);
throw new AccessExecutionException();

} catch (Exception e) {
LOG.error("exeption thrown", e);
throw e;

}

4.10.4 Métadata : API REST Raml

4.10.4.1 Présentation

Parent package : fr.gouv.vitam.api
Package proposition : fr.gouv.vitam.metadata.rest

Module pour le module opération : api / rest.

4.10.4.2 Rest API

URL Path : http://server/metadata/v1

POST /units -> POST nouvelle unité d’archive récupération d’une liste des units avec une réquête

GET /status -> statut du server rest metadata (available/unavailable)

POST /objectgroups -> POST : insérer une nouveau groupe d’objects via une requête DSL

4.10.5 Métadata-tenant

Les indices elasticsearch des unités archives et les groupes d’objets technique doivent être séparées par les tenants.
Ces indices doivent être créées lors de démarrage du serveur grâce au fichier de configuration. Par exemple, pour
metadata.conf on ajourte d’une ligne suivante :

∙ tenants : [0, 1, 2]
indiqué que le serveur va travailler sur différents tenants 0, 1 et 2.

1. Valeur du tenant

La valeur de tenant est sauvegardé dans VitamSession et cette valeur sera récupérée par la fonction suivante.

VitamThreadUtils.getVitamSession().getTenantId()

Les indices sont créées basé sur les tenant pour chaque collection correspondante.

∙ Pour collection des unités archives, les indices sont : unit_0, unit_1, . . . pour la liste de tenant 0, 1 . . .

∙ Pour la collection des groupes d’objets technique, les indices sont objectgroups_0, objectgroups_1. . .

2. Refactor

108 Chapitre 4. Détails par composant

http://server/metadata/v1

VITAM - Manuel de développement, Version 8.1.2

Pour permettre de réaliser les opérations sur les collections de métadata via l’elastichsearch par le tenant, nous faisons
un refactor sur les classe DbRequest et ElasticsearchAccessMetadata.

2.1. ElasticsearchAccessMetadata

Les fonctions d’ajout des indices pour la collection, mise à jour des indices ou delete des indices sont fait par le
paramètre tenantId.

deleteIndex(final MetadataCollections collection, Integer tenantId)
addIndex(final MetadataCollections collection, Integer tenantId)
refreshIndex(final MetadataCollections collection, Integer tenantId)
addEntryIndexesBlocking(final MetadataCollections collection, final Integer tenantId,
→˓final Map<String, String> mapIdJson)
addEntryIndex(final MetadataDocument<?> document, Integer tenantId)
...

2.2. DbRequest

∙ Le tenantId est récupéré dans la session par VitamThreadUtils.getVitamSession().getTenantId() pour appliquer
au executeQuery() pour exécuter une requête.

Result executeQuery(final RequestToAbstract requestToMongodb, final int rank,
→˓final Result previous) {

Integer tenantId = ParameterHelper.getTenantParameter();

...
}

4.10.6 Métadata

4.10.6.1 Utilisation

4.10.6.1.1 Paramètres

4.10.6.1.2 Calcul des règles de gestion pour une unité archivistique via API dédiée

Un endpoint (GET /unitsWithInheritedRules) permet le calcul des règles de gestion ainsi que les propriétés associées
(de type FinalAction. . .).

Pour chaque catégorie de règles de gestion (AppraisalRule, ReuseRule. . .), les règles et les propriétés sont calculées
d’une unité archivistique sont héritées des parents. Excepté les cas suivants :

4.10.6.1.2.1 La prévention d’héritage

L’intégration d’une balise <PreventInheritance> dans le SEDA Si le champ est « true », toutes les règles héritées des
parents sont ignorées sur le nœud courant

4.10.6.1.2.2 L’exclusion d’héritage

L’intégration d’une balise <RefNonRuleId> dans le SEDA indiquant les règles à désactiver à partir de ce niveau.

4.10. Metadata 109

VITAM - Manuel de développement, Version 8.1.2

4.10.6.1.2.3 La redéfinition de règles ou de propriétés

Le nœud courant peut redéclarer une règle (même identifiant) et/ou une propriété déjà déclarées dans des parents. Dans
ce cas, les règles et propriétés des unités parentes ne seront pas héritées.

4.10.6.1.3 Calcul des règles de gestion pour une unité archivistique (déprécié)

1. Requête DSL

Pour calculer les règles héritées de l’archive Unit. Il faut ajouter « $rules : 1 » dans le filtre de la requête DSL.

2. Calculer des règles de gestion pour une unité archivistique

Le serveur vérifie la requête, si son filtre contient « $rules : 1 ». On démarre la procédure de calcul des règles héritées

2.1 Rechercher les règles de gestion des parents et lui même

createSearchParentSelect(List<String> unitList)

2.1 Construire le graphe DAG avec tous les unité archivistique
ArrayNode unitParents = selectMetadataObject(newSelectQuery.getFinalSelect(), null, null) ;
Map<String, UnitSimplified> unitMap = UnitSimplified.getUnitIdMap(unitParents) ; UnitRuleCompute
unitNode = new UnitRuleCompute(unitMap.get(unitId)) ; unitNode.buildAncestors(unitMap, allUnit-
Node, rootList) ;
2.3 Calculer des règles de gestion et mettre dans le résultat final
unitNode.computeRule() ; JsonNode rule = JsonHandler.toJsonNode(unitNode.getHeritedRules().getInheritedRule()) ;
((ObjectNode)arrayNodeResponse.get(0)).set(UnitInheritedRule.INHERITED_RULE, rule) ;

4.10.7 Désynchronisation des bases de données

Afin de vérifier la cohérence des données enregistrées dans MongoDB et ElasticSearch, un contrôle supplémentaire
a été mis en place. Cela a pour but d’alerter les administrateurs de la plate-forme en cas de désynchronisation entre
MongoDB et Elasticsearch.

4.10.7.1 Traitement

Après toutes les opérations possibles par le DSL (Insertion, Mise à jour, Selection, etc. . .), une vérification a été
ajoutée, et permet de vérifier la cohérence entre MongoDB et ElasticSearch. Le nombre de documents contenus dans
ElasticSearch est comparé à celui de MongoDB. En cas de différence, une exception est remontée par Metadata
(VitamDBException). De plus, des logs ERROR sont tracés afin de permettre aux administrateurs (via Kibana) de
connaître les éventuels Guid provoquant la différence entre les bases de données.

L’exception VitamDBException sera remontée jusqu’au module AccessExternal, qui retournera alors un message
d’erreur explicite (la désynchronisation y sera bien explicitée).

4.11 Processing

4.11.1 Introduction

4.11.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

110 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.11.2 Paramètres

Mise en place d’une classe de paramètres s’appuyant sur une map.

4.11.2.1 WorkerParamerterName, les noms de paramètre

Les noms de paramètres se trouvent dans l’énum WorkerParameterName. Pour ajouter un nouveau paramètre, ajouter
son nom dans l’énum.

4.11.2.2 ParameterHelper, le helper

Utiliser le ParameterHelper afin de valider les éléments requis.

4.11.2.3 WorkerParametersFactory, la factory

Utiliser WorkerParametersFactory afin d’instancier une nouvelle classe de worker. Actuellement 5 paramètres sont
obligatoires pour tous les workers : * urlMetadata afin d’intialiser le client metadata * urlWorkspace afin d’initialiser
le client workspace * objectName le fichier json de l’object lorsque l’on boucle sur liste * currentStep le nom de
l’étape * containerName l’identifiant du container

4.11.2.4 AbstractWorkerParameters, les implémentations par défaut

La classe abstraite AbstractWorkerParameters est l’implémentation par défaut de l’interface WorkerParameters. Si un
paramètre est ajouté, il est possible de vouloir un getter et un setter particulier (aussi bien dans l’interface que dans
l’implémentation abstraite).

4.11.2.5 DefaultWorkerParameters, l’implémentation actuelle

C’est l’implémentation actuelle des paramètres de worker.

4.11.3 Processing Management

Version 27/02/2017

4.11.3.1 Présentation

Parent package : fr.gouv.vitam.processing
Package proposition : fr.gouv.vitam.processing.management

4 modules composent la partie processing-management :

∙ processing-management : incluant la partie core + la partie REST.

∙ processing-management-client : incluant le client permettant d’appeler le REST.

∙ processing-engine : le moteur workflow.

∙ processing-data : le module de persistance et d’accès aux processus lancés (en éxécution, en pause, annulés,
terminés).

4.11. Processing 111

VITAM - Manuel de développement, Version 8.1.2

4.11.3.1.1 Processing-management

4.11.3.1.1.1 Rest API

Dans le module Processing-management (package rest) : | http://server/processing/v1

GET /status -> statut du logbook

POST /operations/{id} -> initialiser et/ou exécuter une action sur un processus workflow existant
PUT /operations/{id} -> exécuter une action sur processus existant
- Relancer un processus en mode continu avec header X-ACTION==> resume
- Exécuter l’étape suivante avec header X-ACTION==> next
- Mettre en pause un processus avec header X-ACTION==> pause
- Réexécuter l’étape précédemment exécutée avec header X-ACTION==> replay
GET /operations/{id} -> récupérer les details d’un processus workflow par id et tenant
HEAD /operations/{id} -> récupérer l’état d’éxécution d’un processus workflow par id et tenant
DELETE /operations/{id} -> Annuler un processus

De plus est ajoutée à la resource existante une resource déclarée dans le module processing-distributor (package rest).

http://server/processing/v1/worker_family
POST /{id_family}/workers/{id_worker} -> POST Permet d’ajouter un worker à la liste des workers
DELETE /{id_family}/workers/{id_worker} -> DELETE Permet de supprimer un worker

4.11.3.1.1.2 Core

Dans la partie Core, la classe ProcessManagementImpl propose les méthodes suivantes :

∙ init : Initialiser un processus avec un workflow donné. Dans cette étape on attach avec un cardinalité un-à-un un
ProcessEngine et une machine à état à ce processus.

∙ next : Exécute l’action next (exécuter l’étape suivante mode step by step) sur un processus existant.

∙ replay : Exécute l’action replay (relancer la dernière étape exécutée) sur un processus existant.

∙ resume : Exécute l’action resume (exécuter toutes les étapes mode continu) sur un processus existant.

∙ pause : Exécute l’action pause (mettre le processus en état pause dès que possible) sur un processus existant.

∙ cancel : Exécute l’action cancel (annuler un processus dès que possible) sur un processus existant.

∙ findAllProcessWorkflow : Lister tous les processus d’un tenant donné.

∙ findOneProcessWorkflow : Trouver un processus avec son id et son tenant.

4.11.3.1.1.3 La machine à état :

Dans la partie core on trouve aussi la classe StateMachine. Elle gère toutes les actions sur un processus donné.

∙ next :

112 Chapitre 4. Détails par composant

http://server/processing/v1
http://server/processing/v1/worker_family

VITAM - Manuel de développement, Version 8.1.2

Evaluer le passage de l’état actuel du processus vers l’état RUNNING en mode step by step. On ne peut passer à l’état
RUNNING que depuis un état en cours PAUSE. Si cette évaluation ne lance pas d’exception alors on lance l’exécution
d’un processus et appel de la méthode doRunning

∙ replay :

Evaluer le passage de l’état actuel du processus vers l’état RUNNING en mode step by step. On ne peut passer à l’état
RUNNING que depuis un état en cours PAUSE. Si cette évaluation ne lance pas d’exception alors on lance l’exécution
d’un processus et appel de la méthode doReplay.

∙ resume :

Evaluer le passage de l’état actuel du processus vers l’état RUNNING en mode continu. On ne peut passer à l’état
RUNNING que depuis un état en cours PAUSE. Si cette évaluation ne lance pas d’exception alors on lance l’exécution
d’un processus et appel de la méthode doRunning.

∙ pause :

Evaluer le passage de l’état actuel du processus vers l’état PAUSE. On ne peut passer à l’état PAUSE que depuis un
état en cours (PAUSE, RUNNING). Si cette évaluation ne lance pas d’exception alors , dans le cas d’un état en cours
RUNNING, finir l’exécution de l’étape en cours et passer à l’état PAUSE, et si c’est la dernière étape, alors passer à
l’état COMPLETED. Appel de la méthode doPause

∙ cancel :

Evaluer le passage de l’état actuel du processus vers l’état COMPLETED. On ne peut passer à l’état COMPLETED
que depuis un état en cours (PAUSE, RUNNING). Si cette évaluation ne lance pas d’exception alors , dans le cas d’un
état en cours RUNNING, finir l’exécution de l’étape en cours et passer à l’état COMPLETED. Appel de la méthode
doCompleted

-doRunning : Appelée depuis next ou resume. -doReplay : Appelée depuis replay. -doPause : Appelée depusi
pause. -doCompleted : Appelée depuis cancel.

-onComplete :

Appelée depuis le ProcessEngine quand une étape a été exécuté. Evaluation sur l’exécution de l’étape suivante selon
les informations suivantes :

∙ Si la dernière étape alors exécuter finaliser le logbook et persister le processus.

∙ Sinon :

∙ Vérifier si le status de l’étape est KO bloquant ou FATAL alors exécuter la dernière étape.

∙ Sinon vérifier si une demande d’action est présente (évaluer la targetState) :

∙ targetState = COMPLETED : Exécuter la dernière étape.

∙ targetState = PAUSE : Alors pause

∙ Sinon exécuter l’étape suivante.

-onError :

Appelée depuis le ProcessEngine quand une exception est levée lors de l’exécution d’un étape. Si c’est pas la dernière
étape alors essayer d’exécuter la dernière étape. Dans tous les cas, finaliser le logbook et persister le processus.

-onUpdate :

Appelée depuis le ProcessEngine pour metter à jour les informations du processus à la volé.

Lors de la finalisation du logbook, la mise à jours des informations sur l’état et le status son effectué au niveau du
processus. Une suppression de l’opération depuis le workspace.

4.11. Processing 113

VITAM - Manuel de développement, Version 8.1.2

4.11.3.1.1.4 Processing-management-client

4.11.3.1.1.5 Utilisation

Le client propose les méthode suivantes :

∙ initVitamProcess : initialiser le contexte d’un processus.

∙ executeVitamProcess : ! absolète !.

∙ executeOperationProcess :lancer un processus workflow avec un mode d’éxécution (resume/step by step).

∙ updateOperationActionProcess :relancer un processus workflow pour éxécuter une etape (mode : « next ») ou
toutes les étapes (« resume »).

∙ getOperationProcessStatus :récupérer l’état d’éxécution d’un processus workflow par id et tenant.

∙ cancelOperationProcessExecution :annuler un processus workflow par id et tenant.

∙ listOperationsDetails :récupérer la liste des processus.

∙ registerWorker : permet d’ajouter un nouveau worker à la liste des workers.

∙ unregisterWorker : permet de supprimer un worker à la liste des workers.

4.11.3.1.1.6 Exemple :

processingClient = ProcessingManagementClientFactory.getInstance().getClient();
Response response = processingClient.executeOperationProcess("containerName",
→˓"workflowId",

logbookTypeProcess.toString(), ProcessAction.RESUME.getValue());

4.11.3.1.2 Processing-data

Le module Processing data est responsable de la partie persistance ,accès aux données des processus avoir l’état
d’exécution et l’oordonnancement des étapes.

Le module processing data propose plusieurs méthodes :

∙ initProcessWorkflow : initialiser le contexte d’un processus.

∙ updateStep : mettre à jour une étape (les elements éxécutés/restés).

∙ findOneProcessWorkflow : Trouver depuis la map un processus par son id et son tenant.

∙ findAllProcessWorkflow : Trouver depuis la map tous les processus d’un tenant.

∙ addToWorkflowList : Ajouter un processus à la map (sauvegrade mémoire)

4.11.3.2 Configuration

1. Configuration du pom

Configuration du pom avec maven-surefire-plugin permet le build sous jenkins. Il permet de configurer le chemin des
resources de esapi dans le common private.

114 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.11.4 Processing Distributor

4.11.4.1 Présentation

Parent package : fr.gouv.vitam.processing
Package proposition : fr.gouv.vitam.processing.distributor

2 modules composent la partie processing-distributor : - processing-distributor : incluant la partie core + la partie
REST. - processing-distributor-client : incluant le client permettant d’appeler le REST.

4.11.4.1.1 Processing-distributor

4.11.4.2 Rest API

Pour l’instant les uri suivantes sont déclarées :

http://server/processing/v1/worker_family
POST /{id_family}/workers/{id_worker} -> POST Permet d’ajouter un worker à la liste des workers
DELETE /{id_family}/workers/{id_worker} -> DELETE Permet de supprimer un worker

A noter, que la resource ProcessDistributorResource est utilisée dans la partie Processing-Management.

4.11.4.3 Core

Dans la partie core la classe ProcessDistributorImpl propose une méthode principale : distribute. Cette méthode permet
de lancer des étapes et de les diriger vers différents Workers (pour l’instant un seul worker existe). De plus, un système
de monitoring permet d’enregistrer le statut des étapes lancées par la méthode distribute (cf module ProcessMonito-
ring). En attributs de l’implémentation du ProcessDistributor, sont présents 1 map de Workers ainsi qu’une liste de
Workers disponibles. Ces 2 objets permettent (et permettront plus finement dans le futur) de gérer la liste des workers
disponibles. Deux méthodes : registerWorker et unregisterWorker permettent d’ajouter ou de supprimer les workers à
la liste des workers disponibles.

4.11.4.3.1 Processing-distributor-client

Pour le moment le module est vide, car la partie client permettant d’appeler les méthodes register / unregister est portée
par le module processing-management-client. A terme, il sera souhaité d’avoir 2 clients séparés.

4.11.5 Processing Engine

4.11.5.1 Présentation

Parent package : fr.gouv.vitam.processing
Package proposition : fr.gouv.vitam.processing.engine

Ce module présente un packge api et core. Dans api on retrouve les interface et dans core leurs implémentations.

4.11. Processing 115

http://server/processing/v1/worker_family

VITAM - Manuel de développement, Version 8.1.2

4.11.5.1.1 Api

ProcessEngine est l’interface qu’on retrouve au niveau de la machine état. Elle expose les méthodes suivantes : - start :
pour lancer l’exécution d’une étape d’un processus auquel ce ProcessEngine est rattaché. - pause : sert à propager
l’action pause sur les étapes. - cancel : sert à propager l’action cancel sur les étapes.

4.11.5.1.2 Core

Dans la partie Core, la classe ProcessEngineImpl est l’implémentation de l’interface ProcessEngine :

ProcessEngineImpl ne fait que ce qui suit :

∙ Initialiser le logbook pour l’étape en cours.

∙ Appeler le distributeur pour exécuter l’étape.

∙ Au retour du distributeur finaliser le logbook pour l’étape en question.

∙ Gérer les exceptions

∙ Appeler la machine à état via IEventsProcessEngine avec les méthodes : onComplete, onUpdate, onError.

∙ onComplete : quand une exécution d’une étape est fini

∙ onError : Quand une exception est levée lors de l’exécution d’une étape.

∙ onUpdate : Quand une mise à jour à la volé d’un processus est nécessaire.

Il faut noter que l’exécution au niveau ProcessEngine est complètement asynchrone en utilisant les CompletableFuture.
Dès que l’initialisation du logbook et de l’initialisation de la CompletableFuture sont faite, une réponse est retournée
tout de suite au ProcessManagement et ainsi de suite au client final avant même que l’exécution de l’étape en cours est
terminée.

4.11.6 Etudes en cours

4.11.6.1 Workspace

4.11.6.1.1 Arborescence

∙ ** example d’arborescence d’un container dans le workspace ** :

116 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ ** détails ** : TODO

Pour chaque stream SIP

Container GUID

Folder GUID/SIP : stream SIP dézipé (manifest.xml et content)

Folder GUID/DataObjects : Physical/Binary DataObject

Folder GUID/ObjectGroups : hypothèse à ce stade un BinaryDataObject = un ObjectGroup

Folder GUID/Units : ArchiveUnit

4.11.6.2 Workflow

4.11.6.2.1 DefaultIngestWorkflow

Un Workflow est défini en JSON avec la structure suivante :

∙ un identifiant (id)

∙ une clé (identifier)

∙ un nom (name)

∙ une catégorie (typeProc)

∙ une liste de Steps : La structure d’une step donnée est la suivante

∙ un identifiant de famille de Workers (workerGroupId)

∙ un identifiant de Step (stepName)

4.11. Processing 117

VITAM - Manuel de développement, Version 8.1.2

∙ un modèle d’exécution (behavior) pouvant être : BLOCKING : le traitement est bloqué en cas d’erreur, il est
nécessaire de recommencer le workflow NOBLOCKING : le traitement peut continuer malgrée les erreurs
FINALLY : le traitement est executé quelque soit la statut des traitements precedants

∙ un modèle de distribution :

∙ kind : un type pouvant être :

∙ REF : pas de distribution pour ce step et définit une référence vers un fichier à traiter.
(Exemple : manifest.xml)

∙ LIST :

∙ si la valeur de “element” est “Units” : la liste des éléments à traiter est incluse dans un fichier
ingestLevelStack.json. Ce fichier contient les guid des archive units ordonnés par niveau de
graphe.

∙ si la valeur de “element” est autre : la liste des éléments à traiter est représentée par les
fichiers présents dans le sous-répertoire représenté par “element” (ex : “ObjectGroup”)

∙ LIST_IN_FILE : Fichier contenant une liste de GUID à traiter dans la distribution

∙ l’élément de distribution (element) indiquant l’élément unique (REF) ou le chemin vers un dossier ou un
fichier sur le Workspace (LIST, LIST_IN_FILE)

∙ type : est-ce une distribution sur des unités archivistiques ou sur des groupes d’objets.

∙ statusOnEmptyDistribution : Le statut qu’on attribue au step si jamais la distribution n’a pas eu lieu. Par
defaut : WARNING

∙ bulkSize : La taille du bulk : c’est à dire le nombre d’élément qui sera envoyé au worker. Par défaut, la
valeur est récupérée depuis la configuration avec la variable workerBulkSize.

∙ une liste d’Actions :

∙ un nom d’action (actionKey)

∙ un modèle d’exécution (behavior) pouvant être BLOCKING ou NOBLOCKING

∙ des paramètres d’entrées (in) :

∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY, VALUE) et un path :

∙ WORKSPACE :path indique le chemin relatif sur le workspace

∙ WORKSPACE_OBJECT :path indique le chemin relatif sur un dossier intitulé au nom d’objet
courant situé au workspace

∙ MEMORY :path indique le nom de la clef de valeur

∙ MEMORY_SINGLE :path indique le nom de la clef de valeur

∙ VALUE :path indique la valeur statique en entrée

∙ chaque handler peut accéder à ces valeurs, définies dans l’ordre stricte, via le handlerIO

∙ WORKSPACE, WOKSPACE_OBJECT : implicitement un File

∙ MEMORY, MEMORY_SINGLE : implicitement un objet mémoire déjà alloué par un Handler
précédent

∙ VALUE : implicitement une valeur String

∙ des paramètres de sortie (out) :

∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY) et un path :

∙ WORKSPACE :path indique le chemin relatif sur le workspace

∙ WORKSPACE_OBJECT :path indique le chemin relatif sur un dossier intitulé au nom d’objet
courant situé au workspace

118 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ MEMORY :path indique le nom de la clef de valeur

∙ MEMORY_SINGLE :path indique le nom de la clef de valeur

∙ chaque handler peut stocker les valeurs finales, définies dans l’ordre stricte, via le handlerIO

∙ WORKSPACE, WORKSPACE_OBJECT : implicitement un File local

∙ MEMORY, MEMORY_SINGLE : implicitement un objet mémoire

1 {
2 "id": "DEFAULT_WORKFLOW",
3 "name": "Default Ingest Workflow",
4 "identifier": "PROCESS_SIP_UNITARY",
5 "typeProc": "INGEST",
6 "comment": "Default Ingest Workflow V6",
7 "steps": [
8 {
9 "workerGroupId": "DefaultWorker",

10 "stepName": "STP_INGEST_CONTROL_SIP",
11 "behavior": "BLOCKING",
12 "distribution": {
13 "kind": "REF",
14 "element": "SIP/manifest.xml"
15 },
16 "actions": [
17 {
18 "action": {
19 "actionKey": "CHECK_SEDA",
20 "behavior": "BLOCKING"
21 }
22 },
23 {
24 "action": {
25 "actionKey": "CHECK_HEADER",
26 "behavior": "BLOCKING",
27 "in": [
28 {
29 "name": "checkOriginatingAgency",
30 "uri": "VALUE:true"
31 },
32 {
33 "name": "checkProfile",
34 "uri": "VALUE:true"
35 }
36]
37 }
38 },
39 {
40 "action": {
41 "actionKey": "CHECK_DATAOBJECTPACKAGE",
42 "behavior": "BLOCKING",
43 "in": [
44 {
45 "name": "checkNoObject",
46 "uri": "VALUE:false"
47 },
48 {
49 "name": "UnitType",
50 "uri": "VALUE:INGEST"

(suite sur la page suivante)

4.11. Processing 119

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

51 }
52],
53 "out": [
54 {
55 "name": "unitsLevel.file",
56 "uri": "WORKSPACE:UnitsLevel/ingestLevelStack.json"
57 },
58 {
59 "name": "mapsDOtoOG.file",
60 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json"
61 },
62 {
63 "name": "mapsDO.file",
64 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json"
65 },
66 {
67 "name": "mapsObjectGroup.file",
68 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json"
69 },
70 {
71 "name": "mapsObjectGroup.file",
72 "uri": "MEMORY:MapsMemory/OG_TO_ARCHIVE_ID_MAP.json"
73 },
74 {
75 "name": "mapsDOIdtoDODetail.file",
76 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json"
77 },
78 {
79 "name": "mapsUnits.file",
80 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json"
81 },
82 {
83 "name": "globalSEDAParameters.file",
84 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
85 },
86 {
87 "name": "mapsObjectGroup.file",
88 "uri": "MEMORY:MapsMemory/OBJECT_GROUP_ID_TO_GUID_MAP.json"
89 }
90]
91 }
92 }
93]
94 },
95 {
96 "workerGroupId": "DefaultWorker",
97 "stepName": "STP_OG_CHECK_AND_TRANSFORME",
98 "behavior": "BLOCKING",
99 "distribution": {

100 "kind": "LIST_ORDERING_IN_FILE",
101 "element": "ObjectGroup"
102 },
103 "actions": [
104 {
105 "action": {
106 "actionKey": "CHECK_DIGEST",
107 "behavior": "BLOCKING",

(suite sur la page suivante)

120 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

108 "in": [
109 {
110 "name": "algo",
111 "uri": "VALUE:SHA-512"
112 }
113],
114 "out": [
115 {
116 "name": "groupObject",
117 "uri": "MEMORY:groupObjectId"
118 }
119]
120 }
121 },
122 {
123 "action": {
124 "actionKey": "OG_OBJECTS_FORMAT_CHECK",
125 "behavior": "BLOCKING",
126 "in": [
127 {
128 "name": "groupObject",
129 "uri": "MEMORY:groupObjectId"
130 }
131]
132 }
133 }
134]
135 },
136 {
137 "workerGroupId": "DefaultWorker",
138 "stepName": "STP_UNIT_CHECK_AND_PROCESS",
139 "behavior": "BLOCKING",
140 "distribution": {
141 "kind": "LIST_ORDERING_IN_FILE",
142 "element": "Units"
143 },
144 "actions": [
145 {
146 "action": {
147 "actionKey": "CHECK_UNIT_SCHEMA",
148 "behavior": "BLOCKING",
149 "out": [
150 {
151 "name": "unit",
152 "uri": "MEMORY:unitId"
153 }
154]
155 }
156 },
157 {
158 "action": {
159 "actionKey": "UNITS_RULES_COMPUTE",
160 "behavior": "BLOCKING",
161 "in": [
162 {
163 "name": "unit",
164 "uri": "MEMORY:unitId"

(suite sur la page suivante)

4.11. Processing 121

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

165 }
166]
167 }
168 }
169]
170 },
171 {
172 "workerGroupId": "DefaultWorker",
173 "stepName": "STP_STORAGE_AVAILABILITY_CHECK",
174 "behavior": "BLOCKING",
175 "distribution": {
176 "kind": "REF",
177 "element": "SIP/manifest.xml"
178 },
179 "actions": [
180 {
181 "action": {
182 "actionKey": "STORAGE_AVAILABILITY_CHECK",
183 "behavior": "BLOCKING"
184 }
185 }
186]
187 },
188 {
189 "workerGroupId": "DefaultWorker",
190 "stepName": "STP_OBJ_STORING",
191 "behavior": "BLOCKING",
192 "distribution": {
193 "kind": "LIST_ORDERING_IN_FILE",
194 "element": "ObjectGroup"
195 },
196 "actions": [
197 {
198 "action": {
199 "actionKey": "OBJ_STORAGE",
200 "behavior": "BLOCKING",
201 "out": [
202 {
203 "name": "groupObject",
204 "uri": "MEMORY:groupObjectId"
205 }
206]
207 }
208 },
209 {
210 "action": {
211 "actionKey": "OG_METADATA_INDEXATION",
212 "behavior": "BLOCKING",
213 "in": [
214 {
215 "name": "groupObject",
216 "uri": "MEMORY:groupObjectId"
217 }
218]
219 }
220 }
221]

(suite sur la page suivante)

122 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

222 },
223 {
224 "workerGroupId": "DefaultWorker",
225 "stepName": "STP_UNIT_METADATA",
226 "behavior": "BLOCKING",
227 "distribution": {
228 "kind": "LIST_ORDERING_IN_FILE",
229 "element": "Units"
230 },
231 "actions": [
232 {
233 "action": {
234 "actionKey": "UNIT_METADATA_INDEXATION",
235 "behavior": "BLOCKING",
236 "in": [
237 {
238 "name": "globalSEDAParameters.file",
239 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
240 }
241]
242 }
243 }
244]
245 },
246 {
247 "workerGroupId": "DefaultWorker",
248 "stepName": "STP_OG_STORING",
249 "behavior": "BLOCKING",
250 "distribution": {
251 "kind": "LIST",
252 "element": "ObjectGroup"
253 },
254 "actions": [
255 {
256 "action": {
257 "actionKey": "OG_METADATA_STORAGE",
258 "behavior": "BLOCKING"
259 }
260 },
261 {
262 "action": {
263 "actionKey": "COMMIT_LIFE_CYCLE_OBJECT_GROUP",
264 "behavior": "BLOCKING"
265 }
266 },
267

268]
269 },
270 {
271 "workerGroupId": "DefaultWorker",
272 "stepName": "STP_UNIT_STORING",
273 "behavior": "BLOCKING",
274 "distribution": {
275 "kind": "LIST",
276 "element": "Units"
277 },
278 "actions": [

(suite sur la page suivante)

4.11. Processing 123

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

279 {
280 "action": {
281 "actionKey": "UNIT_METADATA_STORAGE",
282 "behavior": "BLOCKING"
283 }
284 },
285 {
286 "action": {
287 "actionKey": "COMMIT_LIFE_CYCLE_UNIT",
288 "behavior": "BLOCKING"
289 }
290 }
291]
292 },
293 {
294 "workerGroupId": "DefaultWorker",
295 "stepName": "STP_ACCESSION_REGISTRATION",
296 "behavior": "BLOCKING",
297 "distribution": {
298 "kind": "REF",
299 "element": "SIP/manifest.xml"
300 },
301 "actions": [
302 {
303 "action": {
304 "actionKey": "ACCESSION_REGISTRATION",
305 "behavior": "BLOCKING",
306 "in": [
307 {
308 "name": "mapsUnits.file",
309 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json"
310 },
311 {
312 "name": "mapsDO.file",
313 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json"
314 },
315 {
316 "name": "mapsDO.file",
317 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json"
318 },
319 {
320 "name": "globalSEDAParameters.file",
321 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
322 }
323]
324 }
325 }
326]
327 },
328 {
329 "workerGroupId": "DefaultWorker",
330 "stepName": "STP_INGEST_FINALISATION",
331 "behavior": "FINALLY",
332 "distribution": {
333 "kind": "REF",
334 "element": "SIP/manifest.xml"
335 },

(suite sur la page suivante)

124 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

336 "actions": [
337 {
338 "action": {
339 "actionKey": "ATR_NOTIFICATION",
340 "behavior": "NOBLOCKING",
341 "in": [
342 {
343 "name": "mapsUnits.file",
344 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json",
345 "optional": true
346 },
347 {
348 "name": "mapsDO.file",
349 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json",
350 "optional": true
351 },
352 {
353 "name": "mapsDOtoOG.file",
354 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json",
355 "optional": true
356 },
357 {
358 "name": "mapsDOtoVersionBDO.file",
359 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json",
360 "optional": true
361 },
362 {
363 "name": "globalSEDAParameters.file",
364 "uri": "WORKSPACE:ATR/globalSEDAParameters.json",
365 "optional": true
366 },
367 {
368 "name": "mapsOG.file",
369 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json",
370 "optional": true
371 }
372],
373 "out": [
374 {
375 "name": "atr.file",
376 "uri": "WORKSPACE:ATR/responseReply.xml"
377 }
378]
379 }
380 },
381 {
382 "action": {
383 "actionKey": "ROLL_BACK",
384 "behavior": "BLOCKING"
385 }
386 }
387]
388 }
389]
390 }

4.11. Processing 125

VITAM - Manuel de développement, Version 8.1.2

4.11.6.2.1.1 Etapes

∙ Step 1 - STP_SANITY_CHECK_SIP : Vérification des opérations effectuées dans la partie external : vérifica-
tion par Antivirus, vérification des formats et vérification du nom & empreinte du fichier manifest

∙ SANITY_CHECK_SIP : Scanner le SIP par antivirus

∙ CHECK_CONTAINER : Contrôle du format du conteneur du SIP

∙ MANIFEST_FILE_NAME_CHECK : Contrôle du nom du bordereau de transfert

∙ MANIFEST_DIGEST_CHECK : Contrôle de l’empreinte du bordereau de transfert

∙ Step 2 - STP_UPLOAD_SIP : Vérification la décompression du SIP en workspace

∙ UPLOAD_SIP : Validation de l’existence du SIP dans workspace

∙ Step 3 - STP_INGEST_CONTROL_SIP : Check SIP / distribution sur REF GUID/SIP/manifest.xml

∙ CHECK_SEDA : - Test existence manifest.xml - Validation XSD SEDA manifest.xml

∙ CHECK_HEADER : - CHECK_AGENT : Vérifier l’existence des services agents dans le manifest et dans
le référentiel des services agents. - CHECK_CONTRACT_INGEST : Vérifier l’existence des contrats
d’entrée dans le manifest et dans le référentiel des contrats d’entrée - CHECK_IC_AP_RELATION :
Vérifier le profile d’archivage et sa relation avec le contrat d’entrée - CHECK_ARCHIVEPROFILE :
valider le manifest avec le fichier XSD/RNG défini dans le profile d’archivage

∙ PREPARE_STORAGE_INFO :
∙ Vérifier que le storage est disponible

∙ Récupérer les informations de connection au storage et les offres de stockage.

∙ CHECK_DATAOBJECTPACKAGE :

∙ Cas 1 : arbres et plans d’accès

∙ CHECK_NO_OBJECT

∙ CHECK_MANIFEST_OBJECTNUMBER

∙ CHECK_MANIFEST

∙ Cas 2 : SIP
∙ CHECK_MANIFEST_DATAOBJECT_VERSION

∙ CHECK_MANIFEST_OBJECTNUMBER

∙ CHECK_MANIFEST

∙ CHECK_CONSISTENCY

∙ CHECK_ATTACHEMENT : Vérification du rattachement entre objets, groupes d’objets et unités archi-
vistiques existantes et les nouveaux

∙ Step 4 - STP_OG_CHECK_AND_TRANSFORME : Check Objects Compliance du SIP / distribution sur LIST
GUID/BinaryDataObject

∙ CHECK_DIGEST : Contrôle de l’objet binaire correspondant du BDO taille et empreinte via Workspace

∙ CHECK_OBJECT_SIZE : Vérification de la taille des fichiers

∙ OG_OBJECTS_FORMAT_CHECK : - Contrôle du format des objets binaires - Consolidation de l’infor-
mation du format dans l’object groupe correspondant si nécessaire

∙ Step 5 - STP_UNIT_CHECK_AND_PROCESS : Check des archive unit et de leurs règles associées

∙ CHECK_UNIT_SCHEMA : Contrôles intelligents du Json représentant l’Archive Unit par rapport à un
schéma Json

∙ CHECK_ARCHIVE_UNIT_PROFILE : Vérification de la conformité aux profils d’unité archivistique

∙ CHECK_CLASSIFICATION_LEVEL : Vérification du niveau de classification

∙ UNITS_RULES_COMPUTE : Calcul des règles de gestion

126 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ Step 6 - STP_STORAGE_AVAILABILITY_CHECK : Check Storage Availability / distribution REF
GUID/SIP/manifest.xml

∙ STORAGE_AVAILABILITY_CHECK : Contrôle de la taille totale à stocker par rapport à la capacité des
offres de stockage pour une stratégie et un tenant donnés

∙ Step 7 - STP_OBJ_STORING : Rangement et indexation des objets
∙ OBJ_STORAGE : Écriture des objets sur l’offre de stockage des BDO des GO

∙ OG_METADATA_INDEXATION : Indexation des métadonnées des ObjectGroup
∙ Step 8 - STP_UNIT_METADATA : Indexation des métadonnées des Units

∙ UNIT_METADATA_INDEXATION : Transformation Json Unit et intégration GUID Unit + GUID GO
∙ Step 9 - STP_OG_STORING : Rangement des métadonnées des objets

∙ COMMIT_LIFE_CYCLE_OBJECT_GROUP : Écriture des objets sur l’offre de stockage des BDO des
GO

∙ OG_METADATA_STORAGE : Enregistrement en base des métadonnées des ObjectGroup ainsi que leurs
journaux de cycle de vie

∙ Step 10 - STP_UNIT_STORING : Index Units / distribution sur LIST GUID/Units
∙ COMMIT_LIFE_CYCLE_UNIT : Écriture des métadonnées des Units sur l’offre de stockage des BDO

des GO

∙ UNIT_METADATA_STORAGE : Enregistrement en base des métadonnées des Units ainsi que leurs jour-
naux de cycle de vie

∙ Step 11 - STP_UPDATE_OBJECT_GROUP : Processus de mise à jour du groupe d’objets
∙ OBJECT_GROUP_UPDATE : Mise à jour des groupes d’objets existants

∙ COMMIT_LIFE_CYCLE_OBJECT_GROUP : Enregistrement des journaux du cycle de vie des groupes
d’objets

∙ OG_METADATA_STORAGE : Écriture des métadonnées du groupe d’objets sur les offres de stockage
∙ Step 12 - STP_ACCESSION_REGISTRATION : Alimentation du registre de fond

∙ ACCESSION_REGISTRATION : enregistrement des archives prises en charge dans le Registre des Fonds
∙ Step 13 et finale - STP_INGEST_FINALISATION : Notification de la fin de l’opération d’entrée. Cette étape

est obligatoire et sera toujours exécutée, en dernière position.
∙ ATR_NOTIFICATION : - génération de l’ArchiveTransferReply xml (OK ou KO) - enregistrement de

l’ArchiveTransferReply xml dans les offres de stockage

∙ ROLL_BACK : Mise en cohérence des Journaux du Cycle de Vie

4.11.6.2.1.2 Création d’un nouveau step

Un step est une étape de workflow. Il regroupe un ensemble d’actions (handler). Ces steps sont définis dans le work-
flowJSONvX.json (X=1,2).

4.11.6.2.2 DefaultRulesUpdateWorkflow

4.11.6.3 Nombre d’objets numériques conforme

Ce module permet de vérifier que le nombre d’objets contenu dans un SIP correspond au nombre d’objets déclarés
dans le bordereau afin de s’assurer de l’intégralité du SIP.

Le format supporté file SEDA et les schémas est :

∙ xml

∙ sxd

4.11. Processing 127

VITAM - Manuel de développement, Version 8.1.2

4.11.6.3.1 Usage

4.11.6.3.2 Pour l’usage interne Vitam

1) Extraction XML d’informations en parcourant le fichier manifest :

public ExtractUriResponse getAllDigitalObjectUriFromManifest(WorkParams params) throws ProcessingExcep-
tion, XMLStreamException {}

2) Parcours du fichier manifest avec la technologie StAX pour extraire 1 par 1 des Uri dans la balise Binary Data
Object.

private void getUri(ExtractUriResponse extractUriResponse, XMLEventReader evenReader)
→˓throws XMLStreamException, URISyntaxException {

while (evenReader.hasNext()) {
XMLEvent event = evenReader.nextEvent();
if (event.isStartElement()) {

StartElement startElement = event.asStartElement();
// If we have an Tag Uri element equal Uri into SEDA
if (startElement.getName().getLocalPart() == (SedaUtils.TAG_URI)){

event = evenReader.nextEvent();
String uri = event.asCharacters().getData();
// Check element is duplicate
checkDuplicatedUri(extractUriResponse, uri);
extractUriResponse.getUriListManifest().add(new URI(uri));

}
}

}
}

3) Vérification des éléménts dans la liste d’Uri sans doublon.
4) Ajout de l’élément de la liste d’Uri en capsulant dans l’object ExtractUriResponse.

public class ExtractUriResponse extends ProcessResponse{
private boolean errorDuplicateUri;
// list contains Uri for Binary Object
private List<URI> uriListManifest;
...

5) Récupération de la liste d’Uri des objets numériques stockés dans un conteneur du workspace (de manière
récursive).

Chemin pour récupérer les objets numériques : «GuidContainer/sip/content».

public List<URI> getListUriDigitalObjectFromFolder(String containerName, String
→˓folderName) throws ContentAddressableStorageException {

...
List<URI> uriFolderListFromContainer;
try {

BlobStore blobStore = context.getBlobStore();
// It's like a filter
ListContainerOptions listContainerOptions = new ListContainerOptions();
// List of all resources in a container recursively
final PageSet<? extends StorageMetadata> blobStoreList =

blobStore.list(containerName, listContainerOptions.
→˓inDirectory(folderName).recursive());

(suite sur la page suivante)

128 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

uriFolderListFromContainer = new ArrayList<>();
LOGGER.info(WorkspaceMessage.BEGINNING_GET_URI_LIST_OF_DIGITAL_OBJECT.

→˓getMessage());
for (Iterator<? extends StorageMetadata> iterator = blobStoreList.iterator();

→˓iterator.hasNext();) {
StorageMetadata storageMetada = iterator.next();
// select BLOB only, not folder nor relative path
if ((storageMetada.getType().equals(StorageType.BLOB) && storageMetada.

→˓getName() != null &&
!storageMetada.getName().isEmpty())) {
uriFolderListFromContainer.add(new URI(UriUtils.

→˓splitUri(storageMetada.getName())));
}

}
}

...
}

6) Vérification conformité du nombre d’objets numériques.

6.1) Vérification de présence de doublons dans la liste des Uri du bordereau

Si présence de doublons la comparaison avec la liste des Uri provenant du SIP n’est pas déclenchée

if (extractUriResponse != null && !extractUriResponse.isErrorDuplicateUri()) {
...

}

6.2)Comparaison des listes

-Comparaison de la taille des liste. -Comparaison des URI. -Identification des Uri non référencés dans le SIP. -
Identification des Uri non déclarés dans le bordereau.

private void checkCountDigitalObjectConformity(List<URI> uriListManifest, List<URI>
→˓uriListWorkspace,

Response response) {
...

}

4.11.7 Métriques

4.11.7.1 Introduction

Dans ce qui suit la liste de métriques développées pour ce composant.

Note : Pour avoir plus d’informations sur la partie développement des métriques prometheus, veuillez vous référer à
la documentation du composant Common Cf. vitam-mertics.rst

Avertissement : La classe fr.gouv.vitam.common.metrics.VitamMetricsNames liste toutes les métriques prome-
theus. Si vous rajoutez une nouvelle métrique, pensez à mettre à jour cette classe.

4.11. Processing 129

VITAM - Manuel de développement, Version 8.1.2

4.11.7.2 Liste des métriques

∙ vitam_processing_workflow_operation_total :
> Récupère un snapshot de l’ensemble des opérations visible par le composant processing > Cette métrique
dispose de trois labels (« workflow », « state », « status »)

∙ « workflow » : C’est le nom du LogbookTypeProcess d’une opération

∙ « state » : L’état de l’opération (PAUSE, RUNNING, COMPLETED)

∙ « status » : Le statut de l’opération (UNKNOWN, OK, WARNING, KO, FATAL)

> Total des opérations tout type confondu : sum (vitam_processing_workflow_operation_total)

> Total des opérations en état PAUSE statut FATAL. Cette requête peut être utilisée pour lancer des alertes :
sum (vitam_processing_workflow_operation_total{state= »PAUSE », status= »FATAL »})

> Total des opérations tout d’ingest : sum (vitam_processing_workflow_operation_total{workflow
= « ingest »})

> Par type de workflow, donne la somme des moyennes du nombre d’opérations par seconde sur un interval de 5 minutes :
sum by(workflow) (rate(vitam_processing_workflow_operation_total[5m]))

∙ vitam_processing_worker_task_in_queue_total : > Total des tâches dans la queue en attendre
d’exécution
> Cette métrique dispose des labels (« worker_family »)

> Total des tâches dans la queue sum(vitam_processing_worker_task_in_queue_total)

∙ vitam_processing_worker_current_task_total : > Total des tâches crées par le distributeur et
qui sont pas encore terminées. C’est la somme des tâches en attente d’entrer dans la queue + Tâches dans
la queue + Tâches en cours d’exécution pour les workers.
> Cette métrique dispose des labels (« worker_family », « workflow », « step_name »)
> C’est un type Gauge qui s’incrémente à la création de la tâche et qui se décrémente à la fin de l’execution
de la tâche

∙ vitam_processing_worker_registered_total : > Total des worker enregistré dans le distributeur
> Cette métrique dispose des labels (« worker_family »)

> Pour avoir tous les workers : sum (vitam_processing_worker_registered_total)

∙ vitam_processing_worker_task_execution_duration_seconds : > C’est une métrique de
type Histogram, elle calcule la durée d’exécution d’une tâche du point de vu Distributeur/Worker
> Cette métrique dispose des labels (« worker_family », « worker_name », « workflow », « step_name »)
> Dans une step distribuée, on peut avoir plusieurs tâches (selon la distribution)

> La somme regroupé par worker des moyennes de durées par seconde pendant les dernières 5 minutes
sum by(worker_name)(rate(vitam_processing_worker_task_execution_duration_seconds_sum[5m]))

> La somme regroupé par worker des moyennes de nombre de tâches exécutées par seconde pendant les dernières 5 minutes
sum by(worker_name)(rate(vitam_processing_worker_task_execution_duration_seconds_count[5m]))

∙ vitam_processing_worker_task_idle_duration_in_queue_seconds : > C’est une mé-
trique de type Histogram, elle calcule la durée d’attente d’exécution d’une tâche depuis sa création jusqu’a
sa prise en charge par un worker.
> Cette métrique dispose des labels (« worker_family », « workflow », « step_name »)
> On peut analyser la distribution statistique des durées d’exécution et du nombre de tâches des steps

∙ vitam_processing_workflow_step_execution_duration_seconds : > C’est une métrique
de type Histogram, elle calcule la durée d’exécution d’une step du point de vu ProcessEngine
> Cette métrique dispose des labels (« workflow », « step_name »)
> C’est, presque, la somme des durées vitam_processing_worker_task_execution_duration_seconds pour
une step donnée. Si ce n’est pas la même valeur, ça veut dire qu’entre tâche et une autre d’une même step,
on peut avoir des temps d’attente causés par la concurrence entre opérations.

130 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

> Durée d’exécution moyenne par par seconde par step name durant les 5 dernières minutes regroupé par step name
sum by (step_name) (rate(vitam_processing_workflow_step_execution_duration_seconds_sum[5m])
/ rate(vitam_processing_workflow_step_execution_duration_seconds_count[5m]))

> Exemple de 95 percentile sur la somme des moyennes par seconde sur les 5 dernières minutes regroupées par bucket
histogram_quantile(0.95, sum(rate(vitam_processing_workflow_step_execution_duration_seconds_bucket[5m]))
by (le))

4.12 Scheduler

4.12.1 Introduction

Le module scheduler a été ajouté dans le cadre du lancement des jobs via des crons et de la supervision.

4.12.2 SCHEDULER

4.12.2.1 Création d’un nouveau job

Pour créer un nouveau job, il faudrait tout d’abord créer une classe qui implémente l’interface Job dans le package
fr.gouv.vitam.scheduler.server.job. Par la suite, implémenter la méthode « execute », dans laquelle on trouve la logique
métier du job Création et configuration de trigger ********************** Pour configurer le job, il faut créer un
nouveau fichier XML dans vitam/vitam-conf-dev/conf/scheduler/jobs, le fichier sera pris automatiquement par une
config java .

Au sein de ce fichier de configuration, et suite à la création du job, il faudrait créer la configuration du trigger et le
relier au job concerné.

Exemple :

Fichier jobs-logbook.xml

4.13 Storage

4.13.1 Présentation

4.13.2 Storage Driver

Note : la récupération du bon driver associée à l’offre qui doit être utilisée est la responsabilité du DriverManager et
ne sera pas décrit ici.

4.13.2.1 Utilisation d’un Driver

Comme expliqué dans la section architecture technique, le driver est responsable de l’établissement d’une connexion
avec une ou plusieurs offres de stockage distantes. Le choix du driver à utiliser est la responsabilité du DriverManager
qui fournit l’implémentation (si elle existe) du bon Driver en fonction de l’identifiant de l’offre de stockage.

4.12. Scheduler 131

VITAM - Manuel de développement, Version 8.1.2

4.13.2.1.1 Vérifier la disponibilité de l’offre

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

// 1Vérification de la disponibilité de l'offre
if (myDriver.isStorageOfferAvailable("http://my.storage.offer.com", parameters)) {

// L'offre est disponible est accessible
} else {

// L'offre est indisponible
}

4.13.2.1.2 Vérification de la capacité de l’offre

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

// Le tenantId afin de récupérer la capacité
Integer tenantId = 0;
// Récupération de la capacité
StorageCapacityResult capacity = myConnection.getStorageCapacity(tenantId);
// On peut ici verifier que l'espace disponible est suffisant par exemple

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13.2.1.3 Put d’un objet dans l’offre de stockage

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement (suite sur la page suivante)

132 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
String digestAlgorithm = DigestType.MD5.getName();
InputStream dataStream = new FileInputStream(PropertiesUtils.findFile("digitalObject.
→˓pdf"));
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

StoragePutRequest request = new StoragePutRequest(tenantId, type, guid,
→˓digestAlgorithm, dataStream);

StoragePutResult result = myConnection.putObject(request);
// On peut vérifier ici le résultat du put

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13.2.1.4 Get d’un objet dans l’offre de stockage

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

StorageObjectRequest request = new StorageObjectRequest(tenantId, type, guid);
StorageGetResult result = myConnection.getObject(request);
// On peut vérifier ici le résultat du get

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13. Storage 133

VITAM - Manuel de développement, Version 8.1.2

4.13.2.1.5 Head d’un objet dans l’offre de stockage

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

StorageObjectRequest request = new StorageObjectRequest(tenantId, type, guid);
Boolean result = myConnection.objectExistsInOffer(request);
// On peut vérifier ici le résultat du head

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13.2.1.6 Delete d’un objet dans l’offre de stockage

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
String digestAlgorithm = DigestType.MD5.getName();
final Digest digest = new Digest(algo);
InputStream dataStream = new FileInputStream(PropertiesUtils.findFile("digitalObject.
→˓pdf"));
digest.update(dataStream);
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

StorageRemoveRequest request = new StorageRemoveRequest(tenantId, type, guid,
→˓digestType, digest.toString());

StorageRemoveResult result = myConnection.removeObject(request);

(suite sur la page suivante)

134 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// On peut vérifier ici le résultat du delete
} catch (StorageDriverException exc) {

// Un problème est survenu lors de la communication avec le service distant
}

4.13.2.1.7 Lister des types d’objets dans l’offre de stockage

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement
// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
String digestAlgorithm = DigestType.MD5.getName();
final Digest digest = new Digest(algo);
InputStream dataStream = new FileInputStream(PropertiesUtils.findFile("digitalObject.
→˓pdf"));
digest.update(dataStream);
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

// Construction de l'objet permettant d'effectuer la requete. L'identifiant du
→˓curseur n'existe pas et est à

// null, c'est une demande de nouveau cusreur, x-cursor à vrai.
StorageListRequest request = new StorageListRequest(tenantId, type, null, true);
try (CloseableIterator<ObjectEntry> result = myConnection.listObjects(request)) {

// On peut alors itérer sur le résultat
while(result.hasNext()) {

JsonNode json = result.next();
// Traitement....

}
}

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13.2.1.8 Récupérer les metadatas d’un objet

// Définition des paramètres nécessaires à l'établissement d'une connexion avec l
→˓'offre de stockage
// Note: dans un vrai cas d'utilisation, ces paramètres doivent être récupérés de la
→˓configuration de
// l'offre et ne pourrons pas être défini en dur de cette manière car l'utilisation
→˓des drivers est un traitement

(suite sur la page suivante)

4.13. Storage 135

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// générique à la fois vis à vis de l'offre et vis à vis du driver.
Properties parameters = new Properties();
parameters.put(StorageDriverParameterNames.USER.name(), "bob");
parameters.put(StorageDriverParameterNames.PASSWORD.name(), "p4ssword");

Integer tenantId = 0;
String type = DataCategory.OBJECT.getFolder();
String guid = "GUID";
String digestAlgorithm = DigestType.MD5.getName();
final Digest digest = new Digest(algo);
InputStream dataStream = new FileInputStream(PropertiesUtils.findFile("digitalObject.
→˓pdf"));
digest.update(dataStream);
// Etablissement d'une connexion avec l'offre de stockage et réalisation d'une
→˓opération
try (Connection myConnection = myDriver.connect("http://my.storage.offer.com",
→˓parameters)) {

// Construction de l'objet permettant d'effectuer la requete. L'identifiant du
→˓curseur n'existe pas et est à

// null, c'est une demande de nouveau cusreur, x-cursor à vrai.
StorageListRequest request = new StorageListRequest(tenantId, type, null, true);
try (CloseableIterator<ObjectEntry> result = myConnection.getMetadatas(request)) {

// On peut alors itérer sur le résultat
while(result.hasNext()) {

JsonNode json = result.next();
// Traitement....

}
}

} catch (StorageDriverException exc) {
// Un problème est survenu lors de la communication avec le service distant

}

4.13.3 Storage Engine

4.13.4 Modes ReadOnly / Write Protection

Le storage engine peut être déployé sur site primaire (ReadWrite) ou sur site secondaire (ReadOnly) L’annotation
@WriteProtection est obligatoire pour toutes les ressources du Storage Engine.

4.13.5 Storage Engine Client

4.13.5.1 La factory

Afin de récupérer le client une factory a été mise en place.

// Récupération du client
StorageClientFactory.changeMode(ClientConfiguration configuration)
StorageClient client = StorageClientFactory.getInstance().getClient();

A la demande l’instance courante du client, si un fichier de configuration storage-client.conf est présent dans le class-
path le client en mode de production est envoyé, sinon il s’agit du mock.

136 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.13.5.1.1 Le Mock

En l’absence d’une configuration, le client est en mode Mock. Il est possible de récupérer directement le mock :

// Changer la configuration du Factory
StorageClientFactory.changeMode(null)
// Récupération explicite du client mock
StorageClient client = StorageClientFactory.getInstance().getClient();

4.13.5.1.2 Le mode de production

Pour instancier son client en mode Production :

// Changer la configuration du Factory
StorageClientFactory.setConfiguration(StorageConfiguration configuration);
// Récupération explicite du client
StorageClient client = StorageClientFactory.getInstance().getClient();

4.13.5.2 Les services

Le client propose actuellement des fonctionnalités nécéssitant toutes deux paramètres obligatoires :

∙ l’identifiant du tenant (valeur de test « 0 »)

∙ l’identifiant de la stratégie de stockage (valeur de test « default »)

Ces fonctionnalités sont :

∙ la récupération des informations sur une offre de stockage pour une stratégie (disponibilité et capacité) :

JsonNode result = client.getStorageInformation("0", "default");

∙ l’envoi d’un objet sur une offre de stockage selon une stratégie donnée :
∙ pour les objets contenus dans le workspace (objets binaires) :

StoredInfoResult result = storeFileFromWorkspace("0", "default",
→˓StorageCollectionType.OBJECTS, "aeaaaaaaaaaam7mxaaaamakv3x3yehaaaaaq");

- pour les metadatas Json (objectGroup, unit, logbook -- pas encore implémenté côté
→˓serveur) :

∙ la vérification de l’existance d’un objet dans l’offre de stockage selon une stratégie donnée :
∙ pour les conteneurs (pas encore implémenté côté serveur) :

boolean exist = existsContainer("0", "default");

- pour les autres objets (object, objectGroup, unit, logbook -- implémenté côté
→˓serveur uniquement pour object) :

boolean exist = exists("0", "default", StorageCollectionType.OBJECTS,
→˓"aeaaaaaaaaaam7mxaaaamakv3x3yehaaaaaq");

4.13. Storage 137

VITAM - Manuel de développement, Version 8.1.2

∙ la suppression d’un objet dans l’offre de stockage selon une stratégie donnée : - pour les conteneurs (pas encore
implémenté côté serveur) :

boolean deleted = deleteContainer("0", "default");

- pour les autres objets (object, objectGroup, unit, logbook -- implémenté côté
→˓serveur uniquement pour object) :

boolean deleted = delete("0", "default", StorageCollectionType.OBJECTS,
→˓"aeaaaaaaaaaam7mxaaaamakv3x3yehaaaaaq");

∙ la récupération d’un objet (InputStream) contenu dans un container :

Response response = client.getContainerAsync("0", "default",
→˓"aeaaaaaaaaaam7mxaaaamakv3x3yehaaaaaq");

∙ La récupération de la liste d’objets d’un certain type :

// Si cursorId non connu
Response response = listContainerObjects("default", DataCategory.OBJECT, null)
// Si cursorId connu
Response response = listContainerObjects("default", DataCategory.OBJECT, "idcursor")

∙ La récupération du status est également disponible :

StatusMessage status = client.getStatus();

4.13.6 Métriques

4.13.6.1 Introduction

Dans ce qui suit la liste de métriques développées pour ce composant.

Note : Pour avoir plus d’informations sur la partie développement des métriques prometheus, veuillez vous référer à
la documentation du composant Common Cf. vitam-mertics.rst

Avertissement : La classe fr.gouv.vitam.common.metrics.VitamMetricsNames liste toutes les métriques prome-
theus. Si vous rajoutez une nouvelle métrique, pensez à mettre à jour cette classe.

4.13.6.2 Liste des métriques

∙ vitam_storage_download_size_bytes [Données en octets téléchargées par le composant vitam-
storage-engine depuis les offres de stockages.] > Cette métrique est de type Summary > Cette métrique
dispose des labels (tenant, strategy, offer_id, data_category, origin)

∙ « tenant » : Le tenant depuis lequel la demande de télécharegement a était faite

∙ « strategy » : La stratégie de stockage utilisée lors de ce téléchargement/lecture

∙ « offer_id » : L’identifiant de l’offre depuis laquelle les données sont téléchargées

138 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ « data_category » : La catégorie des données téléchargées (objet, unit, . . .)

∙ « origin » : L’origin de l’action de téléchargement (offer_sync, normal, bulk)

> Total des opérations de téléchargement tout type confondu : TODO

> Total des opérations de téléchargement par tenant et par stratégie. Cette requête peut être utilisée pour determiner la moyenne des téléchargemets par tenant et par stratégie :
TODO

∙ vitam_storage_upload_size_bytes [Données en octets téléversées par le composant vitam-storage-
engine vers les offres de stockages.] > Cette métrique est de type Summary > Cette métrique dispose des
labels (tenant, strategy, offer_id, data_category, origin, attempt)

∙ « tenant » : Le tenant depuis lequel la demande a était faite

∙ « strategy » : La stratégie de stockage utilisée lors de ce téléversement

∙ « offer_id » : L’identifiant de l’offre vers laquelle les données sont téléversées

∙ « data_category » : La catégorie des données téléversées (OBJECT, UNIT, . . .)

∙ « origin » : L’origin de l’action de téléversement (normal, traceability, offer_sync)

∙ « attempt » : Le numéro d’essai pour le téléversement. Dans le cas d’absence d’erreurs technique, la
valeur généralement sera de 1.

> Total des opérations de téléversement tout type confondu : TODO

> Total des opérations de téléversement par tenant et par stratégie. Cette requête peut être utilisée pour determiner la moyenne des téléversements par tenant et par stratégie :
TODO

> Total des opérations de téléversement par tenant et par stratégie et par data_category = OBJECT. Cette requête peut être utilisée pour determiner la moyenne des téléversements des binaires uniquement :
TODO

4.14 Technical administration

4.14.1 Introduction

4.15 Worker

4.15.1 Introduction

4.15.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

4.15.2 Worker

4.15.2.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.worker

4 modules composent la partie worker : - worker-common : incluant la partie common (Utilitaires. . .), notamment le
SedaUtils. - worker-core : contenant les différents handlers. - worker-client : incluant le client permettant d’appeler le
REST. - worker-server : incluant la partie REST.

4.14. Technical administration 139

VITAM - Manuel de développement, Version 8.1.2

4.15.2.2 Worker-server

4.15.2.2.1 Rest API

Pour l’instant les uri suivantes sont déclarées :

http://server/worker/v1
POST /tasks -> POST Permet de lancer une étape à exécuter

4.15.2.2.2 Registration

Une partie registration permet de gérer la registration du Worker.

La gestion de l’abonnement du worker auprès du serveur processing se fait à l’aide d’un ServletContextListener :
fr.gouv.vitam.worker.server.registration.WorkerRegistrationListener.

Le WorkerRegistrationListener va lancer l’enregistrement du worker au démarrage du serveur worker, dans un autre
Thread utilisant l’instance Runnable : fr.gouv.vitam.worker.server.registration.WorkerRegister.

L’execution du WorkerRegister essaie d’enregistrer le worker suivant un retry paramétrable dans la configuration du
serveur avec :

∙ un délai (registerDelay en secondes)

∙ un nombre d’essai (registerTry)

Le lancement du serveur est indépendant de l’enregistrement du worker auprès du processing : le serveur worker ne
s’arrêtera pas si l’enregistrement n’a pas réussi.

4.15.2.2.3 Configuration de worker

Cela présente la configuration pour un worker quand il est déployé. Deux paramètres importants quand le worker
fonctionne en mode parallèle.

∙ WorkerCapacity :

Cela présente la capacité d’un worker qui réponds au demande de parallélisation de la
distribution de tâches du workflow. Il est précisé par le paramètre capacity dans le Worker-
Configuration.

∙ WorkerFamily :
Chaque worker est configuré pour traiter groupe de tâches corresponsant à ses fonctions et on cela per-
metre de définir les familles de worker. Il est précisé par workerFamily dans le WorkerConfigration.

4.15.2.2.4 WorkerBean

présente l’information complète sur un worker pour la procédure d’enregistrement d’un worker. Il contient les infor-
mation sur le nom, la famille et la capacité . . . d’un worker et présente en mode json. Voici un example :

{ "name" : "workername", "family" : "DefaultWorker", "capacity" : 10, "storage" : 100,
"status" : "Active", "configuration" : {"serverHost" : "localhost", "serverPort" :
→˓12345 } }

140 Chapitre 4. Détails par composant

http://server/worker/v1

VITAM - Manuel de développement, Version 8.1.2

4.15.2.2.5 Persistence des workers

La lise de workers est persistée dans une base de données. Pour le moment, la base est un fichier de
données qui contient une tableau de workers en format ArrayNode et chaque worker est une élément
JsonNode. Exemple ci-dessous est des données d’une liste de workers

[
{"workerId": "workerId1", "workerinfo": { "name" : "workername", "family" :

→˓"DefaultWorker", "capacity" : 10, "storage" : 100,
"status" : "Active", "configuration" : {"serverHost" : "localhost", "serverPort" :

→˓12345 }}},
{"workerId": "workerId2", "workerinfo": { "name" : "workername2", "family" :

→˓"BigWorker", "capacity" : 10, "storage" : 100,
"status" : "Active", "configuration" : {"serverHost" : "localhost", "serverPort" :

→˓54321 } }}
]

Le fichier nommé « worker.db » qui sera créé dans le répertoire /vitam/data/processing.

Chaque worker est identifié par workerId et l’information générale du champs workerInfo. L’ensemble des actions
suivantes sont traitées :

∙ Lors du redémarrage du distributor, il recharge la liste des workers enregistrés. Ensuite, il vérifie le status de
chaque worker de la liste,

(serverPort :serverHost) en utilisant le WorkerClient. Si le worker qui n’est pas disponible, il sera supprimé de la liste
des workers enregistrés et la base sera mise à jour.

∙ Lors de l’enregistrement/désenregistrement, la liste des workers enregistrés sera mis à jour (ajout/supression
d’un worker).

checkStatusWorker(String serverHost, int serverPort) // vérifier le statut d'un worker
marshallToDB() // mise à jour la base de la liste des workers enregistrés

4.15.2.2.6 Désenregistrement d’un worker

Lorsque le worker s’arrête ou se plante, ce worker doit être désenregistré.

∙ Si le worker s’arrête, la demande de désenregistrement sera lancé pour le contexte « contextDestroyed » de
la WorkerRegistrationListener (implémenté de ServletContextListener) en utilisant le ProcessingManagement-
Client pour appeler le service de desenregistrement de distributeur.

∙ Si le worker se plante, il ne réponse plus aux requêtes de WorkerClient dans la « run() » WorkerThread et dans
le catch() des exceptions de de traitement,

une demande de désenregistrement doit être appelé dans cette boucle.

∙ le distributeur essaie de faire une vérification de status de workers en appelant checkStatusWorker() en plusieurs
fois définit dans GlobalDataRest.STATUS_CHECK_RETRY).

∙ si après l’étape 1 le statut de worker est toujours indisponible, le distributeur va appeler la procédure de désen-
registrement de ce worker de la liste de worker enregistrés.

4.15.2.3 Worker-core

Dans la partie Core, sont présents les différents Handlers nécessaires pour exécuter les différentes actions.

∙ CheckConformityActionHandler

∙ CheckObjectsNumberActionHandler

4.15. Worker 141

VITAM - Manuel de développement, Version 8.1.2

∙ CheckObjectUnitConsistencyActionHandler

∙ CheckSedaActionHandler

∙ CheckStorageAvailabilityActionHandler

∙ CheckVersionActionHandler

∙ ExtractSedaActionHandler

∙ CheckIngestContractActionHandler

∙ IndexObjectGroupActionHandler

∙ IndexUnitActionHandler

∙ StoreObjectGroupActionHandler

∙ FormatIdentificationActionHandler

∙ AccessionRegisterActionHandler

∙ TransferNotificationActionHandler

∙ UnitsRulesCompteHandler

∙ DummyHandler

Plugins Worker : les plugins proposent des actions comme les Handler. Quand le service worker démarré, les plugins
et leur fichier properties sont chargés. Les actions sont cherché d’abord dans le plugin pour le traitement, si l’action ne
trouve pas dans plugin, il sera appelé dans le Handler correspondant.

∙ CheckConfirmityActionPlugin : pour la vérification de la conformité de document

∙ FormatIdentificationActionPlugin : pour le vérification de formats de fichiers

∙ StoreObjectGroupActionPlugin : pour le storage des groupes d’objets

∙ UnitsRulesComputeActionPlugin : pour la gestion de règles de gestion

∙ IndexUnitActionPlugin : pour indexer des unités archivistes

∙ IndexObjectGroupActionPlugin : pour indexer des groupes d’objets

∙ ArchiveUnitRulesUpdateActionPlugin : mise à jour des unités archivisitiques

∙ RunningIngestsUpdateActionPlugin : mise à jour des ingests en cours

La classe WorkerImpl permet de lancer ces différents handlers.

4.15.2.3.1 Focus sur la gestion des entrées / sorties des Handlers

Chaque Handler a un constructeur sans argument et est lancé avec la commande :

CompositeItemStatus execute(WorkerParameters params, HandlerIO ioParam).
..

Le HandlerIO a pour charge d’assurer la liaison avec le Workspace et la mémoire entre tous les handlers d’un step.

La structuration du HandlerIO est la suivante :

∙ des paramètres d’entrées (in) :
∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY, VALUE) et un path :
∙ WORKSPACE :path indique le chemin relatif sur le workspace

∙ MEMORY :path indique le nom de la clef de valeur

∙ VALUE :path indique la valeur statique en entrée
∙ chaque handler peut accéder à ces valeurs, définies dans l’ordre stricte, via le handlerIO

∙ WORKSPACE : implicitement un File

142 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

File file = handlerIO.getInput(rank);
..

- MEMORY : implicitement un objet mémoire déjà alloué par un Handler précédent

// Object could be whatever, Map, List, JsonNode or even File
Object object = handlerIO.getInput(rank);
..

- VALUE : implicitement une valeur String

String string = handlerIO.getInput(rank);
..

∙ des paramètres d’entrées (out) :
∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY) et un path :
∙ WORKSPACE :path indique le chemin relatif sur le workspace

∙ MEMORY :path indique le nom de la clef de valeur
∙ chaque handler peut stocker les valeurs finales, définies dans l’ordre stricte, via le handlerIO

∙ WORKSPACE : implicitement un File local

// To get the filename as specified by the workflow
ProcessingUri uri = handlerIO.getOutput(rank);
String filename = uri.getPath();
// Write your own file
File newFile = handlerIO.getNewLocalFile(filename);
// write it
...
// Now give it back to handlerIO as ouput result,
// specifying if you want to delete it right after or not
handlerIO.addOuputResult(rank, newFile, true);
// or let the handlerIO delete it later on
handlerIO.addOuputResult(rank, newFile);
..

- MEMORY : implicitement un objet mémoire

// Create your own Object
MyClass object = ...
// Now give it back to handlerIO as ouput result
handlerIO.addOuputResult(rank, object);
..

Afin de vérifier la cohérence entre ce qu’attend le Handler et ce que contient le HandlerIO, la méthode suivante est à
réaliser :

List<Class<?>> clasz = new ArrayList<>();
// add in order the Class type of each Input argument
clasz.add(File.class);
clasz.add(String.class);
// Then check the conformity passing the number of output parameters too

(suite sur la page suivante)

4.15. Worker 143

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

boolean check = handlerIO.checkHandlerIO(outputNumber, clasz);
// According to the check boolean, continue or raise an error
..

4.15.2.3.2 Cas particulier des Tests unitaires

Afin d’avoir un handlerIO correctement initialisé, il faut redéfinir le handlerIO manuellement comme l’attend le hand-
ler :

// In a common part (@Before for instance)
HandlerIO handlerIO = new HandlerIO("containerName", "workerid");
List<IOParameter> out = new ArrayList<>();
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "UnitsLevel/
→˓ingestLevelStack.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/DATA_
→˓OBJECT_TO_OBJECT_GROUP_ID_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/DATA_
→˓OBJECT_ID_TO_GUID_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/OBJECT_
→˓GROUP_ID_TO_GUID_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/OG_TO_
→˓ARCHIVE_ID_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/DATA_
→˓OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "Maps/ARCHIVE_
→˓ID_TO_GUID_MAP.json")));
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "ATR/
→˓globalSEDAParameters.json")));
// Dans un bloc @After, afin de nettoyer les dossiers
@After
public void aftertest() {
handlerIO.close();

}
// Pour chaque test
@Test
public void test() {
handlerIO.addOutIOParameters(out);
...

}

Si nécessaire et si compatible, il est possible de passer par un mode MEMORY pour les paramètres « in » :

// In a common part (@Before for instance)
HandlerIO handlerIO = new HandlerIO("containerName", "workerid");
// Declare the signature in but instead of using WORKSPACE, use MEMORY
List<IOParameter> in = new ArrayList<>();
in.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.MEMORY, "file1")));
in.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.MEMORY, "file2")));
in.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.MEMORY, "file3")));
in.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.MEMORY, "file4")));
// Dans un bloc @After, afin de nettoyer les dossiers
@After
public void aftertest() {
handlerIO.close();
}

(suite sur la page suivante)

144 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

// Pour chaque test
@Test
public void test() {
// Use it first as Out parameters
handlerIO.addOutIOParameters(in);
// Initialize the real value in MEMORY using those out parameters from Resource Files
handlerIO.addOuputResult(0, PropertiesUtils.getResourceFile(ARCHIVE_ID_TO_GUID_MAP));
handlerIO.addOuputResult(1, PropertiesUtils.getResourceFile(OBJECT_GROUP_ID_TO_GUID_
→˓MAP));
handlerIO.addOuputResult(2, PropertiesUtils.getResourceFile(DO_TO_DO_INFO_MAP));
handlerIO.addOuputResult(3, PropertiesUtils.getResourceFile(ATR_GLOBAL_SEDA_
→˓PARAMETERS));
// Reset the handlerIo in order to remove all In and Out parameters
handlerIO.reset();
// And now declares the In parameter list, that will use the MEMORY default values
handlerIO.addInIOParameters(in);
...
}
// If necessary, delcares real OUT parameters too there
List<IOParameter> out = new ArrayList<>();
out.add(new IOParameter().setUri(new ProcessingUri(UriPrefix.WORKSPACE, "file5")));
handlerIO.addOutIOParameters(out);
// Now handler will have access to in parameter as File as if they were coming from
→˓Workspace

4.15.2.3.3 Création d’un nouveau handler

La création d’un nouveaux handler doit être motivée par certaines conditions nécessaires :

∙ lorsque qu’il n’y a pas de handler qui répond au besoin

∙ lorsque rajouter la fonctionnalité dans un handler existant, le surcharge et le détourne de sa fonctionalité première

∙ lorsque l’on veut refactorer un handler existant pour donner des fonctionalités “un peu” plus “élémentaires”

Les handlers doivent étendrent la classe ActionHandler et implémenter la méthode execute. Lors de la création d’un
nouveau handler, il faut ajouter une nouvelle instance, dans WorkerImpl.init pour enregistrer le handler dans le worker
et définir le handler id. Celui-ci sert de clé pour :

∙ les messages dans logbook (vitam-logbook-messages_fr.properties) en fonction de la criticité

∙ les fichiers json de définition des workflows json (exemple : DefaultIngestWorkflow.json)

cf. workflow

4.15.2.4 Details des Handlers

4.15.2.4.1 Détail du handler : CheckConformityActionHandler

4.15.2.4.1.1 Description

Ce handler permet de contrôle de l’empreinte. Il comprend désormais 2 tâches :

– Vérification de l’empreinte par rapport à l’empreinte indiquée dans le manifeste (en utilisant algorithme déclaré dans
manifeste) – Calcul d’une empreinte en SHA-512 si l’empreinte du manifeste est calculée avec un algorithme différent

4.15. Worker 145

VITAM - Manuel de développement, Version 8.1.2

4.15.2.4.1.2 Exécution

CheckConformityActionHandler recupère l’algorithme de Vitam (SHA-512) par l’input dans workflow et le fichier en
InputStream par le workspace.

Si l’algorithme est différent que celui dans le manifest, il calcul l’empreinte de fichier en SHA-512

DigestType digestTypeInput = DigestType.fromValue((String) handlerIO.getInput().
→˓get(ALGO_RANK));
response = handlerIO.getInputStreamNoCachedFromWorkspace(
IngestWorkflowConstants.SEDA_FOLDER + "/" + binaryObject.getUri());
InputStream inputStream = (InputStream) response.getEntity();
final Digest vitamDigest = new Digest(digestTypeInput);
Digest manifestDigest;
boolean isVitamDigest = false;
if (!binaryObject.getAlgo().equals(digestTypeInput)) {

manifestDigest = new Digest(binaryObject.getAlgo());
inputStream = manifestDigest.getDigestInputStream(inputStream);

} else {
manifestDigest = vitamDigest;
isVitamDigest = true;

}
......................

Si les empreintes sont différents, c’est le cas KO. Le message { « MessageDigest » : « value », « Algorithm » : « algo »,
« ComputedMessageDigest » : « value »} va être stocké dans le journal Sinon le message { « MessageDigest » :
« value », « Algorithm » : « algo », « SystemMessageDigest » : « value », « SystemAlgorithm » : « algo »} va être
stocké dans le journal Mais il y a encore deux cas à ce moment :

si l’empreinte est avec l’algorithme SHA-512, c’est le cas OK. sinon, c’est le cas WARNING. le nouveau
empreint et son algorithme seront mis à jour dans la collection ObjectGroup.

CheckConformityActionHandler compte aussi le nombre de OK, KO et WARNING. Si nombre de KO est plus de 0,
l’action est KO.

4.15.2.4.1.3 4.1.3 journalisation

4.15.2.5 logbook lifecycle

CA 1 : Vérification de la conformité de l’empreinte. (empreinte en SHA-512 dans le manifeste)

Dans le processus d’entrée, l’étape de vérification de la conformité de l’empreinte doit être appelée en position 450.
Lorsque l’étape débute, pour chaque objet du groupe d’objet technique, une vérification d’empreinte doit être effectuée
(celle de l’objet avec celle inscrite dans le manifeste SEDA). Cette étape est déjà existante actuellement. Le calcul
d’empreinte en SHA-512 (CA 2) ne doit pas s’effectuer si l’empreinte renseigné dans le manifeste a été calculé en
SHA-512. C’est cette empreinte qui sera indexée dans les bases Vitam.

CA 1.1 : Vérification de la conformité de l’empreinte. (empreinte en SHA-512 dans le manifeste) - OK

∙ Lorsque l’action est OK, elle inscrit une ligne dans les journaux du cycle de vie des GOT :

∙ eventType EN – FR : « Digest Check», « Vérification de l’empreinte des objets»

∙ outcome : « OK »

∙ outcomeDetailMessage FR : « Succès de la vérification de l’empreinte »

∙ eventDetailData FR : « Empreinte : <MessageDigest>, algorithme : <MessageDigest attribut algorithm> »

∙ objectIdentifierIncome : MessageIdentifier du manifest

146 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Comportement du workflow décrit dans l’US #680

∙ La collection ObjectGroup est aussi mis à jour, en particulier le champs : Message Digest : { empreinte, algo-
rithme utlisé }

CA 1.2 : Vérification de la conformité de l’empreinte. (empreinte en SHA-512 dans le manifeste) - KO

∙ Lorsque l’action est KO, elle inscrit une ligne dans les journaux du cycle de vie des GOT :

∙ eventType EN – FR : « Digest Check», « Vérification de l’empreinte des objets»

∙ outcome : « KO »

∙ outcomeDetailMessage FR : « Échec de la vérification de l’empreinte »

∙ eventDetailData FR : « Empreinte manifeste : <MessageDigest>, algorithme : <MessageDigest attribut algo-
rithm> Empreinte calculée : <Empreinte calculée par Vitam> »

∙ objectIdentifierIncome : MessageIdentifier du manifest

Comportement du workflow décrit dans l’US #680

CA 2 : Vérification de la conformité de l’empreinte. (empreinte différent de SHA-512 dans le manifeste)

Si l’empreinte proposé dans le manifeste SEDA n’est pas en SHA-512, alors le système doit calculer l’empreinte en
SHA-512. C’est cette empreinte qui sera indexée dans les bases Vitam. Lorsque l’action débute, pour chaque objet du
groupe d’objet technique, un calcul d’empreinte au format SHA-512 doit être effectué. Cette action intervient juste
apres le check de l’empreinte dans le manifeste (mais on est toujours dans l’étape du check conformité de l’empreinte).

CA 2.1 : Vérification de la conformité de l’empreinte. (empreinte différent de SHA-512 dans le manifeste) - OK

∙ Lorsque l’action est OK, elle inscrit une ligne dans les journaux du cycle de vie des GOT :

∙ eventType EN – FR : « Digest Check», « Vérification de l’empreinte des objets»

∙ outcome : « OK »

∙ outcomeDetailMessage FR : « Succès de la vérification de l’empreinte »

∙ eventDetailData FR : « Empreinte Manifeste : <MessageDigest>, algorithme : <MessageDigest attribut algo-
rithm> » « Empreinte calculée (<algorithme utilisé « XXX »>) : <Empreinte calculée par Vitam> »

∙ objectIdentifierIncome : MessageIdentifier du manifest

4.15.2.5.1 modules utilisés

processing, worker, workspace et logbook

4.15.2.5.1.1 cas d’erreur

XMLStreamException : problème de lecture SEDA InvalidParseOperationException : problème de parsing du SEDA
LogbookClientAlreadyExistsException : un logbook client existe dans ce workflow LogbookClientBadRequestExcep-
tion : LogbookLifeCycleObjectGroupParameters est mal paramétré et le logbook client génère une mauvaise requete
LogbookClientException : Erreur générique de logbook. LogbookException classe mère des autres exceptions Log-
bookClient LogbookClientNotFoundException : un logbook client n’existe pas pour ce workflow LogbookClientSer-
verException : logbook server a un internal error ProcessingException : erreur générique du processing ContentAd-
dressableStorageException : erreur de stockage

4.15. Worker 147

VITAM - Manuel de développement, Version 8.1.2

4.15.2.5.2 Détail du handler : CheckObjectsNumberActionHandler

4.15.2.5.2.1 description

Ce handler permet de comparer le nombre d’objet stocké sur le workspace et le nombre d’objets déclaré dans le
manifest.

4.15.2.5.3 Détail du handler : CheckObjectUnitConsistencyActionHandler

Ce handler permet de contrôler la cohérence entre l’object/object group et l’ArchiveUnit.

Pour ce but, on détecte les groupes d’object qui ne sont pas référé par au moins d’un ArchiveUnit. Ce tache prend
deux maps de données qui ont été crée dans l’étape précédente de workflow comme input : objectGroupIdToUnitId
objectGroupIdToGuid Le ouput de cette contrôle est une liste de groupe d’objects invalide. Si on trouve les groupe
d’objects invalide, le logbook lifecycles de group d’object sera mis à jour.

L’exécution de l’algorithme est présenté dans le code suivant :*

while (it.hasNext()) {
final Map.Entry<String, Object> objectGroup = it.next();
if (!objectGroupToUnitStoredMap.containsKey(objectGroup.getKey())) {
itemStatus.increment(StatusCode.KO);
try {
// Update logbook OG lifecycle
final LogbookLifeCycleObjectGroupParameters

→˓logbookLifecycleObjectGroupParameters =
LogbookParametersFactory.newLogbookLifeCycleObjectGroupParameters();

LogbookLifecycleWorkerHelper.updateLifeCycleStartStep(handlerIO.getHelper(),
logbookLifecycleObjectGroupParameters,
params, HANDLER_ID, LogbookTypeProcess.INGEST,
objectGroupToGuidStoredMap.get(objectGroup.getKey()).toString());

logbookLifecycleObjectGroupParameters.setFinalStatus(HANDLER_ID, null,
→˓StatusCode.KO,

null);
handlerIO.getHelper().updateDelegate(logbookLifecycleObjectGroupParameters);
final String objectID =

logbookLifecycleObjectGroupParameters.
→˓getParameterValue(LogbookParameterName.objectIdentifier);

handlerIO.getLifecyclesClient().bulkUpdateObjectGroup(params.getContainerName(),
handlerIO.getHelper().removeUpdateDelegate(objectID));

} catch (LogbookClientBadRequestException | LogbookClientNotFoundException |
LogbookClientServerException | ProcessingException e) {
LOGGER.error("Can not update logbook lifcycle", e);

}
ogList.add(objectGroup.getKey());

} else {
itemStatus.increment(StatusCode.OK);
// Update logbook OG lifecycle
....

}
}

148 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.15.2.5.4 Détail du handler : CheckSedaActionHandler

Ce handler permet de valider la validité du manifest par rapport à un schéma XSD. Il permet aussi de vérifier que les
informations remplies dans ce manifest sont correctes.

∙ Le schéma de validation du manifest : src/main/resources/seda-vitam-2.0-main.xsd.

4.15.2.5.5 Détail du handler : CheckStorageAvailabilityActionHandler

TODO

4.15.2.5.6 Détail du handler : CheckVersionActionHandler

TODO

4.15.2.5.7 Détail du handler : ExtractSedaActionHandler

4.15.2.5.7.1 description

Ce handler permet d’extraire le contenu du SEDA. Il y a :

∙ extraction des BinaryDataObject et PhysicalDataObject

∙ extraction des ArchiveUnit

∙ création des lifes cycles des units

∙ construction de l’arbre des units et sauvegarde sur le workspace

∙ sauvegarde de la map des units sur le workspace

∙ sauvegarde de la map des objets sur le workspace

∙ sauvegarde de la map des objets groupes sur le workspace

4.15.2.5.7.2 Détail des différentes maps utilisées

Map<String, String> dataObjectIdToGuid

contenu : cette map contient l’id du DO relié à son guid création : elle est créé lors de la création du
handler MAJ, put : elle est populée lors de la lecture des BinaryDataObject et PhysicalDataObject lec-
ture, get : saveObjectGroupsToWorkspace, getObjectGroupQualifiers, suppression : c’est un clean en fin
d’execution du handler

Map<String, String> dataObjectIdToObjectGroupId :

contenu : cette map contient l’id du DO relié au groupe d’objet de la balise DataObjectGroupId ou
DataObjectGroupReferenceId création : elle est créé lors de la création du handler MAJ, put : elle
est populée lors de la lecture des BinaryDataObject et PhysicalDataObject lecture, get : lecture de la
map dans mapNewTechnicalDataObjectGroupToDO, getNewGdoIdFromGdoByUnit, completeDataOb-
jectToObjectGroupMap, checkArchiveUnitIdReference et writeDataObjectInLocal suppression : c’est un
clean en fin d’execution du handler

Map<String, GotObj> dataObjectIdWithoutObjectGroupId :

4.15. Worker 149

VITAM - Manuel de développement, Version 8.1.2

contenu : cette map contient l’id du DO relié à un groupe d’objet technique instanciés lors du parcours des
objets. création : elle est créé lors de la création du handler MAJ, put : elle est populée lors du parcours
des DO dans mapNewTechnicalDataObjectGroupToDO et extractArchiveUnitToLocalFile. Dans extrac-
tArchiveUnitToLocalFile, quand on découvre un DataObjectReferenceId et que cet Id se trouve dans da-
taObjectIdWithoutObjectGroupId alors on récupère l’objet et on change le statut isVisited à true. lecture,
get : lecture de la map dans mapNewTechnicalDataObjectGroupToDO, extractArchiveUnitToLocalFile,
getNewGdoIdFromGdoByUnit, suppression : c’est un clean en fin d’execution du handler

Le groupe d’objet technique GotObj contient un guid et un boolean isVisited, initialisé à false lors de la création. Le
set à true est fait lors du parcours des units.

Map<String, String> objectGroupIdToGuid

contenu : cette map contient l’id du groupe d’objet relié à son guid création : elle est créé lors de la création
du handler MAJ, put : elle est populée lors du parcours des DO dans writeDataObjectInLocal et mapNew-
TechnicalDataObjectGroupToDO lors de la création du groupe d’objet technique lecture, get : lecture
de la map dans checkArchiveUnitIdReference, writeDataObjectInLocal, extractArchiveUnitToLocalFile,
saveObjectGroupsToWorkspace suppression : c’est un clean en fin d’execution du handler

Map<String, String> objectGroupIdToGuidTmp

contenu : c’est la même map que objectGroupIdToGuid création : elle est créé lors de la création du
handler MAJ, put : elle est populée dans writeDataObjectInLocal lecture, get : lecture de la map dans
writeDataObjectInLocal suppression : c’est un clean en fin d’execution du handler

Map<String, List<String>> objectGroupIdToDataObjectId

contenu : cette map contient l’id du groupe d’objet relié à son ou ses DO création : elle est créé lors de
la création du handler MAJ, put : elle est populée lors du parcours des DO dans writeDataObjectInLocal
quand il y a une balise DataObjectGroupId ou DataObjectGroupReferenceId et qu’il n’existe pas dans
objectGroupIdToDataObjectId. lecture, get : lecture de la map dans le parcours des DO dans writeDa-
taObjectInLocal. La lecture est faite pour ajouter des DO dans la liste. suppression : c’est un clean en fin
d’execution du handler

Map<String, List<String>> objectGroupIdToUnitId

contenu : cette map contient l’id du groupe d’objet relié à ses AU création : elle est créé lors de la création
du handler MAJ, put : elle est populée lors du parcours des units dans extractArchiveUnitToLocalFile
quand il y a une balise DataObjectGroupId ou DataObjectGroupReferenceId et qu’il nexiste pas dans
objectGroupIdToUnitId sinon on ajoute dans la liste des units de la liste lecture, get : lecture de la map
dans le parcours des units. La lecture est faite pour ajouter des units dans la liste. suppression : c’est un
clean en fin d’execution du handler

Map<String, DataObjectInfo> objectGuidToDataObject

contenu : cette map contient le guid du data object et DataObjectInfo création : elle est créé lors de
la création du handler MAJ, put : elle est populer lors de l’extraction des infos du data object vers le
workspace lecture, get : elle permet de récupérer les infos binary data object pour sauver l’object group
sur le worskapce supression : c’est un clean en fin d’execution du handler

Map<String, String> unitIdToGuid

contenu : cette map contient l’id de l’unit relié à son guid création : elle est créé lors de la création du
handler MAJ, put : elle est populée lors du parcours des units dans extractArchiveUnitToLocalFile lecture,
get : lecture de la map se fait lors de la création du graph/level des unit dans createIngestLevelStackFile
et dans la sauvegarde des object groups vers le workspace suppression : c’est un clean en fin d’execution
du handler

Map<String, String> unitIdToGroupId

contenu : cette map contient l’id de l’unit relié à son group id création : elle est créé lors de la création du
handler MAJ, put : elle est populée lors du parcours des DO dans writeDataObjectInLocal quand il y a une
balise DataObjectGroupId ou DataObjectGroupReferenceId lecture, get : lecture de la map se fait lors de
l’extraction des unit dans extractArchiveUnitToLocalFile et permettant de lire dans objectGroupIdToGuid.
suppression : c’est un clean en fin d’execution du handler

150 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Map<String, String> objectGuidToUri

contenu : cette map contient le guid du BDO relié à son uri définis dans le manifest création : elle est créé
lors de la création du handler MAJ, put : elle est poppulée lors du parcours des DO dans writeDataOb-
jectInLocal quand il rencontre la balise uri lecture, get : lecture de la map se fait lors du save des objects
groups dans le workspace suppression : c’est un clean en fin d’execution du handler

sauvegarde des maps (dataObjectIdToObjectGroupId, objectGroupIdToGuid) dans le workspace

4.15.2.5.7.3 Vérifier les ArchiveUnit du SIP

Dans les cas où le SIP contient un objet numérique référencé par un groupe d’objet et qu’une unité archiviste réfé-
rence cet objet directement (au lieu de déclarer le GOT), le résultat attendu est un statut KO au niveau de l’étape
STP_INGEST_CONTROL_SIP dans l’action CHECK_MANIFEST. Ce contrôle est effectué dans la fonction che-
ckArchiveUnitIdReference de ExtractSedaHandler.

Pour ce cas, le map unitIdToGroupId contient une référence entre un unitId et groupId et ce groupId est l’id de l’objet
numérique. Dans le objectGroupIdToGuid, il n’existe pas de lien entre id de groupe d’objet et son guid (parce que
c’est un id d’object numérique).

On vérifie la valeur des groupIds récupérés dans dataObjectIdToObjectGroupId et unitIdToGroupId. Si ils sont diffé-
rents, il s’agit du cas abordé ci-dessus, sinon c’est celui des objects numériques sans groupe d’objet technique. Enfin,
l’exception ArchiveUnitContainDataObjectException est déclenchée pour ExtractSeda et dans cette étape, le status
KO est mise à jour pour l’exécution de l’étape.

L’exécution de l’algorithme est présenté dans le preudo-code ci-dessous :

Si (map unitIdToGroupId contient des valeurs)
Pour (chaque élement ELEM du map unitIdToGroupId)
Si (la valeur guid de groupe d'object dans objectGroupIdToGuid associé à ELEM) //

→˓archiveUnit reference par DO
Prendre (la valeur groupId dans le maps dataObjectIdToObjectGroupId associé à

→˓groupId d'ELEM)
Si (cette groupId est NULLE) // ArchiveUnit réferencé DO mais il n'existe pas

→˓un lien DO à groupe d'objet
Délencher (exception ProcessingException)

Autrement
Si (cette groupId est différente grouId associé à ELEM)
Délencher (exception ArchiveUnitContainDataObjectException)

Fin Si
Fin Si

Fin Si
Fin Pour

Fin Si

4.15.2.5.7.4 Détails du data dans l’itemStatus retourné

Le itemStatus est mis à jour avec les objets du manifest.xml remontées pour mettre à jour evDetData. Il contient dans
data le json de evDetData en tant que String. Les champs récupérés (s’ils existent dans le manifest) sont « evDetail-
Req », « evDateTimeReq », « ArchivalAgreement », « agIfTrans », « ServiceLevel ».

4.15. Worker 151

VITAM - Manuel de développement, Version 8.1.2

4.15.2.5.8 Détail du handler : IndexObjectGroupActionHandler

4.15.2.5.8.1 4.7.1 description

Indexation des objets groupes en récupérant les objets groupes du workspace. Il y a utilisation d’un client metadata.

4.15.2.5.9 4.8 Détail du handler : IndexUnitActionHandler

4.15.2.6 4.8.1 description

Indexation des units en récupérant les units du workspace. Il y a utilisation d’un client metadata.

4.15.2.6.1 4.9 Détail du handler : StoreObjectGroupActionHandler

4.15.2.7 4.9.1 description

Persistence des objets dans l’offre de stockage depuis le workspace.

4.15.2.7.1 4.10 Détail du handler : FormatIdentificationActionHandler

4.15.2.8 4.10.1 Description

Ce handler permet d’identifier et contrôler automatiquement le format des objets versés. Il s’exécute sur les différents
ObjectGroups déclarés dans le manifest. Pour chaque objectGroup, voici ce qui est effectué :

∙ récupération du JSON de l’objectGroup présent sur le Workspace

∙ transformation de ce Json en une map d’id d’objets / uri de l’objet associée

∙ boucle sur les objets :

∙ téléchargement de l’objet (File) depuis le Workspace

∙ appel l’outil de vérification de format (actuellement Siegfried) en lui passant le path vers l’objet à identifier +
récupération de la réponse.

∙ appel de l’AdminManagement pour faire une recherche getFormats par rapport au PUID récupéré.

∙ mise à jour du Json : le format récupéré par Siegfried est mis à jour dans le Json (pour indexation future).

∙ construction d’une réponse.

∙ sauvegarde du JSON de l’objectGroup dans le Workspace.

∙ aggrégation des retours pour générer un message + mise à jour du logbook.

4.15.2.9 4.10.2 Détail des différentes maps utilisées :

Map<String, String> objectIdToUri

contenu : cette map contient l’id du BDO associé à son uri. création : elle est créée dans le Handler après
récupération du json listant les ObjectGroups MAJ, put : elle est populée lors de la lecture du json listant
les ObjectGroups. lecture, get : lecture au fur et à mesure du traitement des BDO. suppression : elle n’est
pas enregistrée sur le workspace et est présente en mémoire uniquement.

152 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.15.2.10 4.10.3 exécution

Ce Handler est exécuté dans l’étape « Contrôle et traitements des objets », juste après le Handler de vérification des
empreintes.

4.15.2.11 4.10.4 journalisation : logbook operation? logbook life cycle?

Dans le traitement du Handler, sont mis à jour uniquement les journaux de cycle de vie des ObjectGroups. Les Outcome
pour les journaux de cycle de vie peuvent être les suivants :

∙ Le format PUID n’a pas été trouvé / ne correspond pas avec le référentiel des formats.
∙ Le format du fichier n’a pas pu être trouvé.
∙ Le format du fichier a été complété dans les métadonnées (un « diff » est généré et ajouté).
∙ Le format est correct et correspond au référentiel des formats.

(Note : les messages sont informatifs et ne correspondent aucunement à ce qui sera vraiment inséré en base)

4.15.2.12 4.10.5 modules utilisés

Le Handler utilise les modules suivants :
∙ Workspace (récupération / copie de fichiers)
∙ Logbook (mise à jour des journaux de cycle de vie des ObjectGroups)
∙ Common-format-identification (appel pour analyse des objets)
∙ AdminManagement (comparaison format retourné par l’outil d’analyse par rapport au référentiel des formats de

Vitam).

4.15.2.13 4.10.6 cas d’erreur

Les différentes exceptions pouvant être rencontrées :
∙ ReferentialException : si un problème est rencontré lors de l’interrogation du référentiel des formats de Vitam
∙ InvalidParseOperationException/InvalidCreateOperationException : si un problème est rencontré lors de la gé-

nération de la requête d’interrogation du référentiel des formats de Vitam
∙ FormatIdentifier*Exception : si un problème est rencontré avec l’outil d’analyse des formats (Siegfried)
∙ Logbook*Exception : si un problème est rencontré lors de l’interrogation du logbook
∙ Logbook*Exception : si un problème est rencontré lors de l’interrogation du logbook
∙ Content*Exception : si un problème est rencontré lors de l’interrogation du workspace
∙ ProcessingException : si un problème plus général est rencontré dans le Handler

4.15.2.13.1 Détail du handler : TransferNotificationActionHandler

4.15.2.13.1.1 Description

Ce handler permet de finaliser le processus d’entrée d’un SIP. Cet Handler est un peu spécifique car il sera lancé même
si une étape précédente tombe en erreur.

Il permet de générer un xml de notification qui sera :
∙ une notification KO si une étape du workflow est tombée en erreur.
∙ une notification OK si le process est OK, et que le SIP a bien été intégré sans erreur.

La première étape dans ce handler est de déterminer l’état du Workflow : OK ou KO.

4.15. Worker 153

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.1.2 Détail des différentes maps utilisées

Map<String, Object> archiveUnitSystemGuid
contenu : cette map contient la liste des archives units avec son identifiant tel que déclaré dans le manifest,
associé à son GUID.

Map<String, Object> dataObjectSystemGuid
contenu : cette map contient la liste Data Objects avec leur GUID généré associé à l’identifiant déclaré
dans le manifest.

Map<String, Object> bdoObjectGroupSystemGuid
contenu : cette map contient la liste groupes d’objets avec leur GUID généré associé à l’identifiant déclaré
dans le manifest.

4.15.2.13.1.3 exécution

Ce Handler est exécuté en dernière position. Il sera exécuté quoi qu’il se passe avant. Même si le processus est KO
avant, le Handler sera exécuté.

Cas OK : @TODO@

Cas KO : Pour l’opération d’ingest en cours, on va récupérer dans les logbooks plusieurs informations :
∙ récupération des logbooks operations générés par l’opération d’ingest.
∙ récupération des logbooks lifecycles pour les archive units présentes dans le SIP.
∙ récupération des logbooks lifecycles pour les groupes d’objets présents dans le SIP.

Le Handler s’appuie sur des fichiers qui lui sont transmis. Ces fichiers peuvent ne pas être présents si jamais le process
est en erreur avec la génération de ces derniers.

∙ un fichier globalSedaParameters.file contenant des informations sur le manifest (messageIdentifier).
∙ un fichier mapsUnits.file : présentant une map d’archive unit
∙ un fichier mapsDO.file : présentant la liste des data objects
∙ un fichier mapsDOtoOG.file : mappant le data object à son object group

A noter que ces fichiers ne sont pas obligatoires pour le bon déroulement du handler.

Le handler va alors procéder à la génération d’un XML à partir des informationss aggrégées. Voici sa structure géné-
rale :

∙ MessageIdentifier est rempli avec le MessageIdentifier présent dans le fichier globalSedaParameters. Il est vide
si le fichier n’existe pas.

∙ dans la balise ReplyOutcome :
∙ dans Operation, on aura une liste d’events remplis par les différentes opérations KO et ou FATAL. La liste

sera forcément remplie avec au moins un event. Cette liste est obtenue par l’interrogation de la collection
LogbookOperations.

∙ dans ArchiveUnitList, on aura une liste d’events en erreur. Cette liste est obtenue par l’interrogation de la
collection LogbookLifecycleUnits.

∙ dans DataObjectList, on aura une liste d’events en erreur. Cette liste est obtenue par l’interrogation de la
collection LogbookLifecycleObjectGroups.

Le XML est alors enregistré sur le Workspace.

4.15.2.13.1.4 journalisation : logbook operation? logbook life cycle?

Dans le traitement du Handler, le logbook est interrogé : opérations et cycles de vie. Cependant aucune mise à jour est
effectuée lors de l’exécution de ce handler.

154 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.1.5 modules utilisés

Le Handler utilise les modules suivants :
∙ Workspace (récupération / copie de fichiers)
∙ Logbook (partie server) : pour le moment la partie server du logbook est utilisée pour récupérer les différents

journaux (opérations et cycles de vie).
∙ Storage : permettant de stocker l’ATR.

4.15.2.13.1.6 cas d’erreur

Les différentes exceptions pouvant être rencontrées :
∙ Logbook*Exception : si un problème est rencontré lors de l’interrogation du logbook
∙ Content*Exception : si un problème est rencontré lors de l’interrogation du workspace
∙ XML*Exception : si un souci est rencontré sur la génération du XML
∙ ProcessingException : si un problème plus général est rencontré dans le Handler

4.15.2.13.2 Détail du handler : AccessionRegisterActionHandler

4.15.2.13.2.1 Description

AccessionRegisterActionHandler permet de fournir une vue globale et dynamique des archives

sous la responsabilité du service d’archives, pour chaque tenant.

4.15.2.13.2.2 Détail des maps utilisées

Map<String, String> objectGroupIdToGuid
contenu : cette map contient l’id du groupe d’objet relié à son guid

Map<String, String> archiveUnitIdToGuid
contenu : cette map contient l’id du groupe d’objet relié à son guid

Map<String, Object> dataObjectIdToDetailDataObject
contenu : cette map contient l’id du data object relié à ses informations

4.15.2.13.2.3 Exécution

L’alimentation du registre des fonds a lieu pendant la phase de finalisation de l’entrée,

une fois que les objets et les units sont rangés. (« stepName » : « STP_INGEST_FINALISATION »)

Le Registre des Fonds est alimenté de la manière suivante :
– un identifiant unique – des informations sur le service producteur (OriginatingAgency) – des
informations sur le service versant (SubmissionAgency), si différent du service producteur

—des informations sur le contrat (ArchivalAgreement)

– date de début de l’enregistrement (Start Date) – date de fin de l’enregistrement (End Date) –
date de dernière mise à jour de l’enregistrement (Last update) – nombre d’units (Total Units) –
nombre de GOT (Total ObjectGroups) – nombre d’Objets (Total Objects) – volumétrie des ob-
jets (Object Size) – id opération d’entrée associée [pour l’instant, ne comprend que l’evIdProc
de l’opération d’entrée concerné] – status (ItemStatus)

4.15. Worker 155

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.3 Détail du handler : CheckIngestContractActionHandler

4.15.2.13.3.1 Description

CheckIngestContractHandler permet de vérifier la présence et contrôler le contrat d’entrée du SIP à télécharger.

4.15.2.13.3.2 Détail des données utilisées

globalSEDAParameters.json Ce handler prend ce fichier comme le parametre d’entrée. Le fichier contient
des données gobales sur l’ensemble des parametrès du bordereau et il a été généré à l’étape de l’Extract-
SedeActionHandler (CHECK_MANIFEST).

4.15.2.13.3.3 Exécution

Le handler cherche d’abord dans globalSEDAParameters.json le nom du contrat déclaré dans le SIP associé au balise
<ArchivalAgreement>. Si il n’y as pas de déclaration de contrat d’entrée, le handler retourne le status OK. Si il y a un
déclaration de contrat, une liste des opérations suivantes sera effectué :

∙ recherche du contrat d’entrée déclaré dans la référentiel de contrat

∙ vérification de contrat :
si le contrat non trouvé ou contrat trouvé mais en status INACTIVE, le handler retourne le status KO
si le contrat trouvé et en status ACTIVE, le handler retourne le status OK

L’exécution de l’algorithme est présenté dans le preudo-code ci-dessous :

Si (il y as pas de déclaration de contrat)
handler retourne OK

Autrement
recherche du contrat dans la base via le client AdminManagementClient
Si (contrat nou trouvé OU contrat trouvé mais INACTIVE)

handler retourne KO
Autrement

handler retourne OK
Fin Si

Fin Si

4.15.2.13.4 Détail du handler : CheckNoObjectsActionHandler

4.15.2.13.4.1 Description

CheckNoObjectsActionHandler permet de vérifier s’il y a des objects numériques dans le SIP à verser dans le système.

4.15.2.13.4.2 Détail des données utilisées

Le handler prend ce fichier manifest extrait du WORKSPACE comme le parametre d’entrée.

4.15.2.13.4.3 exécution

Le fichier manifest sera lu pour vérifier s’il y a des TAG « BinaryDataObject » ou « PhysicalDataObject ». S’il en y a,
le handler retourne KO, sinon OK.

156 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.5 Détail du plugin : CheckArchiveUnitSchema

4.15.2.13.5.1 Description

CheckArchiveUnitSchema permet d’exécuter un contrôle intelligent des archive unit en vérifiant la conformité du
JSON généré dans le process pour chaque archive unit, par rapport à un schéma défini.

Le schéma est disponible dans les sources de VITAM (fichier archive-unit-schema.json)

4.15.2.13.5.2 Détail des données utilisées

Le plugin récupère l’id de l’Archive Unit à vérifier.

4.15.2.13.5.3 exécution

A partir de l’Id de l’id de l’Archive Unit à vérifier, le plugin va télécharger le fichier json associé dans le Workspace.
Par la suite, il va vérifier la validation de ce Json par rapport au schéma json de Vitam.

4.15.2.13.5.4 détail des vérifications

Dans le schéma Json Vitam défini, voici les spécificités qui ont été ajoutées pour différents champs :

∙ StartDate pour les Rules : une date contenant une année égale à ou au dessus de l’année 9000 sera refusée.

∙ Content / Title : peut être de type String, Array ou number (on pourra avoir des titres traduits ainsi que des
nombres si besoin)

4.15.2.13.6 Détail du handler : CheckArchiveProfileActionHandler

4.15.2.13.6.1 Description

Ce handler permet de vérifier le profil dans manifeste

4.15.2.13.6.2 exécution

Le format du profil est XSD ou RNG. L’exécution de l’algorithme est présenté dans le preudo-code ci-dessous :

Si le format du profil est équal à XSD
retourne true si XSD valide le fichier manifest.xml

Fin Si
Si le format du profil est équal à RNG

retourne true si RNG valide le fichier manifest.xml
Fin Si

4.15.2.13.7 Détail du handler : CheckArchiveProfileRelationActionHandler

4.15.2.13.7.1 Description

Ce handler permet de vérifier la relation entre le contrat d’entrée et le profil dans manifeste

4.15. Worker 157

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.7.2 exécution

Si le champ « ArchiveProfiles » dans le contrat d’entrée contient l’identifiant du profil, retourne true

Select select = new Select();
select.setQuery(QueryHelper.eq(IngestContract.NAME, contractName));
JsonNode queryDsl = select.getFinalSelect();
RequestResponse<IngestContractModel> referenceContracts = adminClient.
→˓findIngestContracts(queryDsl);
if (referenceContracts.isOk()) {

IngestContractModel contract = ((RequestResponseOK<IngestContractModel>)
→˓referenceContracts).getResults().get(0);

isValid = contract.getArchiveProfiles().contains(profileIdentifier);
}

4.15.2.13.8 Détail du handler : ListArchiveUnitsActionHandler

4.15.2.13.8.1 Description

Ce handler permet de lister les unités archivistiques qui devront être mises à jour.

4.15.2.13.8.2 exécution

Il prend en entrée un fichier json représentant la liste règles de gestion ayant été modifiés dans le référentiel. Pour
chaque règle mise à jour, une requête vers la collection units est effectuée. Le but de cette recherche est de générer
une liste d’units avec les règles de gestion associées ayant été modifiées. En sortie, pour chaque unité archivistique,
on aura un fichier GUID_AU.json (dans un sous répertoire GUIDOpération/UnitsWithoutLevel/) contenant un tableau
des règles de gestion modifiées.

4.15.2.13.9 Détail du handler : ListRunningIngestsActionHandler

4.15.2.13.9.1 Description

Ce handler permet de lister les ingests toujours en cours d’exécution (processState RUNNING ou PAUSE).

4.15.2.13.9.2 exécution

Une requête est effectuée sur ProcessManagement, pour récupérer la liste des ingests en cours.

ProcessQuery pq = new ProcessQuery();
List<String> listStates = new ArrayList<>();
listStates.add(ProcessState.RUNNING.name());
listStates.add(ProcessState.PAUSE.name());
pq.setStates(listStates);
List<String> listProcessTypes = new ArrayList<>();
listProcessTypes.add(LogbookTypeProcess.INGEST.toString());
listProcessTypes.add(LogbookTypeProcess.HOLDINGSCHEME.toString());
listProcessTypes.add(LogbookTypeProcess.FILINGSCHEME.toString());
pq.setListProcessTypes(listProcessTypes);

(suite sur la page suivante)

158 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

RequestResponseOK<ProcessDetail> response =
(RequestResponseOK<ProcessDetail>) processManagementClient.

→˓listOperationsDetails(pq);

Suite à cette requête, la liste des opérations d’Ingest est enregistrée dans un fichier JSON : PROCES-
SING/runningIngests.json.

4.15.2.13.10 Détail du plugin : ArchiveUnitRulesUpdateActionPlugin

4.15.2.13.10.1 Description

Ce plugin permet de mettre à jour les règles de gestion d’une unité archivistique. Il s’agit ici de mettre à jour le champ
endDate pour les règles de gestion impactées. On se trouve ici en mode distribué, cela veut donc dire que l’on traite
les mises à jour, unité par unité.

4.15.2.13.10.2 exécution

Le fichier json pour l’unité archivistique, généré dans le Handler « ListArchiveUnitsActionHandler » est récupéré. A
partir de ce dernier, on va faire une première requète pour récupérer l’unité archivistique telle qu’enregistrée en base.

Ensuite, catégorie par catégorie, des requêtes de mises à jour vont être créées. Une requête finale sera aggrégée,
comprenant les différentes catégories mises à jour. Enfin, l’update final de la base de données sera exécuté, tel que
ci-dessous :

query.addActions(UpdateActionHelper.push(VitamFieldsHelper.operations(), params.
→˓getProcessId()));
JsonNode updateResultJson = metaDataClient.updateUnitbyId(query.getFinalUpdate(),
→˓archiveUnitId);
String diffMessage = archiveUnitUpdateUtils.getDiffMessageFor(updateResultJson,
→˓archiveUnitId);
itemStatus.setEvDetailData(diffMessage);

Le différentiel (résumant les champs modifiés, principalement les endDate des règles de gestion) sera enregistré éga-
lement dans les cycles de vie de l’unité archivistique.

//do some things
archiveUnitUpdateUtils.logLifecycle(params, archiveUnitId, StatusCode.OK, diffMessage,
→˓ logbookLifeCycleClient);

4.15.2.13.11 Détail du plugin : RunningIngestsUpdateActionPlugin

4.15.2.13.11.1 Description

Ce plugin permet de mettre à jour les règles de gestion des unités archivistiques des ingests en cours.

4.15.2.13.11.2 exécution

Le fichier json décrivant les ingests en cours, généré dans le Handler « ListRunningIngestsActionHandler » est récu-
péré. Il va permettre, de traiter au fur et à mesure les ingests n’ayant pas été encore impactés par la mise à jour du
référentiel des règles de gestion.

4.15. Worker 159

VITAM - Manuel de développement, Version 8.1.2

La manière de procéder est la suivante :

∙ Une boucle while(true) va permettre de boucler continuellement sur une liste d’ingest.

∙ Une boucle interne sur un iterator obtenu à partir de la liste des ingests va permettre de traiter les différents
processus.

∙ Si l’ingest est finalisé (entre le moment de l’exécution du Handler ListRunningIngestsActionHandler, et
l’exécution du plugin) alors on va vérifier la liste des règles de gestion pour chaque unité archivistique,
puis procéder à des mises à jour (code commun avec le plugin ArchiveUnitRulesUpdateActionPlugin).
L’ingest est alors, au final, supprimé de l’iterator.

∙ Si l’ingest est toujours en cours, alors on passe au suivant.

∙ Tant que l’iterator contient des éléments, la boucle continue. (une pause de 10 secondes est prévue avant de
reboucler sur l’iterator)

∙ Enfin quand l’iterator est vide, le plugin, renverra un statut OK notifiant la gestion de tous les ingests.

A l’heure actuelle, pour éviter un nombre d’essais illimité, une limite d’essais à été positionné (NB_TRY = 600). A
l’avenir, il conviendra certainement de ne pas avoir cette limite.

Il est aussi prévu d’améliorer les performances de l’exécution de ce plugin. Il apparait pertinent de rendre parallélisable
le traitement des ingests en cours.

4.15.2.13.12 Détail du handler : ListLifecycleTraceabilityActionHandler

4.15.2.13.12.1 Description

Ce handler permet de préparer les listes de cycles de vie des groupes d’objets, et des unités archivistiques. Il permet
aussi la récupération des informations de la dernière opération de sécurisation des cycles de vie.

4.15.2.13.12.2 exécution

Une première requête permet de récupérer la dernière opération de sécurisation des cycles de vie. S’il en existe une,
on en tire les informations importantes (date d’exécution, etc.), l’opération sera exportée dans un fichier json. S’il n’en
existe pas, une date minimale (LocalDateTime.MIN) sera utilisée pour la suite du process.

A partir de cette date obtenue, on va interroger Mongo et récupérer 2 listes de cycles de vie (groupes d’objets et units)
qui n’ont pas encore été sécurisés.

final Query parentQuery = QueryHelper.gte("evDateTime", startDate.toString());
final Query sonQuery = QueryHelper.gte(LogbookDocument.EVENTS + ".evDateTime",
→˓startDate.toString());
final Select select = new Select();
select.setQuery(QueryHelper.or().add(parentQuery, sonQuery));
select.addOrderByAscFilter("evDateTime");

A partir de ces 2 listes, on va créer X (X étant le nombre de GoT ou d’units) fichiers dans les sous répertoires
GUID/ObjectGroup et GUID/UnitsWithoutLevel. Ces fichiers json seront utilisés plus tard dans le workflow, dans
le cadre de la distribution.

En traitant les différents cycles de vie, on en conclut les informations suivantes :

∙ date maximum d’un cycle de vie traité

∙ nombre de cycles de vie liés aux groupes d’objets traités

∙ nombre de cycles de vie liés aux units traités

160 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

Ces informations, combinées à la startDate obtenue précédemment, sont enregistrées dans un fichier json Opera-
tions/traceabilityInformation.json.

En résumé, voici les output de ce handler :

∙ GUID/Operations/lastOperation.json -> informations sur la dernière opération de sécurisation des cycles de vie

∙ GUID/Operations/traceabilityInformation.json -> informations sur la sécurisation en cours

∙ GUID/ObjectGroup/GUID_OG_n.json -> n fichiers json représentant n cycles de vie des groupes d’objets

∙ GUID/UnitsWithoutLevel/GUID_AU_n.json -> n fichiers json représentant n cycles de vie des units.

4.15.2.13.13 Détail du plugin : CreateObjectSecureFileActionPlugin

4.15.2.13.13.1 Description

Ce plugin permet de traiter, groupe d’objet par groupe d’objet, et de créer un fichier sécurisé. Chaque fichier sécurisé
créé, sera par la suite, dans l’étape de finalisation, traité et intégré dans un fichier global.

4.15.2.13.13.2 exécution

La première étape de ce plugin, consiste à récupérer le fichier json GUID/ObjectGroup/GUID_OG_n.json. A partir de
ce json, représentant le cycle de vie devant être traité, on va créer un fichier sécurisé. Ce fichier sécurisé contient une
ligne unique, organisée de la façon suivante :

[ID de l’opération provoquant la création du cycle de vie] | [Type du process (INGEST / UPDATE)] | [Date de l’évenement] | [ID du cycle de vie]

[Statut final du cycle de vie] | [Hash global du cycle de vie] | [Hash du groupe d’objet associé] | [Liste des
versions de l’objet]

Ce fichier généré est ensuite sauvegardé sur le workspace dans : LFCObjects.

Voici l’output de ce plugin : - GUID/LFCObjects/GUID_OG.json

4.15.2.13.14 Détail du plugin : CreateUnitSecureFileActionPlugin

4.15.2.13.14.1 Description

Ce plugin permet de traiter, cycle de vie unit par cycle de vie unit, et de créer un fichier sécurisé. Chaque fichier
sécurisé créé, sera par la suite, dans l’étape de finalisation, traité et intégré dans un fichier global.

4.15.2.13.14.2 exécution

La première étape de ce plugin, consiste à récupérer le fichier json GUID/UnitsWithoutLevel/GUID_AU_n.json. A
partir de ce json, représentant le cycle de vie devant être traité, on va créer un fichier sécurisé. Ce fichier sécurisé
contient une ligne unique, organisée de la façon suivante :

[ID de l’opération provoquant la création du cycle de vie] | [Type du process (INGEST / UPDATE)] | [Date de l’évenement] | [ID du cycle de vie]

[Statut final du cycle de vie] | [Hash global du cycle de vie] | [Hash de l’archive unit associé] |

Ce fichier généré est ensuite sauvegardé sur le workspace dans : LFCObjects.

Voici l’output de ce plugin :

∙ GUID/LFCUnits/GUID_AU.json

4.15. Worker 161

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.15 Détail du plugin : CheckClassificationLevelActionPlugin

4.15.2.13.15.1 Description

Ce plugin permet de vérifier que le niveau de classification déclaré par les ArchiveUnit du manifeste est conforme à
ceux attendus dans la configuration de la plate-forme

4.15.2.13.15.2 exécution

A partir de l’Id de l’id de l’Archive Unit à vérifier, le plugin va télécharger le fichier json associé dans le Workspace.
Par la suite, il va vérifier le champ ClassificationLevel par rapport au celui dans ClassificationLevelService

4.15.2.13.16 Détail du handler : FinalizeLifecycleTraceabilityActionHandler

4.15.2.13.16.1 Description

Ce handler permet de finaliser la sécurisation des cycles de vie, en générant un fichier zip, et en le sauvegardant sur
les offres de stockage.

4.15.2.13.16.2 exécution

Le Handler va tout d’abord récupérer les fichiers json qui ont été générés dans l’étape 1 :

∙ le fichier json de la dernière opération de sécurisation

∙ le fichier json contenant les informations de la sécurisation en cours

Ensuite, un objet TraceabilityFile va être généré. Cet objet représente un ZipArchiveOutputStream contenant 4 fi-
chiers :

∙ global_lifecycles.txt : contenant l’aggrégation des informations des cycles de vie sécurisés.

∙ additional_information.txt : contenant des informations génériques (nombre de cycles de vie traités, startDate +
endDate)

∙ computing_information.txt : contenant les informations de hachage (hash actuel, hash de la dernière opération
de sécurisation, hash d’il y a un mois, et d’il y a un an)

∙ token.tsp : tampon d’horodatage du fichier de sécurisation

Les informations nécessaires sont récupérées pour générer et remplir les 4 différents fichiers :

global_lifecycles.txt : Ce fichier va être obtenu de la manière suivante :

∙ On récupère la liste des fichiers présents dans les 2 sous-répertoires (GUID/LFCUnits/ et GUID/LFCObjects/).

∙ Pour chaque fichier récupéré, on récupère son contenu et on ajoute une ligne au fichier global_lifecycles.txt

∙ Le premier élément traité sera utilisé pour en conclure un hash, qui sera identifié étant comme le hashRoot du
fichier.

additional_information.txt : Le fichier json Operations/traceabilityInformation.json va être utilisé pour construire le
fichier de la manière suivante :

∙ numberOfElements : nombre de cycles de vie traités

∙ startDate : startDate (soit égale à LocalDateTime.MIN, soit à la plus petite date des cycles de vie traités)

∙ endDate : plus grande date des cycles de vie traités.

∙ securisationVersion : version du format du fichier de traçabilité

162 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

computing_information.txt : Ce fichier va être rempli de la manière suivante : - currentHash : le hash du cycle de vie
traité en premier - previousTimestampToken : le tampon d’horodatage de la dernière opération de sécurisation (sera
obtenu en analysant le fichier json Operations/lastOperation.json) - peut être vide. - previousTimestampTokenMinu-
sOneMonth : le tampon d’horodatage de la dernière opération de sécurisation datant d’un mois. Une recherche dans
la base LogbookOperations est effectuée. - previousTimestampTokenMinusOneYear : le tampon d’horodatage de la
dernière opération de sécurisation datant d’un an. Une recherche dans la base LogbookOperations est effectuée.

token.tsp : Le fichier token.tsp, contiendra simplement le tampon d’horodatage de l’opération de sécurisation en cours.
Le tampon d’horodatage est obtenu en utilisant le timestampGenerator de Vitam. Cela nécéssite d’avoir un certificat
présent dans la configuration du worker (configuration via verify-timestamp.conf spécifiant le p12 + le password). Les
différents hash nécessaires sont : - rootHash : hash du premier cycle de vie traité dans l’opération en cours - hash1 :
hash de la dernière opération de sécurisation - hash2 : hash de la dernière opération de sécurisation datant d’un mois -
hash3 : hash de la dernière opération de sécurisation datant d’un an (hash1, hash2 et hash3 peuvent être null, si aucune
opération n’a été effectué dans le passé)

final String hash = joiner.join(rootHash, hash1, hash2, hash3);
final DigestType digestType = VitamConfiguration.getDefaultTimestampDigestType();
final Digest digest = new Digest(digestType);
digest.update(hash);
final byte[] hashDigest = digest.digest();
final byte[] timeStampToken = timestampGenerator.generateToken(hashDigest, digestType,
→˓ null);

Le fichier zip est finalement créé et sauvegardé sur le Workspace. Ensuite, il sera sauvegardé sur les offres de stockage.

Bien évidemment l’opération est enregistré dans le logbook. Les informations de Traceability sont enregistrés dans le
champ evDetData. Elles seront utilisés par la suite, pour les sécurisations futures.

4.15.2.13.17 Détail du handler : GenerateAuditReportActionHandler

4.15.2.13.17.1 Description

Ce handler permet de générer le rapport d’audit

4.15.2.13.17.2 exécution

La rapport commence par une partie généraliste contenant : * Le GUID de l’opération d’audit à l’origine de ce rapport
* Le tenant sur lequel s’est exécuté l’audit * Le message (outMessg) du JDO de l’opération de la dernière étape (succès
ou échec de l’audit) * Le statut final (outcome) de l’opération * La date et l’heure du début de la génération du rapport
(evDateTime de l’evénement) * L’identifiant de ce sur quoi porte l’audit (tenant/SP/opération)

Deuxièmement, la rapport contient les cas OK, KO, Warning et Fatal de toutes les actions d’audit sur les objets

//le cas OK
source.add(JsonHandler.createObjectNode().put(_TENANT, res.get(_TENANT).asText())
.put(ORIGINATING_AGENCY, agIdExtNode.get("originatingAgency").asText())
.put(EV_ID_PROC, res.get(EV_ID_PROC).asText()));

//le cas KO
reportKO.add(JsonHandler.createObjectNode().put("IdOp", event.get(EV_ID_PROC).
→˓asText())
.put(ID_GOT, event.get("obId").asText())
.put(ID_OBJ, error.get(ID_OBJ).asText())
.put(USAGE, error.get(USAGE).asText())

(suite sur la page suivante)

4.15. Worker 163

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

.put(ORIGINATING_AGENCY, originatingAgency)

.put(OUT_DETAIL, event.get("outDetail").asText()));

4.15.2.13.18 Détail du plugin : AuditCheckObjectPlugin

4.15.2.13.18.1 Description

Ce plugin permet de contrôler les objets dans le cadre d’un audit consultatif

4.15.2.13.18.2 exécution

Selon le parametre auditActions, il va appeler le plugin, soit CheckExistenceObjectPlugin, soit CheckIntegrityObject-
Plugin

4.15.2.13.19 Détail du plugin : CheckExistenceObjectPlugin

4.15.2.13.19.1 Description

Ce plugin permet de contrôler l’existence d’un objet dans le cadre d’un audit

4.15.2.13.19.2 exécution

Le plugin va tester l’existence de la cohérence entre les offres de stockages déclarées dans un GOT et les offres de
stockages relatives à la stratégie de stockage connue du moteur de stockage

JsonNode storageInformation = version.get("_storage");
final String strategy = storageInformation.get("strategyId").textValue();
final List<String> offerIds = new ArrayList<>();
for (JsonNode offerId : storageInformation.get("offerIds")) {

offerIds.add(offerId.textValue());
}

if (!storageClient.exists(strategy, StorageCollectionType.OBJECTS,
version.get("_id").asText(), offerIds)) {
nbObjectKO += 1;

} else {
nbObjectOK += 1;

}

4.15.2.13.20 Détail du plugin : CheckIntegrityObjectPlugin

4.15.2.13.20.1 Description

Ce plugin permet de contrôler l’intégrité d’un objet archivé dans le cadre d’un audit

164 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.15.2.13.20.2 exécution

Dans le cadre de l’audit, on va vérifier une empreinte d’un objet est bien celle de l’objet audité, en fonction de son
offre de stockage.

JsonNode offerToMetadata = storageClient.getObjectInformation(strategy, version.
→˓get("_id").asText(), offerIds);
for (String offerId : offerIds) {

String digest = null;
JsonNode metadata = offerToMetadata.findValue(offerId);
if (metadata != null){

digest = metadata.get("digest").asText();
} else {

checkDigest = false;
continue;

}

if (messageDigest.equals(digest)) {
checkDigest = true;

} else {
checkDigest = false;

}
}

4.15.2.14 Worker-common

Le worker-common contient majoritairement des classes utilitaires. A terme, il faudra que SedaUtils notamment soit
« retravaillé » pour que les différentes méthodes soit déplacées dans les bons Handlers.

4.15.2.15 Worker-client

Le worker client contient le code permettant l’appel vers les API Rest offert par le worker. Pour le moment une seule
méthode est offerte : submitStep. Pour plus de détail, voir la partie worker-client.

4.15.3 Worker Client

4.15.3.1 La factory

Afin de récupérer le client une factory a été mise en place. On peut dorenavant lancer plusieurs Client Worker en
parallele avec des configurations differentes.

WorkerClientFactory.changeMode(WorkerClientConfiguration configuration)
// Récupération du client
WorkerClient client = WorkerClientFactory.getInstance().getClient(configuration);

A la demande l’instance courante du client, si un fichier de configuration worker-client.conf est présent dans le class-
path le client en mode de production est envoyé, sinon il s’agit du mock.

4.15.3.1.1 Le Mock

En l’absence d’une configuration, le client est en mode Mock. Il est possible de récupérer directement le mock :

4.15. Worker 165

VITAM - Manuel de développement, Version 8.1.2

// Changer la configuration du Factory
WorkerClientFactory.changeMode(null);
// Récupération explicite du client mock
WorkerClient client = WorkerClientFactory.getInstance(null).geClient();

4.15.3.1.2 Le mode de production

Pour instancier son client en mode Production :

// Changer la configuration du Factory
WorkerClientFactory.changeMode(WorkerClientConfiguration configuration);
//creation du de la configuration
WorkerClientConfiguration workerClientConfiguration = new WorkerClientConfiguration(

"localhost",
8067

);
// Récupération explicite du client
WorkerClient client = WorkerClientFactory.getInstance(workerClientConfiguration).
→˓getClient();

4.15.3.2 Les services

Le client propose pour le moment une fonctionnalité : - Permet de soumettre le lancement d’une étape. Deux para-
mètres sont nécessaires : un string requestId + un objet DescriptionStep. Voici un exemple d’utilisation :

DescriptionStep ds = new DescriptionStep(new Step(), new WorkParams());
List<EngineResponse> responses =

client.submitStep("requestId", ds);
// Now we can check the list of response

4.15.4 Worker Plugin

4.15.4.1 Présentation

Un plugin est un programme informatique conçu pour ajouter des fonctionnalités à un autre logiciel (appelé logiciel
hôte). En français, on utilise également les termes équivalents de « module d’extension » ou de « greffon ». Dans
le cadre de VITAM, un plugin pourra être ajouté dans un ou plusieurs Workflow(s) spécifique(s) pour effectuer de
nouvelles fonctionnalités sur un type d’objet prédéfini (archive unit, manifest, . . .)

4.15.4.1.1 Présentation de l’architecture VITAM

Dans VITAM, on appelle Workflow une liste d’étapes (steps) devant être exécutées sur un objet particulier.

∙ Un workflow est défini dans un fichier json. Ce fichier répertorie les différentes étapes et détaille
également la liste des différentes actions à effectuer.

∙ Le moteur d’exécution de Workflow (processing-engine) de VITAM va donc à partir de ce fichier
json, pouvoir fournir à un Worker une étape particulière à exécuter.

∙ Le Worker est responsable de l’exécution d’une étape, il devra retourner le résultat de son exécution
à l’engine. Il est également responsable de lancer les différentes actions à exécuter décrites dans le
fichier json.

166 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ Une action exécutée par un Worker se fait via l’exécution d’un plugin spécifique.

∙ La liste des plugins disponibles pour le Worker est inscrite dans un fichier de configuration json.
Dans ce fichier, on pourra trouver la déclaration des différentes actions (une action = un plugin).
Un plugin est identifié par un nom de classe ainsi qu’un fichier de configuration. Au démarrage de
l’application, le Worker va charger cette liste de plugins, afin d’être capable par la suite d’exécuter
le code adéquat.

Le plugin doit respecter un contrat afin qu’il puisse :

∙ recevoir du worker une liste de paramètre d’entrée contenant le nécessaire pour exécuter les actions
que le plugin est censée prendre en charge.

∙ retourner au worker un statut d’exécution complet utilisable.

D’une façon synthétique, voici la place du plugin dans l’architecture Vitam :

4.15.4.1.2 Définition du plugin VITAM

Un plugin au sens VITAM propose une liste d’action(s) à réaliser sur un ou plusieurs objets de même type. A l’heure
actuelle, un plugin ne peut être ajouté qu’à froid. Un redémarrage de la plateforme est nécessaire pour prendre en
considération l’ajout d’un nouveau plugin à un workflow existant. Au démarrage, le serveur worker charge tous les
plugins ainsi que leurs fichiers de properties. La liste des plugins à charger est déclarée dans un fichier de configuration
du Worker :

1 {
2 "CHECK_DIGEST": {
3 "className": "fr.gouv.vitam.worker.core.plugin.CheckConformityActionPlugin",

(suite sur la page suivante)

4.15. Worker 167

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

4 "propertiesFile": "check_conformity_plugin.properties"
5 },
6 "CHECK_OBJECT_SIZE": {
7 "className": "fr.gouv.vitam.worker.core.plugin.CheckObjectSizeActionPlugin",
8 "propertiesFile": "check_object_size_plugin.properties"
9 },

10 "CHECK_ATTACHEMENT": {
11 "className": "fr.gouv.vitam.worker.core.plugin.CheckAttachementActionHandler"
12 },
13 "OG_OBJECTS_FORMAT_CHECK": {
14 "className": "fr.gouv.vitam.worker.core.plugin.FormatIdentificationActionPlugin",
15 "propertiesFile": "format_check_plugin.properties"
16 },
17 "UNIT_METADATA_INDEXATION": {
18 "className": "fr.gouv.vitam.worker.core.plugin.IndexUnitActionPlugin",
19 "propertiesFile": "index_unit_plugin.properties"
20 },
21 "OG_METADATA_INDEXATION": {
22 "className": "fr.gouv.vitam.worker.core.plugin.IndexObjectGroupActionPlugin",
23 "propertiesFile": "index_object_group_plugin.properties"
24 },
25 "OBJ_STORAGE": {
26 "className": "fr.gouv.vitam.worker.core.plugin.StoreObjectGroupActionPlugin",
27 "propertiesFile": "store_object_group_plugin.properties"
28 },
29 "UNITS_RULES_COMPUTE": {
30 "className": "fr.gouv.vitam.worker.core.plugin.UnitsRulesComputePlugin",
31 "propertiesFile": "units_rules_compute_plugin.properties"
32 },
33 "OG_METADATA_STORAGE": {
34 "className": "fr.gouv.vitam.worker.core.plugin.

→˓StoreMetaDataObjectGroupActionPlugin",
35 "propertiesFile": "store_metadata_objectGroup_plugin.properties"
36 },
37 "UNIT_METADATA_STORAGE": {
38 "className": "fr.gouv.vitam.worker.core.plugin.StoreMetaDataUnitActionPlugin",
39 "propertiesFile": "store_metadata_unit_plugin.properties"
40 },
41 "CHECK_UNIT_SCHEMA": {
42 "className": "fr.gouv.vitam.worker.core.plugin.CheckArchiveUnitSchemaActionPlugin

→˓",
43 "propertiesFile": "check_archive_unit_schema_plugin.properties"
44 },
45 "CHECK_ARCHIVE_UNIT_PROFILE": {
46 "className": "fr.gouv.vitam.worker.core.plugin.CheckArchiveUnitProfileActionPlugin

→˓",
47 "propertiesFile": "check_archive_unit_profile_plugin.properties"
48 },
49 "CHECK_CLASSIFICATION_LEVEL": {
50 "className": "fr.gouv.vitam.worker.core.plugin.

→˓CheckClassificationLevelActionPlugin",
51 "propertiesFile": "check_classification_level_plugin.properties"
52 },
53 "UPDATE_UNIT_RULES": {
54 "className": "fr.gouv.vitam.worker.core.plugin.ArchiveUnitRulesUpdateActionPlugin

→˓",
55 "propertiesFile": "archive_units_rules_update_plugin.properties"

(suite sur la page suivante)

168 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

56 },
57 "UPDATE_RUNNING_INGESTS": {
58 "className": "fr.gouv.vitam.worker.core.plugin.RunningIngestsUpdateActionPlugin",
59 "propertiesFile": "running_ingests_update_plugin.properties"
60 },
61 "AUDIT_CHECK_OBJECT": {
62 "className": "fr.gouv.vitam.worker.core.plugin.audit.AuditCheckObjectPlugin",
63 "propertiesFile": "audit_check_object_plugin.properties"
64 },
65 "LIST_OBJECTGROUP_ID": {
66 "className": "fr.gouv.vitam.worker.core.plugin.audit.AuditPreparePlugin",
67 "propertiesFile": "audit_prepare_plugin.properties"
68 },
69 "REPORT_AUDIT": {
70 "className": "fr.gouv.vitam.worker.core.plugin.audit.AuditFinalizePlugin",
71 "propertiesFile": "audit_finalize_plugin.properties"
72 },
73 "CREATE_MANIFEST": {
74 "className": "fr.gouv.vitam.worker.core.plugin.dip.CreateManifest",
75 "propertiesFile": "create_unit_secure_file_plugin.properties"
76 },
77 "EVIDENCE_AUDIT_LIST_OBJECT": {
78 "className": "fr.gouv.vitam.worker.core.plugin.evidence.EvidenceAuditPrepare",
79 "propertiesFile": "evidence_audit_prepare.properties"
80 },
81 "EVIDENCE_AUDIT_CHECK_DATABASE": {
82 "className": "fr.gouv.vitam.worker.core.plugin.evidence.EvidenceAuditDatabaseCheck

→˓",
83 "propertiesFile": "evidence_audit_database_check.properties"
84 },
85 "EVIDENCE_AUDIT_LIST_SECURED_FILES_TO_DOWNLOAD": {
86 "className": "fr.gouv.vitam.worker.core.plugin.evidence.

→˓EvidenceAuditListSecuredFiles",
87 "propertiesFile": "evidence_audit_list_secured_files.properties"
88 },
89 "EVIDENCE_AUDIT_EXTRACT_ZIP_FILE": {
90 "className": "fr.gouv.vitam.worker.core.plugin.evidence.

→˓EvidenceAuditExtractFromZip",
91 "propertiesFile": "evidence_audit_extract_from_zip.properties"
92 },
93 "EVIDENCE_AUDIT_PREPARE_GENERATE_REPORTS": {
94 "className": "fr.gouv.vitam.worker.core.plugin.evidence.

→˓EvidenceAuditGenerateReports",
95 "propertiesFile": "evidence_audit_generate_reports.properties"
96 },
97 "EVIDENCE_AUDIT_PREPARE_REPORT":{
98 "className":"fr.gouv.vitam.worker.core.plugin.evidence.EvidenceAuditPrepareReport

→˓",
99 "propertiesFile":"evidence_audit_prepare_report.properties"

100 },
101 "EVIDENCE_AUDIT_FINALIZE": {
102 "className": "fr.gouv.vitam.worker.core.plugin.evidence.EvidenceAuditFinalize",
103 "propertiesFile": "evidence_audit_finalize.properties"
104 },
105 "CORRECTIVE_AUDIT_CHECK_RESOURCE_AVAILABILITY": {
106 "className": "fr.gouv.vitam.worker.core.plugin.evidence.

→˓DataRectificationCheckResourceAvailability"
(suite sur la page suivante)

4.15. Worker 169

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

107 },
108 "CORRECTIVE_AUDIT": {
109 "className": "fr.gouv.vitam.worker.core.plugin.evidence.DataRectificationStep"
110 },
111 "CORRECTION_FINALIZE": {
112 "className": "fr.gouv.vitam.worker.core.plugin.evidence.DataCorrectionFinalize"
113 },
114 "MIGRATION_UNITS_LIST": {
115 "className": "fr.gouv.vitam.worker.core.plugin.migration.MigrationUnitPrepare"
116 },
117 "MIGRATION_UNITS": {
118 "className": "fr.gouv.vitam.worker.core.plugin.migration.MigrationUnits"
119 },
120 "MIGRATION_FINALIZE": {
121 "className": "fr.gouv.vitam.worker.core.plugin.migration.MigrationFinalize"
122 },
123 "EXPORT_CHECK_RESOURCE_AVAILABILITY": {
124 "className": "fr.gouv.vitam.worker.core.plugin.dip.ExportCheckResourceAvailability

→˓"
125 },
126 "PUT_BINARY_ON_WORKSPACE": {
127 "className": "fr.gouv.vitam.worker.core.plugin.dip.PutBinaryOnWorkspace",
128 "propertiesFile": "create_unit_secure_file_plugin.properties"
129 },
130 "STORE_MANIFEST": {
131 "className": "fr.gouv.vitam.worker.core.plugin.dip.StoreExports",
132 "propertiesFile": "create_unit_secure_file_plugin.properties"
133 },
134 "OBJECT_GROUP_UPDATE": {
135 "className": "fr.gouv.vitam.worker.core.plugin.UpdateObjectGroupPlugin",
136 "propertiesFile": "object_group_update.properties"
137 },
138 "RECLASSIFICATION_PREPARATION_CHECK_HOLD_RULES": {
139 "className": "fr.gouv.vitam.worker.core.plugin.reclassification.

→˓ReclassificationPreparationCheckHoldRulesHandler"
140 },
141 "UNIT_DETACHMENT": {
142 "className": "fr.gouv.vitam.worker.core.plugin.reclassification.

→˓UnitDetachmentPlugin",
143 "propertiesFile": "reclassification_unit_detachment.properties"
144 },
145 "UNIT_ATTACHMENT": {
146 "className": "fr.gouv.vitam.worker.core.plugin.reclassification.

→˓UnitAttachmentPlugin",
147 "propertiesFile": "reclassification_unit_attachment.properties"
148 },
149 "UNIT_GRAPH_COMPUTE": {
150 "className": "fr.gouv.vitam.worker.core.plugin.reclassification.

→˓UnitGraphComputePlugin",
151 "propertiesFile": "reclassification_unit_compute.properties"
152 },
153 "OBJECT_GROUP_GRAPH_COMPUTE": {
154 "className": "fr.gouv.vitam.worker.core.plugin.reclassification.

→˓ObjectGroupGraphComputePlugin",
155 "propertiesFile": "reclassification_object_group_compute.properties"
156 },
157 "MASS_UPDATE_RULES_CHECK": {

(suite sur la page suivante)

170 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

158 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.management.
→˓MassUpdateRulesCheck"

159 },
160 "MASS_UPDATE_CHECK": {
161 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.description.

→˓MassUpdateCheck"
162 },
163 "UNIT_METADATA_CHECK_CONSISTENCY": {
164 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.

→˓UnitMetadataRulesUpdateCheckConsistency",
165 "propertiesFile": "check_update_consistency.properties"
166 },
167 "CHECK_DISTRIBUTION_THRESHOLD": {
168 "className": "fr.gouv.vitam.worker.core.plugin.common.CheckDistributionThreshold"
169 },
170 "PREPARE_UPDATE_UNIT_LIST": {
171 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.PrepareUpdateUnits"
172 },
173 "MASS_UPDATE_UNITS": {
174 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.description.

→˓MassUpdateUnitsProcess"
175 },
176 "MASS_UPDATE_FINALIZE": {
177 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.MassUpdateFinalize"
178 },
179 "MASS_UPDATE_UNITS_RULES": {
180 "className": "fr.gouv.vitam.worker.core.plugin.massprocessing.management.

→˓MassUpdateUnitsRulesProcess"
181 },
182 "CHECK_QUERIES_THRESHOLD": {
183 "className": "fr.gouv.vitam.worker.core.plugin.bulkatomicupdate.

→˓CheckQueriesThreshold"
184 },
185 "PREPARE_BULK_ATOMIC_UPDATE_UNIT_LIST": {
186 "className": "fr.gouv.vitam.worker.core.plugin.bulkatomicupdate.

→˓PrepareBulkAtomicUpdate"
187 },
188 "BULK_ATOMIC_UPDATE_UNITS": {
189 "className": "fr.gouv.vitam.worker.core.plugin.bulkatomicupdate.

→˓BulkAtomicUpdateProcess"
190 },
191 "BULK_ATOMIC_UPDATE_FINALIZE": {
192 "className": "fr.gouv.vitam.worker.core.plugin.bulkatomicupdate.

→˓BulkAtomicUpdateFinalize"
193 },
194 "ELIMINATION_ANALYSIS_UNIT_INDEXATION": {
195 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓EliminationAnalysisUnitIndexationPlugin",
196 "propertiesFile": "elimination_analysis_unit_indexation.properties"
197 },
198 "DELETION_ACTION_DELETE_UNIT": {
199 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓DeletionActionDeleteUnitPlugin",
200 "propertiesFile": "deletion_action_delete_unit.properties"
201 },
202 "ELIMINATION_ACTION_DELETE_UNIT": {
203 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓EliminationActionDeleteUnitPlugin", (suite sur la page suivante)

4.15. Worker 171

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

204 "propertiesFile": "elimination_action_delete_unit.properties"
205 },
206 "ELIMINATION_ACTION_DELETE_OBJECT_GROUP": {
207 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓EliminationActionDeleteObjectGroupPlugin",
208 "propertiesFile": "elimination_action_delete_object_group.properties"
209 },
210 "DELETION_ACTION_DELETE_OBJECT_GROUP": {
211 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓DeletionActionDeleteObjectGroupPlugin",
212 "propertiesFile": "deletion_action_delete_object_group.properties"
213 },
214 "ELIMINATION_ACTION_DETACH_OBJECT_GROUP": {
215 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓EliminationActionDetachObjectGroupPlugin",
216 "propertiesFile": "elimination_action_detach_object_group.properties"
217 },
218 "ELIMINATION_ACTION_ACCESSION_REGISTER_UPDATE": {
219 "className": "fr.gouv.vitam.worker.core.plugin.elimination.

→˓EliminationActionAccessionRegisterUpdatePlugin",
220 "propertiesFile": "elimination_action_update_accession_register.properties"
221 },
222 "TRANSFER_REPLY_DELETE_UNIT":{
223 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyDeleteUnitPlugin",
224 "propertiesFile": "transfer_reply_delete_unit.properties"
225 },
226 "TRANSFER_REPLY_DELETE_OBJECT_GROUP":{
227 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyDeleteObjectGroupPlugin",
228 "propertiesFile": "transfer_reply_delete_object_group.properties"
229 },
230 "TRANSFER_REPLY_DETACH_OBJECT_GROUP":{
231 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyDetachObjectGroupPlugin",
232 "propertiesFile": "transfer_reply_detach_object_group.properties"
233 },
234 "TRANSFER_REPLY_ACCESSION_REGISTER_UPDATE":{
235 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyAccessionRegisterUpdatePlugin",
236 "propertiesFile": "transfer_reply_update_accession_register.properties"
237 },
238 "TRANSFER_REPLY_DELETE_SIP":{
239 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyDeleteSIP"
240 },
241 "PROBATIVE_VALUE_CREATE_REPORT": {
242 "className": "fr.gouv.vitam.worker.core.plugin.probativevalue.

→˓ProbativeCreateReport"
243 },
244 "PROBATIVE_VALUE_CREATE_DISTRIBUTION_FILE": {
245 "className": "fr.gouv.vitam.worker.core.plugin.probativevalue.

→˓ProbativeCreateDistributionFile"
246 },
247 "PROBATIVE_VALUE_CREATE_PROBATIVE_REPORT_ENTRY": {
248 "className": "fr.gouv.vitam.worker.core.plugin.probativevalue.

→˓ProbativeCreateReportEntry"
(suite sur la page suivante)

172 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

249 },
250 "PREPARE_UNIT_LFC_TRACEABILITY": {
251 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓PrepareUnitLfcTraceabilityActionPlugin",
252 "propertiesFile": "unit_lfc_traceability_preparation_plugin.properties"
253 },
254 "BUILD_UNIT_LFC_TRACEABILITY": {
255 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓BuildUnitTraceabilityActionPlugin",
256 "propertiesFile": "unit_lfc_traceability_build_plugin.properties"
257 },
258 "GENERATE_UNIT_LFC_TRACEABILITY": {
259 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓GenerateUnitLifecycleTraceabilityActionPlugin",
260 "propertiesFile": "unit_lfc_traceability_generation_plugin.properties"
261 },
262 "FINALIZE_UNIT_LFC_TRACEABILITY": {
263 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓FinalizeUnitLifecycleTraceabilityActionPlugin",
264 "propertiesFile": "unit_lfc_traceability_finalization_plugin.properties"
265 },
266 "PREPARE_OG_LFC_TRACEABILITY": {
267 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓PrepareObjectGroupLfcTraceabilityActionPlugin",
268 "propertiesFile": "object_group_lfc_traceability_preparation_plugin.properties"
269 },
270 "BUILD_OG_LFC_TRACEABILITY": {
271 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓BuildObjectGroupTraceabilityActionPlugin",
272 "propertiesFile": "object_group_lfc_traceability_build_plugin.properties"
273 },
274 "GENERATE_OG_LFC_TRACEABILITY": {
275 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓GenerateObjectGroupLifecycleTraceabilityActionPlugin",
276 "propertiesFile": "object_group_lfc_traceability_generation_plugin.properties"
277 },
278 "FINALIZE_OG_LFC_TRACEABILITY": {
279 "className": "fr.gouv.vitam.worker.core.plugin.lfc_traceability.

→˓FinalizeObjectGroupLifecycleTraceabilityActionPlugin",
280 "propertiesFile": "object_group_lfc_traceability_finalization_plugin.properties"
281 },
282 "TRACEABILITY_LINKED_CHECK_PREPARE": {
283 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓TraceabilityLinkedCheckPreparePlugin"
284 },
285 "RETRIEVE_SECURE_TRACEABILITY_DATA_FILE": {
286 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓RetrieveSecureTraceabilityDataFilePlugin"
287 },
288 "CHECKS_SECURE_TRACEABILITY_DATA_HASHES": {
289 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓ChecksSecureTraceabilityDataHashesPlugin"
290 },
291 "EXTRACT_SECURE_TRACEABILITY_DATA_FILE": {
292 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓ExtractSecureTraceabilityDataFilePlugin"
293 },

(suite sur la page suivante)

4.15. Worker 173

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

294 "CHECK_MERKLE_TREE": {
295 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓VerifyMerkleTreeActionHandler"
296 },
297 "VERIFY_TIMESTAMP": {
298 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓VerifyTimeStampActionHandler"
299 },
300 "CHECKS_SECURE_TRACEABILITY_DATA_STORAGELOG": {
301 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓ChecksSecureTraceabilityDataStoragelogPlugin"
302 },
303 "TRACEABILITY_FINALIZATION": {
304 "className": "fr.gouv.vitam.worker.core.plugin.traceability.

→˓TraceabilityFinalizationPlugin"
305 },
306 "PRESERVATION_PREPARATION": {
307 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationPreparationPlugin"
308 },
309 "PRESERVATION_CHECK_RESOURCE_AVAILABILITY": {
310 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationCheckResourceAvailability"
311 },
312 "PRESERVATION_ACTION": {
313 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationActionPlugin"
314 },
315 "PRESERVATION_EXTRACTION_AU": {
316 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationExtractionAUPlugin"
317 },
318 "PRESERVATION_FINALIZATION": {
319 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationFinalizationPlugin"
320 },
321 "PRESERVATION_SIEGFRIED_IDENTIFICATION": {
322 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationSiegfriedPlugin"
323 },
324 "PRESERVATION_TESSERACT_SPLIT_TEXT_CONTENT": {
325 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationTesseractPlugin"
326 },
327 "PRESERVATION_OBJECTGROUP_METADATA_SECURITY_CHECKS": {
328 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationObjectGroupMetadataSecurityChecks"
329 },
330 "PRESERVATION_UNIT_METADATA_SECURITY_CHECKS": {
331 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationUnitMetadataSecurityChecks"
332 },
333 "PRESERVATION_PREPARATION_INSERTION_AU_METADATA": {
334 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationPreparationInsertionAuMetadata"
335 },
336 "PRESERVATION_INSERTION_AU_METADATA": {

(suite sur la page suivante)

174 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

337 "className": "fr.gouv.vitam.worker.core.plugin.preservation.
→˓PreservationInsertionAuMetadata"

338 },
339 "PRESERVATION_BINARY_HASH": {
340 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationGenerateBinaryHash"
341 },
342 "PRESERVATION_STORAGE_BINARY": {
343 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationStorageBinaryPlugin"
344 },
345 "PRESERVATION_INDEXATION_METADATA": {
346 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationUpdateObjectGroupPlugin"
347 },
348 "PRESERVATION_STORAGE_METADATA_LFC": {
349 "className": "fr.gouv.vitam.worker.core.plugin.preservation.

→˓PreservationStorageMetadataAndLfc"
350 },
351 "HELLO_WORLD_PLUGIN": {
352 "className": "fr.vitam.plugin.custom.HelloWorldPlugin",
353 "propertiesFile": "hello_world_plugin.properties",
354 "jarName": "hello-world-plugin-1.14.0-SNAPSHOT.jar"
355 },
356 "COMPUTE_INHERITED_RULES_PREPARATION": {
357 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRulesPreparationPlugin"
358 },
359 "COMPUTE_INHERITED_RULES_ACTION": {
360 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRulesActionPlugin"
361 },
362 "COMPUTE_INHERITED_RULES_FINALIZATION": {
363 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRulesFinalizationPlugin"
364 },
365 "COMPUTE_INHERITED_RULES_PROGENY_IDENTIFIER": {
366 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRuleProgenyIdentifierPlugin"
367 },
368 "COMPUTE_INHERITED_RULES_INVALIDATOR": {
369 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRulesInvalidatorPlugin"
370 },
371 "COMPUTE_INHERITED_RULES_DELETE": {
372 "className": "fr.gouv.vitam.worker.core.plugin.computeinheritedrules.

→˓ComputeInheritedRulesDeletePlugin"
373 },
374 "SAVE_ARCHIVAL_TRANSFER_REPLY": {
375 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.SaveAtrPlugin"
376 },
377 "CHECK_ATR_AND_ADD_IT_TO_WORKSPACE": {
378 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓CheckAtrAndAddItToWorkspacePlugin"
379 },
380 "VERIFY_ARCHIVAL_TRANSFER_REPLY": {
381 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.VerifyAtrPlugin"

(suite sur la page suivante)

4.15. Worker 175

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

382 },
383 "TRANSFER_REPLY_FINALIZATION": {
384 "className": "fr.gouv.vitam.worker.core.plugin.transfer.reply.

→˓TransferReplyFinalizationPlugin"
385 },
386 "PREPARE_STORAGE_STRATEGIES": {
387 "className": "fr.gouv.vitam.worker.core.plugin.PrepareStorageStrategiesPlugin"
388 },
389 "INGEST_CLEANUP_REQUEST_VALIDATION": {
390 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupRequestValidationPlugin"
391 },
392 "INGEST_CLEANUP_ELIGIBILITY_VALIDATION": {
393 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupEligibilityValidationPlugin"
394 },
395 "INGEST_CLEANUP_PREPARATION": {
396 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupPreparationPlugin"
397 },
398 "INGEST_CLEANUP_DELETE_UNIT": {
399 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupDeleteUnitPlugin"
400 },
401 "INGEST_CLEANUP_DELETE_OBJECT_GROUP": {
402 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupDeleteObjectGroupPlugin"
403 },
404 "INGEST_CLEANUP_ACCESSION_REGISTER_UPDATE": {
405 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupAccessionRegisterUpdatePlugin"
406 },
407 "INGEST_CLEANUP_FINALIZATION": {
408 "className": "fr.gouv.vitam.worker.core.plugin.ingestcleanup.

→˓IngestCleanupFinalizationPlugin"
409 },
410 "REVERT_CHECK": {
411 "className": "fr.gouv.vitam.worker.core.plugin.revertupdate.

→˓RevertUpdateUnitCheckPlugin"
412 },
413 "REVERT_UPDATE_UNITS": {
414 "className": "fr.gouv.vitam.worker.core.plugin.revertupdate.RevertUpdateUnitPlugin

→˓"
415 },
416 "REVERT_UPDATE_FINALIZE": {
417 "className": "fr.gouv.vitam.worker.core.plugin.revertupdate.

→˓RevertUpdateUnitFinalizePlugin"
418 },
419 "DELETE_GOT_VERSIONS_PREPARATION": {
420 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.

→˓DeleteGotVersionsPreparationPlugin"
421 },
422 "DELETE_GOT_VERSIONS_ACTION": {
423 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.

→˓DeleteGotVersionsActionPlugin"
424 },
425 "STORE_METADATA_AND_LFC_WORKSPACE": {

(suite sur la page suivante)

176 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

426 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.
→˓DeleteGotVersionsStoreMetadataAndLfcPlugin"

427 },
428 "DELETE_GOT_VERSIONS_STORAGE": {
429 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.

→˓DeleteGotVersionsStoragePlugin"
430 },
431 "DELETE_GOT_VERSIONS_ACCESSION_REGISTER_UPDATE": {
432 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.

→˓DeleteGotVersionsAccessionRegisterUpdatePlugin"
433 },
434 "DELETE_GOT_VERSIONS_FINALIZATION": {
435 "className": "fr.gouv.vitam.worker.core.plugin.deleteGotVersions.handlers.

→˓DeleteGotVersionsFinalizationPlugin"
436 },
437 "CHECK_OBJECT_GROUP_SCHEMA": {
438 "className": "fr.gouv.vitam.worker.core.plugin.CheckObjectGroupSchemaActionPlugin

→˓",
439 "propertiesFile": "check_object_group_schema_plugin.properties"
440 }
441 }

Le plugin doit implémenter la classe ActionHandler et doit surcharger soit la méthode execute() pour un traite-
ment unitaire, soit la méthode executeAll() pour un traitemement de masse. Un plugin prend en paramètres : -
WorkerParameters : objet contenant une liste de paramètres permettant d’exécuter des actions variées. Voici une liste
non exhaustive des paramètres : url du service workspace, nom de l’étape en cours, container sur lequel l’action est
exécutée, identifiant du process, url du service metadata, l’id de l’objet sur lequel on veut effectuer un traitement, etc. . .
- HandlerIO qui a pour charge d’assurer la liaison avec le Workspace et la mémoire entre les différents traitements. Il
permet de passer une liste d’input permettant le traitement du plugin.

La méthode doit retourner un objet de type ItemStatus, qui sera détaillé plus en détail dans un paragraphe dédié.

De manière synthétique, voici le fonctionnement du plugin VITAM.

4.15. Worker 177

VITAM - Manuel de développement, Version 8.1.2

4.15.4.2 Gestion des entrants du plugin

4.15.4.2.1 WorkerParameters

Les paramètres WorkerParameters sont des paramètres permettant aux différents plugins d’exécuter leurs différentes
actions.

Actuellement 5 paramètres sont obligatoires pour tous les workers : - urlMetadata afin d’intialiser le client metadata -
urlWorkspace afin d’initialiser le client workspace - objectName le nom de l’object lorsque l’on boucle sur une liste -
currentStep le nom de l’étape - containerName l’identifiant du container

Les autres paramètres sont les suivants : - processId : id du process en
cours d’exécution. Le pattern du processId est de la forme : {CONTAI-
NER_NAME}_{WORKFLOW_ID}_{STEP_RANK_IN_THE_WORKFLOW}_{STEP_NAME} - stepUniqId :
id de l’étape en cours d’exécution - objectId : id de l’objet sur lequel l’action va s’exécuter une action - worker-
GUID : id du worker ayant lancé l’action - metadataRequest : indique si l’action doit utiliser le module metadata -
workflowStatusKo : si le worklow en cours a un statut KO ou FATAL, il contient son statut.

Pour récupérer un paramètre, il suffit d’appliquer :

@Override
public ItemStatus execute(WorkerParameters params, HandlerIO actionDefinition) {

// on récupère le nom de l'objet sur lequel l'action va être effectuée

(suite sur la page suivante)

178 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

final String objectName = params.getObjectName();
// on récupère le nom de l'étape en cours
final String currentStep = params.getCurrentStep();
// il est possible de récupérer la même information différemment :
final String currentStepBis = params.getParameterValue(WorkerParameterName.

→˓currentStep);
// TODO : maintenant, réalisons l'action
// on retourne un ItemStatus
return new ItemStatus();

}

4.15.4.2.2 HandlerIO

Le HandlerIO a pour charge d’assurer la liaison avec le Workspace et la mémoire entre les différentes actions d’un step,
exécutées dans différents plugins. Dans un workflow, est spécifiée une liste d’objets (de fichiers, de valeurs, etc. . .) qui
en complément des WorkerParameters peuvent être transmis à travers le HandlerIO. Il revient au HandlerIO d’assurer
la livraison de ces différents objets.

Dans un workflow, nous avons donc des listes d’inputs et d’outputs. Ces listes sont configurées dans un fichier json de
configuration Les inputs peuvent être utilisés par les différents plugins (selon la spécification dans la configuration du
workflow.

Voici un json d’exemple de configuration de workflow :

1 {
2 "id": "DEFAULT_WORKFLOW",
3 "name": "Default Ingest Workflow",
4 "identifier": "PROCESS_SIP_UNITARY",
5 "typeProc": "INGEST",
6 "comment": "Default Ingest Workflow V6",
7 "steps": [
8 {
9 "workerGroupId": "DefaultWorker",

10 "stepName": "STP_SANITY_CHECK_SIP",
11 "behavior": "BLOCKING",
12 "distribution": {
13 "kind": "REF"
14 },
15 "waitFor": "sanityCheckResult.json",
16 "actions": [
17 {
18 "action": {
19 "actionKey": "SANITY_CHECK_SIP",
20 "behavior": "BLOCKING",
21 "in": {
22 "name": "paramToCheck",
23 "uri": "VALUE:antivirusParam"
24 }
25 }
26 },
27 {
28 "action": {
29 "actionKey": "CHECK_CONTAINER",
30 "behavior": "BLOCKING",
31 "in": {

(suite sur la page suivante)

4.15. Worker 179

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

32 "name": "paramToCheck",
33 "uri": "VALUE:fileFormatParam"
34 }
35 }
36 },
37 {
38 "action": {
39 "actionKey": "MANIFEST_FILE_NAME_CHECK",
40 "behavior": "BLOCKING",
41 "in": {
42 "name": "paramToCheck",
43 "uri": "VALUE:fileNameManifestParam"
44 }
45 }
46 },
47 {
48 "action": {
49 "actionKey": "MANIFEST_DIGEST_CHECK",
50 "behavior": "BLOCKING",
51 "in": {
52 "name": "paramToCheck",
53 "uri": "VALUE:digestManifestParam"
54 }
55 }
56 }
57]
58 },
59 {
60 "workerGroupId": "DefaultWorker",
61 "stepName": "STP_UPLOAD_SIP",
62 "behavior": "BLOCKING",
63 "distribution": {
64 "kind": "REF"
65 },
66 "waitFor": "stpUploadResult.json",
67 "actions": [
68 {
69 "action": {
70 "actionKey": "UPLOAD_SIP",
71 "behavior": "BLOCKING"
72 }
73 }
74]
75 },
76 {
77 "workerGroupId": "DefaultWorker",
78 "stepName": "STP_INGEST_CONTROL_SIP",
79 "behavior": "BLOCKING",
80 "distribution": {
81 "kind": "REF",
82 "element": "SIP/manifest.xml"
83 },
84 "actions": [
85 {
86 "action": {
87 "actionKey": "CHECK_SEDA",
88 "behavior": "BLOCKING",

(suite sur la page suivante)

180 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

89 "out": [
90 {
91 "name": "sedaParams.json",
92 "uri": "WORKSPACE:Maps/sedaParams.json"
93 }
94]
95 }
96 },
97 {
98 "action": {
99 "actionKey": "CHECK_HEADER",

100 "behavior": "BLOCKING",
101 "in": [
102 {
103 "name": "checkOriginatingAgency",
104 "uri": "VALUE:true"
105 },
106 {
107 "name": "checkProfile",
108 "uri": "VALUE:true"
109 }
110],
111 "out": [
112 {
113 "name": "contracts.json",
114 "uri": "WORKSPACE:referential/contracts.json"
115 }
116]
117 }
118 },
119 {
120 "action": {
121 "actionKey": "PREPARE_STORAGE_INFO",
122 "behavior": "BLOCKING",
123 "in": [
124 {
125 "name": "contracts.json",
126 "uri": "WORKSPACE:referential/contracts.json"
127 }
128],
129 "out": [
130 {
131 "name": "storageInfo.json",
132 "uri": "WORKSPACE:StorageInfo/storageInfo.json"
133 }
134]
135 }
136 },
137 {
138 "action": {
139 "actionKey": "CHECK_DATAOBJECTPACKAGE",
140 "behavior": "BLOCKING",
141 "in": [
142 {
143 "name": "checkNoObject",
144 "uri": "VALUE:false"
145 },

(suite sur la page suivante)

4.15. Worker 181

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

146 {
147 "name": "UnitType",
148 "uri": "VALUE:INGEST"
149 },
150 {
151 "name": "storageInfo.json",
152 "uri": "WORKSPACE:StorageInfo/storageInfo.json"
153 },
154 {
155 "name": "contracts.json",
156 "uri": "WORKSPACE:referential/contracts.json"
157 }
158],
159 "out": [
160 {
161 "name": "unitsLevel.file",
162 "uri": "WORKSPACE:UnitsLevel/ingestLevelStack.json"
163 },
164 {
165 "name": "mapsDOtoOG.file",
166 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json"
167 },
168 {
169 "name": "mapsDO.file",
170 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json"
171 },
172 {
173 "name": "mapsObjectGroup.file",
174 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json"
175 },
176 {
177 "name": "mapsObjectGroup.file",
178 "uri": "MEMORY:MapsMemory/OG_TO_ARCHIVE_ID_MAP.json"
179 },
180 {
181 "name": "mapsDOtoVersionBDO.file",
182 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json"
183 },
184 {
185 "name": "mapsUnits.file",
186 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json"
187 },
188 {
189 "name": "globalSEDAParameters.file",
190 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
191 },
192 {
193 "name": "mapsObjectGroup.file",
194 "uri": "MEMORY:MapsMemory/OBJECT_GROUP_ID_TO_GUID_MAP.json"
195 },
196 {
197 "name": "existingObjectGroup.file",
198 "uri": "WORKSPACE:UpdateObjectGroup/existing_object_group.json"
199 },
200 {
201 "name": "mapsGuid.file",
202 "uri": "WORKSPACE:Maps/GUID_TO_ARCHIVE_ID_MAP.json"

(suite sur la page suivante)

182 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

203 },
204 {
205 "name": "ontology.file",
206 "uri": "WORKSPACE:Ontology/ontology.json"
207 },
208 {
209 "name": "mapsExisitingGotToNewGotForAttachment.file",
210 "uri": "WORKSPACE:Maps/EXISTING_GOT_TO_NEW_GOT_GUID_FOR_ATTACHMENT_

→˓MAP.json"
211 },
212 {
213 "name": "mapsExisitingUnitsForAttachment.file",
214 "uri": "WORKSPACE:Maps/EXISTING_UNITS_GUID_FOR_ATTACHMENT_MAP.json"
215 },
216 {
217 "name": "mapsExisitingGotsForAttachment.file",
218 "uri": "WORKSPACE:Maps/EXISTING_GOTS_GUID_FOR_ATTACHMENT_MAP.json"
219 },
220 {
221 "name": "mapsUnitIdToUnitDetail.file",
222 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_ARCHIVE_DETAIL_MAP.jsonl"
223 },
224 {
225 "name": "mapsDOGuidToDO.file",
226 "uri": "WORKSPACE:Maps/DO_GUID_TO_DO_MAP.json"
227 }
228]
229 }
230 },
231 {
232 "action": {
233 "actionKey": "CHECK_ATTACHEMENT",
234 "behavior": "BLOCKING",
235 "in": [
236 {
237 "name": "mapsExisitingGotsForAttachment.file",
238 "uri": "WORKSPACE:Maps/EXISTING_GOTS_GUID_FOR_ATTACHMENT_MAP.json"
239 },
240 {
241 "name": "mapsExisitingUnitsForAttachment.file",
242 "uri": "WORKSPACE:Maps/EXISTING_UNITS_GUID_FOR_ATTACHMENT_MAP.json"
243 }
244]
245 }
246 }
247]
248 },
249 {
250 "workerGroupId": "DefaultWorker",
251 "stepName": "STP_OG_CHECK_AND_TRANSFORME",
252 "behavior": "BLOCKING",
253 "distribution": {
254 "kind": "LIST_IN_DIRECTORY",
255 "element": "ObjectGroup",
256 "type": "ObjectGroup"
257 },
258 "actions": [

(suite sur la page suivante)

4.15. Worker 183

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

259 {
260 "action": {
261 "actionKey": "CHECK_DIGEST",
262 "behavior": "BLOCKING",
263 "in": [
264 {
265 "name": "algo",
266 "uri": "VALUE:SHA-512"
267 }
268],
269 "out": [
270 {
271 "name": "groupObject",
272 "uri": "MEMORY:groupObjectId"
273 }
274]
275 }
276 },
277 {
278 "action": {
279 "actionKey": "CHECK_OBJECT_SIZE",
280 "behavior": "BLOCKING",
281 "out": [
282 {
283 "name": "groupObject",
284 "uri": "MEMORY:groupObjectId"
285 }
286]
287 }
288 },
289 {
290 "action": {
291 "actionKey": "OG_OBJECTS_FORMAT_CHECK",
292 "behavior": "BLOCKING",
293 "in": [
294 {
295 "name": "groupObject",
296 "uri": "MEMORY:groupObjectId"
297 },
298 {
299 "name": "contracts.json",
300 "uri": "WORKSPACE:referential/contracts.json"
301 }
302]
303 }
304 },
305 {
306 "action": {
307 "actionKey": "CHECK_OBJECT_GROUP_SCHEMA",
308 "behavior": "BLOCKING"
309 }
310 }
311]
312 },
313 {
314 "workerGroupId": "DefaultWorker",
315 "stepName": "STP_UNIT_CHECK_AND_PROCESS",

(suite sur la page suivante)

184 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

316 "behavior": "BLOCKING",
317 "distribution": {
318 "kind": "LIST_ORDERING_IN_FILE",
319 "type": "Units",
320 "element": "UnitsLevel/ingestLevelStack.json"
321 },
322 "actions": [
323 {
324 "action": {
325 "actionKey": "CHECK_UNIT_SCHEMA",
326 "behavior": "BLOCKING",
327 "in": [
328 {
329 "name": "ontology.file",
330 "uri": "WORKSPACE:Ontology/ontology.json"
331 },
332 {
333 "name": "contracts.json",
334 "uri": "WORKSPACE:referential/contracts.json"
335 }
336],
337 "out": [
338 {
339 "name": "unit",
340 "uri": "MEMORY:unitId"
341 }
342]
343 }
344 },
345 {
346 "action": {
347 "actionKey": "CHECK_ARCHIVE_UNIT_PROFILE",
348 "behavior": "NOBLOCKING",
349 "in": [
350 {
351 "name": "mapsGuid.file",
352 "uri": "WORKSPACE:Maps/GUID_TO_ARCHIVE_ID_MAP.json"
353 }
354],
355 "out": [
356 {
357 "name": "unit",
358 "uri": "MEMORY:unitId"
359 }
360]
361 }
362 },
363 {
364 "action": {
365 "actionKey": "CHECK_CLASSIFICATION_LEVEL",
366 "behavior": "BLOCKING",
367 "in": [
368 {
369 "name": "unit",
370 "uri": "MEMORY:unitId"
371 }
372]

(suite sur la page suivante)

4.15. Worker 185

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

373 }
374 },
375 {
376 "action": {
377 "actionKey": "UNITS_RULES_COMPUTE",
378 "behavior": "BLOCKING",
379 "in": [
380 {
381 "name": "unit",
382 "uri": "MEMORY:unitId"
383 }
384]
385 }
386 }
387]
388 },
389 {
390 "workerGroupId": "DefaultWorker",
391 "stepName": "STP_STORAGE_AVAILABILITY_CHECK",
392 "behavior": "BLOCKING",
393 "distribution": {
394 "kind": "REF",
395 "element": "SIP/manifest.xml"
396 },
397 "actions": [
398 {
399 "action": {
400 "actionKey": "STORAGE_AVAILABILITY_CHECK",
401 "behavior": "BLOCKING",
402 "in": [
403 {
404 "name": "contracts.json",
405 "uri": "WORKSPACE:referential/contracts.json"
406 }
407]
408 }
409 }
410]
411 },
412 {
413 "workerGroupId": "DefaultWorker",
414 "stepName": "STP_OBJ_STORING",
415 "behavior": "BLOCKING",
416 "distribution": {
417 "kind": "LIST_IN_DIRECTORY",
418 "element": "ObjectGroup",
419 "type": "ObjectGroup",
420 "bulkSize": 1000
421 },
422 "actions": [
423 {
424 "action": {
425 "actionKey": "OBJ_STORAGE",
426 "behavior": "BLOCKING",
427 "out": [
428 {
429 "name": "groupObject",

(suite sur la page suivante)

186 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

430 "uri": "MEMORY:groupObjectId"
431 }
432]
433 }
434 },
435 {
436 "action": {
437 "actionKey": "OG_METADATA_INDEXATION",
438 "behavior": "BLOCKING",
439 "in": [
440 {
441 "name": "groupObject",
442 "uri": "MEMORY:groupObjectId"
443 }
444]
445 }
446 }
447]
448 },
449 {
450 "workerGroupId": "DefaultWorker",
451 "stepName": "STP_UNIT_METADATA",
452 "behavior": "BLOCKING",
453 "distribution": {
454 "kind": "LIST_ORDERING_IN_FILE",
455 "type": "Units",
456 "element": "UnitsLevel/ingestLevelStack.json",
457 "bulkSize": 1000
458 },
459 "actions": [
460 {
461 "action": {
462 "actionKey": "UNIT_METADATA_INDEXATION",
463 "behavior": "BLOCKING",
464 "in": [
465 {
466 "name": "globalSEDAParameters.file",
467 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
468 }
469]
470 }
471 }
472]
473 },
474 {
475 "workerGroupId": "DefaultWorker",
476 "stepName": "STP_OG_STORING",
477 "behavior": "BLOCKING",
478 "distribution": {
479 "kind": "LIST_IN_DIRECTORY",
480 "element": "ObjectGroup",
481 "type": "ObjectGroup",
482 "bulkSize": 128
483 },
484 "actions": [
485 {
486 "action": {

(suite sur la page suivante)

4.15. Worker 187

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

487 "actionKey": "COMMIT_LIFE_CYCLE_OBJECT_GROUP",
488 "behavior": "BLOCKING"
489 }
490 },
491 {
492 "action": {
493 "actionKey": "OG_METADATA_STORAGE",
494 "behavior": "BLOCKING",
495 "lifecycleLog": "DISABLED"
496 }
497 }
498]
499 },
500 {
501 "workerGroupId": "DefaultWorker",
502 "stepName": "STP_UNIT_STORING",
503 "behavior": "BLOCKING",
504 "distribution": {
505 "kind": "LIST_ORDERING_IN_FILE",
506 "type": "Units",
507 "element": "UnitsLevel/ingestLevelStack.json",
508 "bulkSize": 128
509 },
510 "actions": [
511 {
512 "action": {
513 "actionKey": "COMMIT_LIFE_CYCLE_UNIT",
514 "behavior": "BLOCKING"
515 }
516 },
517 {
518 "action": {
519 "actionKey": "UNIT_METADATA_STORAGE",
520 "behavior": "BLOCKING",
521 "lifecycleLog": "DISABLED"
522 }
523 }
524]
525 },
526 {
527 "workerGroupId": "DefaultWorker",
528 "stepName": "STP_UPDATE_OBJECT_GROUP",
529 "behavior": "BLOCKING",
530 "distribution": {
531 "kind": "LIST_IN_FILE",
532 "element": "UpdateObjectGroup/existing_object_group.json",
533 "type": "ObjectGroup",
534 "statusOnEmptyDistribution": "OK",
535 "bulkSize": 128
536 },
537 "actions": [
538 {
539 "action": {
540 "actionKey": "OBJECT_GROUP_UPDATE",
541 "behavior": "BLOCKING",
542 "lifecycleLog": "FLUSH_LFC"
543 }

(suite sur la page suivante)

188 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

544 },
545 {
546 "action": {
547 "actionKey": "COMMIT_LIFE_CYCLE_OBJECT_GROUP",
548 "behavior": "BLOCKING"
549 }
550 },
551 {
552 "action": {
553 "actionKey": "OG_METADATA_STORAGE",
554 "behavior": "BLOCKING",
555 "lifecycleLog": "DISABLED"
556 }
557 }
558]
559 },
560 {
561 "workerGroupId": "DefaultWorker",
562 "stepName": "STP_ACCESSION_REGISTRATION",
563 "behavior": "BLOCKING",
564 "distribution": {
565 "kind": "REF",
566 "element": "SIP/manifest.xml"
567 },
568 "actions": [
569 {
570 "action": {
571 "actionKey": "ACCESSION_REGISTRATION",
572 "behavior": "BLOCKING",
573 "in": [
574 {
575 "name": "globalSEDAParameters.file",
576 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
577 }
578]
579 }
580 }
581]
582 },
583 {
584 "workerGroupId": "DefaultWorker",
585 "stepName": "STP_INGEST_FINALISATION",
586 "behavior": "FINALLY",
587 "distribution": {
588 "kind": "REF",
589 "element": "SIP/manifest.xml"
590 },
591 "actions": [
592 {
593 "action": {
594 "actionKey": "ATR_NOTIFICATION",
595 "behavior": "NOBLOCKING",
596 "in": [
597 {
598 "name": "mapsUnits.file",
599 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json",
600 "optional": true

(suite sur la page suivante)

4.15. Worker 189

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

601 },
602 {
603 "name": "mapsDO.file",
604 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json",
605 "optional": true
606 },
607 {
608 "name": "mapsDOtoOG.file",
609 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json",
610 "optional": true
611 },
612 {
613 "name": "mapsDOtoVersionBDO.file",
614 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json",
615 "optional": true
616 },
617 {
618 "name": "globalSEDAParameters.file",
619 "uri": "WORKSPACE:ATR/globalSEDAParameters.json",
620 "optional": true
621 },
622 {
623 "name": "mapsOG.file",
624 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json",
625 "optional": true
626 },
627 {
628 "name": "mapsExisitingGotToNewGotForAttachment.file",
629 "uri": "WORKSPACE:Maps/EXISTING_GOT_TO_NEW_GOT_GUID_FOR_ATTACHMENT_

→˓MAP.json",
630 "optional": true
631 },
632 {
633 "name": "sedaParams.json",
634 "uri": "WORKSPACE:Maps/sedaParams.json"
635 },
636 {
637 "name": "mapsUnitIdToUnitDetail.file",
638 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_ARCHIVE_DETAIL_MAP.jsonl",
639 "optional": true
640 },
641 {
642 "name": "mapsDOGuidToDO.file",
643 "uri": "WORKSPACE:Maps/DO_GUID_TO_DO_MAP.json",
644 "optional": true
645 }
646],
647 "out": [
648 {
649 "name": "atr.file",
650 "uri": "WORKSPACE:ATR/responseReply.xml"
651 }
652]
653 }
654 },
655 {
656 "action": {

(suite sur la page suivante)

190 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

657 "actionKey": "ROLL_BACK",
658 "behavior": "BLOCKING"
659 }
660 }
661]
662 }
663]
664 }

Voici un exemple, de ce que l’on pourrait trouver au seun d’une action en terme d’input et d’output :

"action": {
"actionKey": "CHECK_CONSISTENCY",
"behavior": "NOBLOCKING",
"in": [
{

"name": "mapsDOtoOG.file",
"uri": "MEMORY:MapsMemory/OG_TO_ARCHIVE_ID_MAP.json"

},
{

"name": "mapsObjectGroup.file",
"uri": "MEMORY:MapsMemory/OBJECT_GROUP_ID_TO_GUID_MAP.json"

},
{

"name": "algo",
"uri": "VALUE:SHA-512"

}
],
"out": [
{

"name": "atr.file",
"uri": "WORKSPACE:ATR/responseReply.xml"

}
]

}

On peut noter qu’il existe plusieurs types d’inputs qui sont identifiés par :

∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY, VALUE) et un path :

∙ WORKSPACE :path -> indique le chemin relatif sur le workspace

∙ MEMORY :path -> indique le nom de la clef de valeur

∙ VALUE :path -> indique la valeur statique en entrée

On peut noter qu’il existe plusieurs types d’outputs qui sont identifiés par :

Il existe plusieurs manières de récupérer les différents objets dans les plugins, faisons un tour d’horizon.

∙ un nom (name) utilisé pour référencer cet élément entre différents handlers d’une même étape

∙ une cible (uri) comportant un schema (WORKSPACE, MEMORY) et un path :

∙ WORKSPACE :path indique le chemin relatif sur le workspace

∙ MEMORY :path indique le nom de la clef de valeur

Chaque plugin peut donc accéder aux différents inputs ou peut stocker différents outputs dès lors qu’ils sont bien
déclarés dans la configuration.

4.15. Worker 191

VITAM - Manuel de développement, Version 8.1.2

4.15.4.2.2.1 Récupérer un Json sur le workspace

// récupérons sur le workspace un json répresenant un objet sur lequel l'action est
→˓en cours
final JsonNode jsonOG = handlerIO.getJsonFromWorkspace(

IngestWorkflowConstants.OBJECT_GROUP_FOLDER + "/" + params.
→˓getObjectName());

4.15.4.2.2.2 Transférer un fichier sur le Workspace

// transférons sur le workspace un inputstream
InputStreamFromOutputStream<String> isos = new InputStreamFromOutputStream<String>();
handlerIO.transferInputStreamToWorkspace(

IngestWorkflowConstants.OBJECT_GROUP_FOLDER + "/" + params.
→˓getObjectName(),

isos);
// transfer json to workspace
JsonNode jsonNode;
// TODO : construction du jsonNode
handlerIO.transferJsonToWorkspace(StorageCollectionType.OBJECTGROUPS.
→˓getCollectionName(),

params.getObjectName(),
jsonNode, true);

4.15.4.2.2.3 Récupérer un objet spécifique déterminé dans le workflow

Soit la déclaration d’inputs :

"in": [
{
"name": "testValue",
"uri": "VALUE:SHA-512"

},
{
"name": "testFile.file",
"uri": "WORKSPACE:Maps/testFile.json"

},
{[...]}

]

Si l’on souhaite réaliser les différentes opérations :

∙ Récupérer un objet « VALUE » :

// récupérons le fichier défini de rang 0 , en tant que VALUE dans le workflow
final DigestType digestTypeInput = DigestType.fromValue((String) handlerIO.
→˓getInput(0));

- Récupérer un objet "WORKSPACE", autrement dit, récupérer un FILE sur le workspace :

// récupérons le fichier défini de rang 1 , en tant que WORKSPACE dans le workflow
File file = handlerIO.getInput(1);

192 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

∙ Récupérer un objet « MEMORY », autrement dit, récupérer un object en mémoire :

// récupérons l'objet défini en rang 2, en mémoire
Object object = handlerIO.getInput(2);

4.15.4.2.2.4 Travailler sur le Workspace sur un fichier temporaire

S’il est nécessaire de travailler sur un fichier temporaire sur le workspace, il est possible de faire :

// créons un fichier temporaire sur le workspace
File temporaryFile = handlerIO.getNewLocalFile("MyTempFile" + objectName);

4.15.4.2.2.5 Enregistrer un output

Soit la déclaration d’outputs :

"out": [
{
"name": "test.file",
"uri": "WORKSPACE:test.txt"

},
{
"name": "test.memory",
"uri": "MEMORY:test.memory"

}
]

Si l’on souhaite réaliser les différentes opérations :

∙ Stocker sur le workspace un fichier :

// To get the filename as specified by the workflow
ProcessingUri uri = handlerIO.getOutput(0);
String filename = uri.getPath();
// Write your own file
File newFile = handlerIO.getNewLocalFile(filename);
// write it
...
// add it to the handler IO
handlerIO.addOuputResult(0, newFile);

- Stocker en mémoire un objet :

// Create your own Object
Map myMap = new HashMap();
// ... add some values in the map
// Now give it back to handlerIO as ouput result
handlerIO.addOuputResult(1, myMap);

4.15.4.3 Gestion des statuts du plugin : ItemStatus

Le plugin dans sa méthode execute, doit forcément retourner un objet de type ItemStatus.

4.15. Worker 193

VITAM - Manuel de développement, Version 8.1.2

Il doit être instancié avec un identifiant tehnique précisant l’action exécutée. Cette instanciation est nécessaire pour
pouvoir appliquer une liste de messages humains qui seront calculés en fonction du statut de l’action (cf paragraphe
3.1).

final ItemStatus itemStatus = new ItemStatus("MON_ACTION_PLUGIN_1");

Le plugin est ensuite libre d’exécuter le code qu’il souhaire ensuite. La mise à jour du statut de l’exécution du plugin
se fait en appelant la méthode increment sur l’objet ItemStatus créé.

// mon exécution a fonctionné, le statut est OK :
itemStatus.increment(StatusCode.OK);
// mon exécution n'a pas fonctionné, je n'obtiens pas ce que je devais avoir, le
→˓statut est KO :
itemStatus.increment(StatusCode.KO);

Cas particulier du traitement de plusieurs objets dans un même plugin. Si l’on se trouve dans un plugin devant
traiter une liste d’objets (ex : groupes d’objets pour une vérification de format) alors il sera possible d’ajouter des
statuts sur les sous-tâches.

for (final Object monObjet : maListedOBjetsDansLeGroupeDobjets) {
// j'exécute ma sous tache
Result result = monObjet.doSomething();
itemStatus.increment(result.getStatus());
itemStatus.setSubTaskStatus(monObjet.getObjectId(), itemStatus);

}

En fin de execute(), le plugin doit donc retourner l’objet ItemStatus instancié.

return new ItemStatus(CHECK_RULES_TASK_ID).setItemsStatus(CHECK_RULES_TASK_ID,
→˓itemStatus);

4.15.4.3.1 Journalisation : opération et cycle de vie

Le worker, lorsqu’il récupérera le statut du plugin, devra traduire les différentes clés (ID_PLUGIN + STATUT) en
messages humains en utilisant par défaut le fichier de properties VITAM (vitam-logbook-messages_fr.properties). Si
les clés ne sont pas définies dans le fichier de properties VITAM, alors le worker utilisera les labels définis dans le
fichier de properties du plugin.

Si l’on souhaite gérer les différents messages qui seront enregistrés dans les journaux d’opération, il faudra dans le
plugin, ajouter un fichier de properties intégrant les différentes clés (identifiant du plugin + statut final éventuellement).

PLUGIN.MON_PLUGIN=Exécution de mon plugin
PLUGIN.MON_PLUGIN.OK=Succès de l'exécution de mon plugin
PLUGIN.MON_PLUGIN.KO=Échec lors de l'exécution de mon plugin
PLUGIN.MON_PLUGIN.WARNING=Avertissement lors de l'exécution de mon plugin
PLUGIN.MON_PLUGIN.FATAL=Erreur fatale lors de l'exécution de mon plugin

Cas particulier du traitement des lifecycles. Lorsqu’un plugin s’exécute sur une liste d’objets (ex : « kind » :
« LIST_ORDERING_IN_FILE », « element » : « ObjectGroup » ou « element » : « Units » dans la configuration du
Workflow) on va pouvoir ajouter des enregistrements dans la journalisation des cycles de vie (ObjectGroup ou Unit).

Prenons l’exemple de l’action CHECK_DIGEST dans le DefaultWorkflow qui est exécuté au sein d’une étape sur
une liste d’ObjectGroups. Cette action va exécuter un plugin particulier (identifié via un fichier de configuration). Le
journal de cycle de vie des objectgroups va donc être mis à jour en fonction de l’exécution du plugin sur chaque objet.
Ce plugin exécute un traitement ayant pour identifiant CALC_CHECK. En fonction du statut de chaque traitement on
aura donc des messages différents dans les journaux de cycle de vie.

194 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

{
"evType" : "LFC.CHECK_DIGEST",
"outcome" : "OK",
"outDetail" : "LFC.CHECK_DIGEST.OK",

}
{

"evType" : "LFC.CHECK_DIGEST.CALC_CHECK",
"outcome" : "OK",
"outDetail" : "LFC.CHECK_DIGEST.CALC_CHECK.OK",

}

Il convient donc d’avoir dans le fichier de properties VITAM (vitam-logbook-messages_fr.properties) ou bien dans le
fichier de properties du plugin (si les clés ne sont pas définies dans le VITAM) :

LFC.CHECK_DIGEST=Vérification de l''intégrité des objets versés
LFC.CHECK_DIGEST.OK=Succès de la vérification de l''intégrité des objets versés
LFC.CHECK_DIGEST.WARNING=Empreinte de l''objet recalculée en enregistrées dans les
→˓métadonnées de l''objet
LFC.CHECK_DIGEST.KO=Échec de la vérification de l''intégrité des objets versés
LFC.CHECK_DIGEST.FATAL= Vérification de l''intégrité de l''objet impossible
LFC.CHECK_DIGEST.CALC_CHECK=Calcul d''une empreinte en SHA-512
LFC.CHECK_DIGEST.CALC_CHECK.OK=Succès du calcul d''une l''empreinte en SHA-512
LFC.CHECK_DIGEST.CALC_CHECK.KO=Échec du calcul d''une empreinte en SHA-512
LFC.CHECK_DIGEST.CALC_CHECK.FATAL=Erreur fatale lors calcul d''une empreinte en SHA-
→˓512

Tous les différents cas d’erreur doivent être traités.

4.15.4.4 Intégration d’un nouveau plugin

Afin d’ajouter un nouveau plugin dans l’architecture VITAM, il convient de réaliser plusieurs opérations.

4.15.4.4.1 Ajout de l’action dans le Workflow

Dans le bon Workflow, il s’agit d’ajouter une action dans l’étape adéquate.

1 {
2 "id": "DEFAULT_WORKFLOW",
3 "name": "Default Ingest Workflow",
4 "identifier": "PROCESS_SIP_UNITARY",
5 "typeProc": "INGEST",
6 "comment": "Default Ingest Workflow V6",
7 "steps": [
8 {
9 "workerGroupId": "DefaultWorker",

10 "stepName": "STP_SANITY_CHECK_SIP",
11 "behavior": "BLOCKING",
12 "distribution": {
13 "kind": "REF"
14 },
15 "waitFor": "sanityCheckResult.json",
16 "actions": [
17 {
18 "action": {
19 "actionKey": "SANITY_CHECK_SIP",

(suite sur la page suivante)

4.15. Worker 195

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

20 "behavior": "BLOCKING",
21 "in": {
22 "name": "paramToCheck",
23 "uri": "VALUE:antivirusParam"
24 }
25 }
26 },
27 {
28 "action": {
29 "actionKey": "CHECK_CONTAINER",
30 "behavior": "BLOCKING",
31 "in": {
32 "name": "paramToCheck",
33 "uri": "VALUE:fileFormatParam"
34 }
35 }
36 },
37 {
38 "action": {
39 "actionKey": "MANIFEST_FILE_NAME_CHECK",
40 "behavior": "BLOCKING",
41 "in": {
42 "name": "paramToCheck",
43 "uri": "VALUE:fileNameManifestParam"
44 }
45 }
46 },
47 {
48 "action": {
49 "actionKey": "MANIFEST_DIGEST_CHECK",
50 "behavior": "BLOCKING",
51 "in": {
52 "name": "paramToCheck",
53 "uri": "VALUE:digestManifestParam"
54 }
55 }
56 }
57]
58 },
59 {
60 "workerGroupId": "DefaultWorker",
61 "stepName": "STP_UPLOAD_SIP",
62 "behavior": "BLOCKING",
63 "distribution": {
64 "kind": "REF"
65 },
66 "waitFor": "stpUploadResult.json",
67 "actions": [
68 {
69 "action": {
70 "actionKey": "UPLOAD_SIP",
71 "behavior": "BLOCKING"
72 }
73 }
74]
75 },
76 {

(suite sur la page suivante)

196 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

77 "workerGroupId": "DefaultWorker",
78 "stepName": "STP_INGEST_CONTROL_SIP",
79 "behavior": "BLOCKING",
80 "distribution": {
81 "kind": "REF",
82 "element": "SIP/manifest.xml"
83 },
84 "actions": [
85 {
86 "action": {
87 "actionKey": "CHECK_SEDA",
88 "behavior": "BLOCKING",
89 "out": [
90 {
91 "name": "sedaParams.json",
92 "uri": "WORKSPACE:Maps/sedaParams.json"
93 }
94]
95 }
96 },
97 {
98 "action": {
99 "actionKey": "CHECK_HEADER",

100 "behavior": "BLOCKING",
101 "in": [
102 {
103 "name": "checkOriginatingAgency",
104 "uri": "VALUE:true"
105 },
106 {
107 "name": "checkProfile",
108 "uri": "VALUE:true"
109 }
110],
111 "out": [
112 {
113 "name": "contracts.json",
114 "uri": "WORKSPACE:referential/contracts.json"
115 }
116]
117 }
118 },
119 {
120 "action": {
121 "actionKey": "PREPARE_STORAGE_INFO",
122 "behavior": "BLOCKING",
123 "in": [
124 {
125 "name": "contracts.json",
126 "uri": "WORKSPACE:referential/contracts.json"
127 }
128],
129 "out": [
130 {
131 "name": "storageInfo.json",
132 "uri": "WORKSPACE:StorageInfo/storageInfo.json"
133 }

(suite sur la page suivante)

4.15. Worker 197

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

134]
135 }
136 },
137 {
138 "action": {
139 "actionKey": "CHECK_DATAOBJECTPACKAGE",
140 "behavior": "BLOCKING",
141 "in": [
142 {
143 "name": "checkNoObject",
144 "uri": "VALUE:false"
145 },
146 {
147 "name": "UnitType",
148 "uri": "VALUE:INGEST"
149 },
150 {
151 "name": "storageInfo.json",
152 "uri": "WORKSPACE:StorageInfo/storageInfo.json"
153 },
154 {
155 "name": "contracts.json",
156 "uri": "WORKSPACE:referential/contracts.json"
157 }
158],
159 "out": [
160 {
161 "name": "unitsLevel.file",
162 "uri": "WORKSPACE:UnitsLevel/ingestLevelStack.json"
163 },
164 {
165 "name": "mapsDOtoOG.file",
166 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json"
167 },
168 {
169 "name": "mapsDO.file",
170 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json"
171 },
172 {
173 "name": "mapsObjectGroup.file",
174 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json"
175 },
176 {
177 "name": "mapsObjectGroup.file",
178 "uri": "MEMORY:MapsMemory/OG_TO_ARCHIVE_ID_MAP.json"
179 },
180 {
181 "name": "mapsDOtoVersionBDO.file",
182 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json"
183 },
184 {
185 "name": "mapsUnits.file",
186 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json"
187 },
188 {
189 "name": "globalSEDAParameters.file",
190 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"

(suite sur la page suivante)

198 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

191 },
192 {
193 "name": "mapsObjectGroup.file",
194 "uri": "MEMORY:MapsMemory/OBJECT_GROUP_ID_TO_GUID_MAP.json"
195 },
196 {
197 "name": "existingObjectGroup.file",
198 "uri": "WORKSPACE:UpdateObjectGroup/existing_object_group.json"
199 },
200 {
201 "name": "mapsGuid.file",
202 "uri": "WORKSPACE:Maps/GUID_TO_ARCHIVE_ID_MAP.json"
203 },
204 {
205 "name": "ontology.file",
206 "uri": "WORKSPACE:Ontology/ontology.json"
207 },
208 {
209 "name": "mapsExisitingGotToNewGotForAttachment.file",
210 "uri": "WORKSPACE:Maps/EXISTING_GOT_TO_NEW_GOT_GUID_FOR_ATTACHMENT_

→˓MAP.json"
211 },
212 {
213 "name": "mapsExisitingUnitsForAttachment.file",
214 "uri": "WORKSPACE:Maps/EXISTING_UNITS_GUID_FOR_ATTACHMENT_MAP.json"
215 },
216 {
217 "name": "mapsExisitingGotsForAttachment.file",
218 "uri": "WORKSPACE:Maps/EXISTING_GOTS_GUID_FOR_ATTACHMENT_MAP.json"
219 },
220 {
221 "name": "mapsUnitIdToUnitDetail.file",
222 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_ARCHIVE_DETAIL_MAP.jsonl"
223 },
224 {
225 "name": "mapsDOGuidToDO.file",
226 "uri": "WORKSPACE:Maps/DO_GUID_TO_DO_MAP.json"
227 }
228]
229 }
230 },
231 {
232 "action": {
233 "actionKey": "CHECK_ATTACHEMENT",
234 "behavior": "BLOCKING",
235 "in": [
236 {
237 "name": "mapsExisitingGotsForAttachment.file",
238 "uri": "WORKSPACE:Maps/EXISTING_GOTS_GUID_FOR_ATTACHMENT_MAP.json"
239 },
240 {
241 "name": "mapsExisitingUnitsForAttachment.file",
242 "uri": "WORKSPACE:Maps/EXISTING_UNITS_GUID_FOR_ATTACHMENT_MAP.json"
243 }
244]
245 }
246 }

(suite sur la page suivante)

4.15. Worker 199

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

247]
248 },
249 {
250 "workerGroupId": "DefaultWorker",
251 "stepName": "STP_OG_CHECK_AND_TRANSFORME",
252 "behavior": "BLOCKING",
253 "distribution": {
254 "kind": "LIST_IN_DIRECTORY",
255 "element": "ObjectGroup",
256 "type": "ObjectGroup"
257 },
258 "actions": [
259 {
260 "action": {
261 "actionKey": "CHECK_DIGEST",
262 "behavior": "BLOCKING",
263 "in": [
264 {
265 "name": "algo",
266 "uri": "VALUE:SHA-512"
267 }
268],
269 "out": [
270 {
271 "name": "groupObject",
272 "uri": "MEMORY:groupObjectId"
273 }
274]
275 }
276 },
277 {
278 "action": {
279 "actionKey": "CHECK_OBJECT_SIZE",
280 "behavior": "BLOCKING",
281 "out": [
282 {
283 "name": "groupObject",
284 "uri": "MEMORY:groupObjectId"
285 }
286]
287 }
288 },
289 {
290 "action": {
291 "actionKey": "OG_OBJECTS_FORMAT_CHECK",
292 "behavior": "BLOCKING",
293 "in": [
294 {
295 "name": "groupObject",
296 "uri": "MEMORY:groupObjectId"
297 },
298 {
299 "name": "contracts.json",
300 "uri": "WORKSPACE:referential/contracts.json"
301 }
302]
303 }

(suite sur la page suivante)

200 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

304 },
305 {
306 "action": {
307 "actionKey": "CHECK_OBJECT_GROUP_SCHEMA",
308 "behavior": "BLOCKING"
309 }
310 }
311]
312 },
313 {
314 "workerGroupId": "DefaultWorker",
315 "stepName": "STP_UNIT_CHECK_AND_PROCESS",
316 "behavior": "BLOCKING",
317 "distribution": {
318 "kind": "LIST_ORDERING_IN_FILE",
319 "type": "Units",
320 "element": "UnitsLevel/ingestLevelStack.json"
321 },
322 "actions": [
323 {
324 "action": {
325 "actionKey": "CHECK_UNIT_SCHEMA",
326 "behavior": "BLOCKING",
327 "in": [
328 {
329 "name": "ontology.file",
330 "uri": "WORKSPACE:Ontology/ontology.json"
331 },
332 {
333 "name": "contracts.json",
334 "uri": "WORKSPACE:referential/contracts.json"
335 }
336],
337 "out": [
338 {
339 "name": "unit",
340 "uri": "MEMORY:unitId"
341 }
342]
343 }
344 },
345 {
346 "action": {
347 "actionKey": "CHECK_ARCHIVE_UNIT_PROFILE",
348 "behavior": "NOBLOCKING",
349 "in": [
350 {
351 "name": "mapsGuid.file",
352 "uri": "WORKSPACE:Maps/GUID_TO_ARCHIVE_ID_MAP.json"
353 }
354],
355 "out": [
356 {
357 "name": "unit",
358 "uri": "MEMORY:unitId"
359 }
360]

(suite sur la page suivante)

4.15. Worker 201

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

361 }
362 },
363 {
364 "action": {
365 "actionKey": "CHECK_CLASSIFICATION_LEVEL",
366 "behavior": "BLOCKING",
367 "in": [
368 {
369 "name": "unit",
370 "uri": "MEMORY:unitId"
371 }
372]
373 }
374 },
375 {
376 "action": {
377 "actionKey": "UNITS_RULES_COMPUTE",
378 "behavior": "BLOCKING",
379 "in": [
380 {
381 "name": "unit",
382 "uri": "MEMORY:unitId"
383 }
384]
385 }
386 }
387]
388 },
389 {
390 "workerGroupId": "DefaultWorker",
391 "stepName": "STP_STORAGE_AVAILABILITY_CHECK",
392 "behavior": "BLOCKING",
393 "distribution": {
394 "kind": "REF",
395 "element": "SIP/manifest.xml"
396 },
397 "actions": [
398 {
399 "action": {
400 "actionKey": "STORAGE_AVAILABILITY_CHECK",
401 "behavior": "BLOCKING",
402 "in": [
403 {
404 "name": "contracts.json",
405 "uri": "WORKSPACE:referential/contracts.json"
406 }
407]
408 }
409 }
410]
411 },
412 {
413 "workerGroupId": "DefaultWorker",
414 "stepName": "STP_OBJ_STORING",
415 "behavior": "BLOCKING",
416 "distribution": {
417 "kind": "LIST_IN_DIRECTORY",

(suite sur la page suivante)

202 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

418 "element": "ObjectGroup",
419 "type": "ObjectGroup",
420 "bulkSize": 1000
421 },
422 "actions": [
423 {
424 "action": {
425 "actionKey": "OBJ_STORAGE",
426 "behavior": "BLOCKING",
427 "out": [
428 {
429 "name": "groupObject",
430 "uri": "MEMORY:groupObjectId"
431 }
432]
433 }
434 },
435 {
436 "action": {
437 "actionKey": "OG_METADATA_INDEXATION",
438 "behavior": "BLOCKING",
439 "in": [
440 {
441 "name": "groupObject",
442 "uri": "MEMORY:groupObjectId"
443 }
444]
445 }
446 }
447]
448 },
449 {
450 "workerGroupId": "DefaultWorker",
451 "stepName": "STP_UNIT_METADATA",
452 "behavior": "BLOCKING",
453 "distribution": {
454 "kind": "LIST_ORDERING_IN_FILE",
455 "type": "Units",
456 "element": "UnitsLevel/ingestLevelStack.json",
457 "bulkSize": 1000
458 },
459 "actions": [
460 {
461 "action": {
462 "actionKey": "UNIT_METADATA_INDEXATION",
463 "behavior": "BLOCKING",
464 "in": [
465 {
466 "name": "globalSEDAParameters.file",
467 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
468 }
469]
470 }
471 }
472]
473 },
474 {

(suite sur la page suivante)

4.15. Worker 203

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

475 "workerGroupId": "DefaultWorker",
476 "stepName": "STP_OG_STORING",
477 "behavior": "BLOCKING",
478 "distribution": {
479 "kind": "LIST_IN_DIRECTORY",
480 "element": "ObjectGroup",
481 "type": "ObjectGroup",
482 "bulkSize": 128
483 },
484 "actions": [
485 {
486 "action": {
487 "actionKey": "COMMIT_LIFE_CYCLE_OBJECT_GROUP",
488 "behavior": "BLOCKING"
489 }
490 },
491 {
492 "action": {
493 "actionKey": "OG_METADATA_STORAGE",
494 "behavior": "BLOCKING",
495 "lifecycleLog": "DISABLED"
496 }
497 }
498]
499 },
500 {
501 "workerGroupId": "DefaultWorker",
502 "stepName": "STP_UNIT_STORING",
503 "behavior": "BLOCKING",
504 "distribution": {
505 "kind": "LIST_ORDERING_IN_FILE",
506 "type": "Units",
507 "element": "UnitsLevel/ingestLevelStack.json",
508 "bulkSize": 128
509 },
510 "actions": [
511 {
512 "action": {
513 "actionKey": "COMMIT_LIFE_CYCLE_UNIT",
514 "behavior": "BLOCKING"
515 }
516 },
517 {
518 "action": {
519 "actionKey": "UNIT_METADATA_STORAGE",
520 "behavior": "BLOCKING",
521 "lifecycleLog": "DISABLED"
522 }
523 }
524]
525 },
526 {
527 "workerGroupId": "DefaultWorker",
528 "stepName": "STP_UPDATE_OBJECT_GROUP",
529 "behavior": "BLOCKING",
530 "distribution": {
531 "kind": "LIST_IN_FILE",

(suite sur la page suivante)

204 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

532 "element": "UpdateObjectGroup/existing_object_group.json",
533 "type": "ObjectGroup",
534 "statusOnEmptyDistribution": "OK",
535 "bulkSize": 128
536 },
537 "actions": [
538 {
539 "action": {
540 "actionKey": "OBJECT_GROUP_UPDATE",
541 "behavior": "BLOCKING",
542 "lifecycleLog": "FLUSH_LFC"
543 }
544 },
545 {
546 "action": {
547 "actionKey": "COMMIT_LIFE_CYCLE_OBJECT_GROUP",
548 "behavior": "BLOCKING"
549 }
550 },
551 {
552 "action": {
553 "actionKey": "OG_METADATA_STORAGE",
554 "behavior": "BLOCKING",
555 "lifecycleLog": "DISABLED"
556 }
557 }
558]
559 },
560 {
561 "workerGroupId": "DefaultWorker",
562 "stepName": "STP_ACCESSION_REGISTRATION",
563 "behavior": "BLOCKING",
564 "distribution": {
565 "kind": "REF",
566 "element": "SIP/manifest.xml"
567 },
568 "actions": [
569 {
570 "action": {
571 "actionKey": "ACCESSION_REGISTRATION",
572 "behavior": "BLOCKING",
573 "in": [
574 {
575 "name": "globalSEDAParameters.file",
576 "uri": "WORKSPACE:ATR/globalSEDAParameters.json"
577 }
578]
579 }
580 }
581]
582 },
583 {
584 "workerGroupId": "DefaultWorker",
585 "stepName": "STP_INGEST_FINALISATION",
586 "behavior": "FINALLY",
587 "distribution": {
588 "kind": "REF",

(suite sur la page suivante)

4.15. Worker 205

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

589 "element": "SIP/manifest.xml"
590 },
591 "actions": [
592 {
593 "action": {
594 "actionKey": "ATR_NOTIFICATION",
595 "behavior": "NOBLOCKING",
596 "in": [
597 {
598 "name": "mapsUnits.file",
599 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_GUID_MAP.json",
600 "optional": true
601 },
602 {
603 "name": "mapsDO.file",
604 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_GUID_MAP.json",
605 "optional": true
606 },
607 {
608 "name": "mapsDOtoOG.file",
609 "uri": "WORKSPACE:Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP.json",
610 "optional": true
611 },
612 {
613 "name": "mapsDOtoVersionBDO.file",
614 "uri": "WORKSPACE:Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json",
615 "optional": true
616 },
617 {
618 "name": "globalSEDAParameters.file",
619 "uri": "WORKSPACE:ATR/globalSEDAParameters.json",
620 "optional": true
621 },
622 {
623 "name": "mapsOG.file",
624 "uri": "WORKSPACE:Maps/OBJECT_GROUP_ID_TO_GUID_MAP.json",
625 "optional": true
626 },
627 {
628 "name": "mapsExisitingGotToNewGotForAttachment.file",
629 "uri": "WORKSPACE:Maps/EXISTING_GOT_TO_NEW_GOT_GUID_FOR_ATTACHMENT_

→˓MAP.json",
630 "optional": true
631 },
632 {
633 "name": "sedaParams.json",
634 "uri": "WORKSPACE:Maps/sedaParams.json"
635 },
636 {
637 "name": "mapsUnitIdToUnitDetail.file",
638 "uri": "WORKSPACE:Maps/ARCHIVE_ID_TO_ARCHIVE_DETAIL_MAP.jsonl",
639 "optional": true
640 },
641 {
642 "name": "mapsDOGuidToDO.file",
643 "uri": "WORKSPACE:Maps/DO_GUID_TO_DO_MAP.json",
644 "optional": true

(suite sur la page suivante)

206 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

645 }
646],
647 "out": [
648 {
649 "name": "atr.file",
650 "uri": "WORKSPACE:ATR/responseReply.xml"
651 }
652]
653 }
654 },
655 {
656 "action": {
657 "actionKey": "ROLL_BACK",
658 "behavior": "BLOCKING"
659 }
660 }
661]
662 }
663]
664 }

Par exemple, je souhaite ajouter une deuxième vérification, en plus de la vérification du manifest par rapport au XSD.
Je souhaite valider le manifest avec un XSD « maison ». Cette vérification doit générer un fichier de report sur le
Workspace, qui sera utilisé dans un futur proche. Il suffit donc d’ajouter les informations dans le Workflow adéquat.

{
"action": {
"actionKey": "CHECK_SEDA",
"behavior": "BLOCKING"

}
}, {
"action": {
"actionKey": "CHECK_MANIFEST_CUSTOM_XSD",
"behavior": "NOBLOCKING",
"out": [

{
"name": "report.file",
"uri": "WORKSPACE:REPORT/report.txt"

}
]
}

}

De cette manière, l’action de vérification du manifest par un XSD maison se déroulera dans l’étape
« STP_INGEST_CONTROL_SIP » et ne bloquera pas le processus en cas d’erreur (pour que l’on puisse continuer le
workflow en cas d’erreur).

4.15.4.4.2 Ajout du plugin dans la liste des plugins

Une fois l’action déclarée dans le Workflow, il convient de préciser les informations au Worker pour qu’il puisse
connaitre le code à exécuter pour ce type d’action. Dans le fichier de configuration plugins.json de l’ansiblerie du
Worker, il conviendra d’ajouter les lignes suivantes :

"CHECK_MANIFEST_CUSTOM_XSD": {
"className": "mon.package.plugin.CheckManifestCustomXSD",

(suite sur la page suivante)

4.15. Worker 207

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

"propertiesFile": "check_manifest_custom_xsd_plugin.properties"
}

Pour information, le fichier de configuration plugins.json se trouve dans le répertoire /vitam/conf/worker/ du Worker.

4.15.4.4.3 Création du plugin

Maintenant le plugin déclaré, il convient enfin de coder le plugin à proprement parler. Pour ceci, il faut donc créer
une classe CheckManifestCustomXSD.java qui doit implémenter la classe ActionHandler et notamment surcharger la
méthode execute() pour un plugin unitaire ou la méthode executeAll() pour un traitemement de masse.

Le choix de faire un plugin unitaire ou traitement de masse dépend de l’action à réaliser par le plugin. Si cette action
comporte des modifications massives en base de données (par exmeple mise à jour d’unité archivistique), alors le
traitement de masse est à envisager pour profiter au mieux des performances de la base de données.

A contrario, si le traitement est par exemple une transformation de fichier, alors le plugin unitaire est plus adapté.

Il faut, à minima l’arborescence suivante :

/src/main/java/mon/package/plugin/CheckManifestCustomXSD.java /src/main/resources/check_manifest_custom_xsd_plugin.properties

On arrivera à quelque chose dans ce style :

package mon.package.plugin;
public class CheckManifestCustomXSD extends ActionHandler {

// lets decide that the name of this task would be CHECK_TEST_MANIFEST
private static final String CHECK_TEST_MANIFEST = "CHECK_TEST_MANIFEST";
@Override
public ItemStatus execute(WorkerParameters param, HandlerIO handler)

throws ProcessingException, ContentAddressableStorageServerException {
final ItemStatus itemStatus = new ItemStatus(CHECK_TEST_MANIFEST);
// lets get the manifest that is passed as an input
InputStream manifest = null;
try {

manifest = handler.getInputStreamFromWorkspace(
IngestWorkflowConstants.SEDA_FOLDER + "/" + IngestWorkflowConstants.SEDA_

→˓FILE);
} catch (Exception e) {

// error but status code is KO
itemStatus.increment(StatusCode.KO);
System.out.println("Manifest not found or technical problem");
throw new ProcessingException("Manifest not found or technical problem", e);

}
// lets validate with XSD
File reportFile;
try {

reportFile = CustomValidator.validateCustomXSD(manifest, itemStatus);
// in the validateCustomXSD if the validate is ok
// we ll have in the code : itemStatus.increment(StatusCode.OK);
// if it's not : itemStatus.increment(StatusCode.WARNING);

} catch (Exception e) {
// error but status code is KO
System.out.println("technical problem");
itemStatus.increment(StatusCode.KO);

}
handler.addOuputResult(0, reportFile, true);
// lets return the status

(suite sur la page suivante)

208 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

(suite de la page précédente)

return new ItemStatus(CHECK_TEST_MANIFEST).setItemsStatus(CHECK_TEST_MANIFEST,
→˓itemStatus);
}
@Override
public void checkMandatoryIOParameter(HandlerIO handler) throws ProcessingException

→˓{
// Nothing to do here - it s not neccessary to check handlerIO at this moment

}

}

De plus, il faudra créer le fichier de properties (check_manifest_custom_xsd_plugin.properties) associé :

PLUGIN.CHECK_TEST_MANIFEST=Vérification de la cohérence du manifest avec le CUSTOM XSD
PLUGIN.CHECK_TEST_MANIFEST.OK=Manifest conforme au CUSTOM XSD
PLUGIN.CHECK_TEST_MANIFEST.KO=Échec lors de la vérification de la cohérence du
→˓manifest avec le CUSTOM XSD
PLUGIN.CHECK_TEST_MANIFEST.WARNING=Manifest non conforme au CUSTOM XSD

4.15.4.4.4 Installation du plugin

Le plugin devra être fourni sous forme de jar (s’il provient d’une source externe à VITAM) et devra être installé dans
le Worker, dans /vitam/lib/worker/

4.15.5 Idempotence

Pour permettre une bonne résilience de l’application Vitam, il est important de s’assurer de l’idem-potence des plugins
et handlers exécutés lors des différents Workflows. L’idem-potence veut dire que le résultat pour une opération que
l’on exécute plusieurs fois, doit être le même que le résultalt pour une opération exécutée unitairement.

Ici on parle donc des différentes actions et étapes lancées durant les différents processus.

4.15.5.1 Introduction

Pour pouvoir tester l’idem-potence du processus d’ingest, un test d’intégration a été mis en place et permet de lancer
automatiquement un ingest en mode pas à pas. Pour chaque étape, celle-ci sera relancée automatiquement. Son nombre
d’exécution sera de 2. Donc en toute logique, si un problème est rencontré (actuellement, il n’y a pas de problème)
c’est que le développement en cours n’assure pas l’idem-potence.

4.15.5.2 Modifications

4.15.5.2.1 HandlerIO

Dans le HandlerIO, classe permettant comme son nom l’indique de gérer les inputs et les outputs pour les différentes
étapes, une méthode a été ajoutée : removeFolder.

Elle permet notamment de gérer le cas très précis de l’ExtractSeda. Afin d’extraire du manifest, les différents Object-
Group en une multitude de fichiers json dans un répertoire de travail commun, désormais on va tester l’existence de ce
répertoire. Si ce répertoire existe déjà, cela signifie que cette étape a déjà été lancée (partiellement). Pour garantir une
bonne exécution de cette étape, on supprime le répertoire avec ce qu’il contient, afin de permettre de ne pas embarquer
des morceaux de fichiers json faux qui auraient pu potentiellement être créés par une exécution précédente.

4.15. Worker 209

VITAM - Manuel de développement, Version 8.1.2

4.15.5.2.2 Handlers / plugins

4.15.5.2.2.1 AccessionRegisterActionHandler

Afin de veiller à ne pas enregistrer plusieurs fois la même opération dans la collection AccessionRegisterDetail, un
test a été ajouté pour vérifier la présence ou non d’un précédent enregistrement.

4.15.5.2.2.2 ExtractSedaActionHandler

Pour ne pas dupliquer les fichiers générés lors de l’ExtractSeda, le répertoire contenant les outputs (fichiers json) est
effacé au préalable, s’il existe déjà sur le Workspace.

4.15.5.2.2.3 IndexObjectGroupActionPlugin

Si l’on tente de sauvegarder plusieurs fois un même objectGroup dans Metadata, une exception est lancée par le
composant Metadata. Il convient dans ce cas de ne pas considérer cette exception comme FATAL pour le workflow.
Un StatusCode particulier est retourné.

4.15.5.2.2.4 IndexUnitActionPlugin

Si l’on tente de sauvegarder plusieurs fois un même objectGroup dans Metadata, une exception est lancée par le
composant Metadata. Il convient dans ce cas de ne pas considérer cette exception comme FATAL pour le workflow.
Un StatusCode particulier est retourné.

4.15.5.2.2.5 StoreObjectGroupActionPlugin

Si l’on tente de sauvegarder plusieurs fois un même objectGroup dans le Storage, lors de la deuxième exécution (si la
première s’est bien terminée) la partie work ne sera plus présente dans le Json présent dans le workspace. Il convient
dans ce cas de ne pas considérer cette exception comme FATAL pour le workflow. Un StatusCode particulier est
retourné.

4.15.5.2.3 WorkerImpl

Dans cette partie, on traite les retours des Handlers et des plugins. Si on se retrouve, dans le cadre d’actions distribuées,
avec le StatusCode particulier (ALREADY_EXECUTED) alors on n’enregistre pas dans les LFC. Cela permet d’éviter
les doublons dans les LFC Unit et ObjectGroup.

4.16 Workspace

4.16.1 Introduction

4.16.1.1 But de cette documentation

L’objectif de cette documentation est de compléter la Javadoc pour ce module.

210 Chapitre 4. Détails par composant

VITAM - Manuel de développement, Version 8.1.2

4.16.2 workspace

le workspace est un module qui consiste à stocker le sip dans un container lors de traitement. Il y a un controle des
paramètres (SanityChecker.checkJsonAll) transmis avec ESAPI.

4.16.2.1 1- Consommer les services exposés par le module :

1.1 - Introduction :
on peut consommer les services via le sous module workspaceClient notament via la classe WorkspaceClient :

Cette classe contient la liste des methodes suivantes :

∙ CreateContainer :
∙ Paramètres :
∙ containerName : :String
∙ Retourner :

∙ getUriListDigitalObjectFromFolder :
∙ Paramètres :

∙ containerName : :String
∙ folderName : :String

∙ Retourner :
∙ List<URI>

Dans le cas echéant la method return une immuatable empty list.
∙ uncompressObject : cette méthode capable d’extracter des fichiers compressés toute en indiquant

le type de l’archive, pour cette version (v0.9.0) supporte 3 types : zip, tar, tar.gz. Elle sauvgarde
directement les fichiers extractés dans le workspace, notamment dans le container précisé lors de
l’appel (containerName).

∙ Paramètres :

∙ containerName : :String : c’est le nom de container dans lequel on stocke les objets
∙ folderName : :String : c’est le répertoire central (pour cette methode, c’est le sip)
∙ archiveType : :String : c’est le nom ou le type de l’archive (exemple : application/zip ,

application/x-tar)
∙ compressedInputStream : :InputStream : c’est le stream des objets compressés

∙ retourner :
Dans le cas echéant (uncompress KO) la methode génère une exception avec un message internal server.

∙ getObjectInformation :
∙ Paramètres :
∙ containerName : :String
∙ objectName : :String
∙ Retourner :
∙ JsonNode

La méthode retourne un Json contenant des informations sur un objet présent sur le workspace
(et des exceptions en cas d’erreur : objet non existant, erreur server).

∙ purgeOldFilesInContainer : Cette méthode permet de purger les anciens fichiers dans un conteneur (date de
dernière modification date d’au moins une durée donnée)

∙ Paramètres :
∙ containerName : :String
∙ timeToLive : :TimeToLive

4.16. Workspace 211

VITAM - Manuel de développement, Version 8.1.2

4.16.2.2 2.2 - Exemple d’utilisation

D’abord il faut ajouter la dependence sur la pom.xml du projet.

<dependencies>
<groupId>fr.gouv.vitam</groupId>
<artifactId>workspace-client<artifactId>
<version>x.x.x</version>

</dependencies>

Supposons que nous avons besoins d’extraire un SIP de format zip dans le workspace.

InputStream inputStream=new InputStream(zippedFile);
WorkspaceClientFactory.changeMode(WORKSPACE_URL);
WorkspaceClientFactory.changeMode(FileConfiguration);
WorkspaceClient workspaceClient = WorkspaceClientFactory().getInstance().getClient();
workspaceClient.createContainer(containerName);
workspaceClient.uncompressObject(containerName,"SIP","application/zip" inputStream);

4.16.2.3 2- Configuration du pom

Configuration du pom avec maven-surefire-plugin permet le build sous jenkins. Il permet de configurer le chemin des
resources de esapi dans le common private.

212 Chapitre 4. Détails par composant

CHAPITRE 5

Parallélisation des tests

Ce document présente la procédure pour réduire le temps de traitement des tests en les parallélisant. Ce travail réfère
au US#714 et au techDesign IT01.

Il y a des tests TDD et des tests d’intégration dans les modules existants de la plate-forme, nous voulons faire parallé-
liser des classes de tests utilisant JUnit pour avoir la performance. Pour ce but, nous effectuons les étapes suivantes :

∙ Séparation des tests : tests unitaires et test d’intégration

∙ Parallélisation des tests unitaires

∙ Configuration de build avec les options de tests

5.1 Séparation des tests TDD et tests d’intégration

∙ Il y a plusieurs tests d’intégration présents dans le module integration-test :

ProcessingIT : test d’intégration pour différents services : workspace, functional-administration, worker, metadata,
logbook, processing

StorageClientIT : test d’intégration pour le client du service de storage. Cela concerne deux modules :
storage (client & rest) et le client de workspace
WorkerIT : test d’intégration pour les services : workspace, worker, metadata, logbook, processing
FunctionalAdminIT : test d’intégration pour le service FunctionalAdministration.
IngestInternalIT : test d’intégration pour le service IngestInternal.
LogbookCheckConsistencyIT : test d’intégration pour le service de vérification de cohérence des jour-
naux.
.Reconstruction.IT : test d’intégration pour les services de reconstruction et de backup.
SecurityInternalIT : test d’intégration pour le service de sécurité interne.
Ces tests d’intégration sont en mode séquentiel. Pour cela, nous indiquons dans le pom.xml de ce module
de test-integration

213

VITAM - Manuel de développement, Version 8.1.2

<build>
<pluginManagement>

<plugins>
<plugin>

<!-- Run the Junit unit tests in an isolated
→˓classloader and not Parallel. -->

<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<parallel>classes</parallel>
<threadCount>1</threadCount>
<perCoreThreadCount>false</perCoreThreadCount>
<forkCount>1</forkCount>
<reuseForks>false</reuseForks>
<systemPropertyVariables>

<org.owasp.esapi.opsteam>AC001</org.
→˓owasp.esapi.opsteam>

<org.owasp.esapi.devteam>AC001</org.
→˓owasp.esapi.devteam>

<org.owasp.esapi.resources>../common/
→˓common-private/src/main/resources/esapi</org.owasp.esapi.resources>

</systemPropertyVariables>
</configuration>

</plugin>
</plugins>

</pluginManagement>
</build>

5.2 Parallélisation de tests unitaires

Les tests unitaires de chaque module sont configurés pour être lancés en mode parallèle. Pour cela, nous indiquons
dans le pom.xml parent pour la phrase de build

<build>
<plugins>

<plugin>
<!-- Run the Junit unit tests in an isolated classloader. -->
<artifactId>maven-surefire-plugin</artifactId>
<version>2.19.1</version>
<configuration>

<argLine>-Xmx2048m -Dvitam.tmp.folder=/tmp $
→˓{coverageAgent}</argLine>

<parallel>classes</parallel>
<threadCount>3</threadCount>
<perCoreThreadCount>true</perCoreThreadCount>
<forkCount>3C</forkCount>
<reuseForks>false</reuseForks>
<trimStackTrace>false</trimStackTrace>

</configuration>
</plugin>

</plugins>
</build>

214 Chapitre 5. Parallélisation des tests

VITAM - Manuel de développement, Version 8.1.2

5.3 Configuration de build avec les options de tests

∙ mvn install : lancer le build normal avec tous les tests

∙ mvn clean install -DskipTests : pour ignorer tous les tests :

∙ mvn clean test ou mvn clean install -DskipITs : pour ignorer les tests d’intégration

∙ mvn integration-test : pour lancer les tests d’intégration

Pour cela, nous ajoutons le code suivant dans le pom parent.

<plugin>
<executions>

<execution>
<id>integration-test</id>
<goals>

<goal>test</goal>
</goals>
<phase>integration-test</phase>
<configuration>

<skip>${skipITs}</skip>
<excludes>

<exclude>none</exclude>
</excludes>
<includes>

<include>**/*IT.java</include>
</includes>

</configuration>
</execution>

</executions>
</plugin>

∙ mvn clean test-compile failsafe :integration-test : pour exécuter uniquement les tests d’intégration.

Pour cela, nous ajoutons le code suivant dans le pom parent.

<build>
<plugin>

<!-- Run the Junit integration tests in an isolated classloader. -->
<artifactId>maven-failsafe-plugin</artifactId>
<version>2.19.1</version>
<executions>

<execution>
<id>integration-test</id>
<goals>

<goal>integration-test</goal>
<goal>verify</goal>

</goals>
</execution>

</executions>
</plugin>

</build>

5.3. Configuration de build avec les options de tests 215

CHAPITRE 6

Plugin ICU Elasticsearch

Le letter tokenizer Elasticsearch qu’on utilise aujourd’hui n’indexe pas les chiffres. Pour pouvoir les indexer les
chiffres, nous avons besoin d’un plugin qui hérite de ce letter tokenizer.

Nous avons choisi le plugin ICU analysis pour Elasticsearch, https://github.com/elasticsearch/
elasticsearch-analysis-icu cela.

Ce plugin est installé lors de déploiement du système et est associé au Node Elastichsearch Vitam, qui permet aux
autres services de les appeler.

216

https://github.com/elasticsearch/elasticsearch-analysis-icu
https://github.com/elasticsearch/elasticsearch-analysis-icu

CHAPITRE 7

Gestion des bases de données

Ce document présente les points d’attention et une check list lorsque vous avez une modification à faire sur un schéma
de données d’une base de données ou la création d’une requête particulière MongoDB.

7.1 Gestion de l’ajout d’un champ

Si ce champ n’est pas « protégé » (non préfixé par « _ »), seuls les aspects indexations sont à suivre.

Si ce champ est « protégé » (préfixé par un « _ »), quelques règles d’usages sont à respecter :

∙ Il est préfixé en base par « _ » afin de ne pas être en conflit avec des métadonnées externes (notamment pour le
« content » du Unit)

∙ Le nom dans la base doit être court (exemple : _us) afin de limiter l’empreinte mémoire et disque de ce champs
tant pour les index que pour les données, tant pour MongoDB que pour ElasticSearch

∙ Le nom du point de vue usage (externe et interne) doit être explicite (exemple : allunitups)

∙ Il est préfixé d’un “#” pour permettre son interprétation par Vitam comme un champ protégé

∙ Il cache l’implémentation réelle du champ

Pour les collections « Single », les champs protégés sont explicitement indiqués dans le fichier ParserTokens et ne
produiront des erreurs que dans le Back-office.

Certains de ces champs sont interdits en update/insert (depuis l’extérieur), mais autorisés en interne.

La définition d’un tel champ « protégé » s’effectue ainsi :

∙ common-database-vitam

∙ common-database-public

∙ BuilderToken.java : il contient un enum simple définisssant le champ (exemple : ALLUNITUPS(« al-
lunitups »))

∙ VitamFieldsHelper.java : il contient des helpers pour accéder directement à la représentation formelle
(précédé du “#”) le champ (exemple : allunitups())
Le QueryBuilder interdit les champs préfixés par « _ ». Il impose donc l’usage de la notation “#”.

∙ commmon-database-private

217

VITAM - Manuel de développement, Version 8.1.2

∙ ParserTokens.java : il contient la copie exacte de BuilderToken mais y ajoute les méthodes
∙ notAllowedOnSet() qui interdit ou pas l’update/insert depuis l’extérieur. Ce check est réalisé par

les API-internal via les VarNameAdapter.

∙ getPROJECTIONARGS()* qui traduit du champ interne en champ externe. Cette fonction est
utilisé par les deux ci-dessous.

∙ isNotAnalyzed() qui indique si le champ n’est pas indexé

∙ isAnArray() qui indique si le champ est un tableau

∙ isSingleProtectedVariable désigne les variables de collections Single

∙ isAnArrayVariable désigne les variables de collections Single ou Multiple

∙ isSingleNotAnalyzedVariable désigne les variables de collections Single
∙ VarNameAdapter.java pour Unit/ObjectGroup pour usage interne pour Unit/ObjectGroup

∙ VarNameAdapterExternnal.java pour Unit/ObjectGroup pour usage externe (sécurité) pour
Unit/ObjetGroup (default si non renseigné)

∙ VarNameInsertAdapter.java pour Unit/ObjectGroup

∙ VarNameUpdateAdapter.java pour Unit/ObjectGroup (devra être dupliqué en usage externe et in-
terne : protection de certains champs)

∙ SingleVarNameAdapter.java pour les collections hors Unit/ObjectGroup pour usage interne

∙ SingleVarNameAdapterExternal.java pour usage externe (sécurité) pour les collections hors
Unit/ObjectGroup (default si non renseigné)

7.1.1 metadata-core : Unit et ObjectGroup

∙ MongoDbVarNameAdapter.java : autorise les update/insert sur les #protégés et traduit dans les champs définitifs
définis dans MetadataDocument.java, Unit.java et ObjectGroup.java (exemple : #allunitups en _us)

∙ MongoDbMetadataResponseFilter.java : récupère la réponse et retraduit en sens inverse un champs « _xxx » en
son correspondant « #xxxxxxxxx » (exemple : _us en #allunitups)

∙ MetadataDocument.java et Unit.java et ObjectGroup.java pour la définition des champs traduits en interne (for-
mats courts comme « _us » et non « _unitsparents »)

7.1.2 Pour les autres collections

Elles s’appuient sur SingleVarNameAdapater et devraient avoir leurs propres extensions (comme MongoDbVarNa-
meAdapter) ainsi que pour les retours (comme MongoDbMetadataResponseFilter)

7.2 Modification d’une collection : check list

∙ Pour les champs protégés (préfix #)
∙ Ajouter le champ dans les classes BuilderToken, VitamFieldsHelper, ParserTokens

∙ Vérifier/Modifier les VarNameAdapter de la collection s’ils sont bien pris en compte (tant pour les cas
Insert/Update interdits ou pas que pour la traduction dans le nom du champ final)

∙ Modifier le ResponseFilter de la collection pour retraduire en #xxxxx la réponse
∙ Pour tous les champs

∙ Mettre à jour le schéma Json pour prendre en compte le nouveau champ et son type

∙ Si ce champ est utilisé dans des requêtes MongoDB et/ou consitue une clef primaire modifier avec l’inté-
gration les index techniques MongoDb (optimisation et unicité)

218 Chapitre 7. Gestion des bases de données

CHAPITRE 8

Ressources et clients

8.1 Ressources

Le développement des classes REST (Resource) mettant a disposition les points d’API doit respecter les règles sui-
vantes :

∙ Déclarer un Path qui ne risque pas d’entrer en conflit avec un autre

∙ Déclarer un « @produce » et un « @consume » en accordance avec le verbe HTTP utilisé : - Pas de « @produce »
dans le cas du HEAD - Suite à la mise en place de RESTEASY, tout objet envoyé en body de requête ne peut
être null

∙ Si un point d’API renvoie un résultat, il doit uniquement renvoyer au choix : - un objet RequestResponse<T> où
T doit être un POJO (autre que JsonNode) dans l’entity de l’objet Response. Attention, le status code de l’objet
RequestResponse doit être cohérent avec celui de la Response - un stream dans l’entity de la response

∙ Les erreurs sont renvoyées sous la forme d’un objet VitamError.

8.2 Client

Le développement des clients vitam (interne et externe) doit respecter les règles suivantes :

∙ Deux types de réponses peuvent être renvoyés : - un objet RequestResponse<T> où T doit être un POJO (autre
que JsonNode) - un objet Reponse uniquement de le cas où la réponse est un stream

∙ Le client ne doit pas intépréter une réponse dont le format est correct (et ce même si le status n’est pas OK)

∙ Les seules exceptions qui peuvent être renvoyées sont celles générées par le client lui-même, elles doivent toutes
être des VitamClientException

∙ Les clients ne doivent pas utiliser la dépendance common-private

219

CHAPITRE 9

Création d’une machine de dev contenant Swift

Afin de pouvoir tester facilement Swift en local, il est possible de créer en local une machine virtuelle contenant
une implémentation de swift. Cette documentation décrit la procédure d’installation d’une machine virtuelle basé sur
devstack, avec comme hyperviseur Qemu/Kvm ou virtualbox.

9.1 Préparation de la machine virtuelle avec Qemu

Télécharger une version d’ubuntu server [16.04](http://releases.ubuntu.com/16.04/ubuntu-16.04.3-server-amd64.iso).

Pendant la phase d’installation, préciser bien comme locale en_US.UTF-8.

Exemple de commmande pour lancer une vm avec Qemu en spécifiant l’iso à utiliser :

qemu-system-x86_64 -enable-kvm -hda devstack_img -cdrom ../Téléchargements/ubuntu-16.04.3-server-amd64.iso
-m 4096 -boot d

Le paramètre devstack_img correspond au fichier contenant le disque dur qui peut être crée avec la commande

qemu-img create -f raw devstack_img 10G

9.2 Préparation de la machine virtuelle avec Virtualbox

// TODO

9.3 Installation de devstack

Création d’un user stack

sudo useradd -s /bin/bash -d /opt/stack -m stack # echo « stack ALL=(ALL) NOPASSWD : ALL » | sudo tee
/etc/sudoers.d/stack # sudo su - stack

Cloner le projet :

220

http://releases.ubuntu.com/16.04/ubuntu-16.04.3-server-amd64.iso

VITAM - Manuel de développement, Version 8.1.2

git clone https://git.openstack.org/openstack-dev/devstack # cd devstack

Configurer devstack

créer un fichier local.conf with :

[[local|localrc]] ADMIN_PASSWORD=secret DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD SERVICE_PASSWORD=$ADMIN_PASSWORD #
FIXED_RANGE=10.0.0.0/24 HOST_IP=127.0.0.1 SWIFT_HASH=a4ef4e78cde09a21

OFFLINE=True

disable_all_services enable_service key mysql s-proxy s-object s-container s-account

lancer la commande ./stack.sh

Liste des ports à partager :

Host Guest
2222 22
5000 5000
8080 8080
8000 80

Commande pour lancer Qemu avec le transfert de port :

qemu-system-x86_64 -enable-kvm -drive format=raw,file=devstack_img -m 4096 -net nic -net
user,hostfwd=tcp : :8080- :8080,hostfwd=tcp : :5000- :5000,hostfwd=tcp : :8000- :80,hostfwd=tcp : :2222- :22

9.3. Installation de devstack 221

https://git.openstack.org/openstack-dev/devstack

CHAPITRE 10

Annexes

222

Table des figures

223

Liste des tableaux

1 Documents de référence VITAM . 2

224

Index

A
API, 3
AU, 3

B
BDD, 3
BDO, 3

C
CA, 3
CAS, 3
CCFN, 3
CN, 3
COTS, 3
CRL, 3
CRUD, 3

D
DAT, 3
DC, 3
DEX, 3
DIN, 3
DIP, 3
DMV, 3
DNS, 3
DNSSEC, 3
DSL, 3
DUA, 3

E
EAD, 3
EBIOS, 3
ELK, 3

F
FIP, 3

G
GOT, 3

I
IHM, 3
IP, 3
IsaDG, 3

J
JRE, 3
JVM, 4

L
LAN, 4
LFC, 4
LTS, 4

M
M2M, 4
MitM, 4
MoReq, 4

N
NoSQL, 4
NTP, 4

O
OAIS, 4
OOM, 4
OS, 4
OWASP, 4

P
PCA, 4
PDMA, 4
PKI, 4
PRA, 4

R
REST, 4
RGAA, 4
RGI, 4

225

VITAM - Manuel de développement, Version 8.1.2

RPM, 4

S
SAE, 4
SEDA, 4
SGBD, 5
SGBDR, 5
SIA, 5
SIEM, 5
SIP, 5
SSH, 5
Swift, 5

T
TLS, 5
TNA, 5
TNR, 5
TTL, 5

U
UDP, 5
UID, 5

V
VITAM, 5
VM, 5

W
WAF, 5
WAN, 5

226 Index

	Introduction
	But de cette documentation
	Destinataires de ce document

	Rappels
	Information concernant les licences
	Documents de référence
	Documents internes
	Référentiels externes

	Glossaire

	Configuration de l’environnement de développement
	1. Prérequis
	2. Récupérez le code source
	3. Démarrez Docker
	4. Dans Docker
	5. Ajoutez les lignes suivantes dans le fichier /etc/hosts
	7. Lancez IntelliJ
	8. Importez le project Vitam dans IntelliJ
	9. Initialisez la configuration
	10. Dans IntelliJ, configurez les chemins suivants pour chaque module du projet :
	11. Dossier de travail:
	12. initialisation de la base de données :
	13. Démarrez les services dans IntelliJ
	14. Démarrage de l’IHM
	15. Utilisez Vitam

	Détails par composant
	Access
	Introduction
	But de cette documentation

	Composant Access
	Utilisation
	Configuration
	La factory

	Le Mock
	L’application rest
	Le client

	Exemple d’usage générique
	Exemple d’usage générique

	Filtre Contrat d’accès
	Classe de filtre
	Implémenter des filters

	Access-rest
	Présentation
	fr.gouv.vitam.access.external.rest
	Rest API
	Rest API
	Rest API
	Rest API

	contrôle des flux d’accèss
	vitam-pooling-client
	Utilisation
	Paramètres
	Le client

	Collect
	Introduction
	DAT : module collect
	Modules et packages
	Classes métier
	collect-rest
	collect-client

	COLLECT
	L’application rest
	collect : CollectMain

	Common
	Introduction
	But de cette documentation
	Utilitaires Commons
	FileUtil
	LocalDateUtil
	ServerIdentity
	Usage
	Les usages principaux

	SystemPropertyUtil
	PropertiesUtils
	BaseXXX
	CharsetUtils
	ParametersChecker
	SingletonUtil
	StringUtils

	GUID
	Logging
	LRU
	Digest
	Json
	Exception
	Client

	Global Unique Identifier (GUID) pour Vitam
	Spécifier ProcessId
	GUID Factory
	Pour la partie interne Vitam
	Pour la partie interne et public Vitam

	Attention

	Digest
	Usage

	Logging
	Initialisation
	Usage
	Pour l’usage interne Vitam

	JunitHelper
	MongoDb or Web Server Junit Support

	Client
	But de cette documentation
	Client Vitam
	Configuration

	DirectedCycle
	Initialisation
	Usage
	Remarque

	Graph
	Initialisation
	Usage

	Code d’erreur Vitam
	Les codes
	Code service
	Code domaine
	Code Vitam
	Ajout d’élement dans les énums

	Utilisation

	Common format identification
	But de cette documentation
	Outil Format Identifier
	Configuration

	Common-storage
	Présentation des APIs Java
	Introduction
	Liste des méthodes

	Configuration
	Configuration par code
	Exemple filesystem
	Exemple SWIFT CEPH
	Exemple SWIFT OpenStack
	Exemple S3

	Configuration par fichier

	Présentation des méthodes dans SWIFT & FileSystem
	Introduction
	Liste des méthodes
	getObjectInformation

	Détail de l’implémentation HashFileSystem

	Métriques dans VITAM
	Introduction
	Fonctionnement des métriques dropwizard
	Métriques métier
	Reporters
	Legacy

	Prometeus
	API
	Configuration du serveur promtheus
	Implémentation des métriques
	Récupération des métriques déjà existante
	Développement de nouvelles métriques prometheus

	Common-private
	Génération de certificats et de keystore
	Présentation

	esapi utilisation
	Format Identifiers
	But de cette documentation
	Format Identifier
	Implémentation Mock
	Implémentation Siegried

	Format Identifier Factory
	Configuration
	Méthodes

	Introduction
	But de cette documentation

	DAT : module Graph
	modules & packages
	Modules et packages

	Paramètres
	Présentation
	Principe
	Mise en place
	Nom des paramètres
	Interface
	Possibilité d’avoir une classe abstraite
	Possibilité d’avoir une factory
	Code exemple

	Exemple d’utilisation dans le code Vitam

	Uniform Resource Identifier (URI) (vitam)
	fonctions

	Configuration de apache shiro
	Présentation authentification via certificats
	Décryptage de shiro.ini
	Utilisation des certificats
	Présentation
	Classes de filtres
	Implémenter des filters
	Appliquer le filtre pour Vitam
	Présentation
	Classe de filtre
	Ajout du filtre
	Modules Vitam impactés
	Présentation
	Utilisation

	Présentation
	Classe de configuration
	Implémentation dans les serveurs de Vitam

	Implémentation de l’éxécution des requêtes mono-query DSL
	Implémentation des query builder
	Implémentation de DbRequestSingle

	Implémentation de l’authentification
	Implémentation de l’authentification (MongoDbAccess)

	Implémentation du secret de la plateforme
	Présentation
	Implémentation

	Functional administration
	Introduction
	DAT : module functional-administration
	Modules et packages
	Classes métiers
	functional-administration-common
	functional-administration-format
	functional-administration-rest
	functional-administration-client
	functional-administration-rules
	functional-administration-accession-register
	functional-administration-contract
	functional-administration-profile
	functional-administration-context
	functional-administration-security-profile

	Administration-Management-Common
	1. Modules et packages
	2. Classes
	2.1 Class ElasticsearchAccessFunctionalAdmin
	2.2 Class MongoDbAccessAdminImpl

	Administration-Management-client
	Utilisation
	Paramètres
	La factory
	Le Mock

	Le client

	IHM demo
	Introduction
	But de cette documentation

	IHM Front
	Cette documentation décrit la partie front/Angular de l’ihm et en particulier sa configuration et ses modules.
	Utils et général / Composition du projet Angular
	Composition du projet
	Gulp et déploiement à chaud
	Karma et Tests unitaires
	Qualité du code Javascript
	Modèle MVC
	Internationalisation

	Modules IHM Front
	Module archive-unit
	Directive display-field
	Directive display-fieldtree
	Affichage des Libéllés des champs

	Affichage dynamiqueTable
	Service de recherche
	Service d’affichage des mesures d’un objet physique

	IHM Front - Tests
	Cette documentation décrit la partie tests (unitaires et end to end) du front/Angular de l’ihm.
	Tests unitaires
	Installation / Lancement des tests unitaires
	Informations sur la configuration des tests unitaires
	Exemples de tests unitaires

	Tests end to end
	Initialisation / Lancement des tests e2e
	Informations sur la configuration des tests e2e
	Exemple d’utilisation des outils e2e

	DAT : module IHM logbook operations
	Modules et packages
	Classes de métiers
	Partie Backend
	Partie Frontend

	ihm-demo
	Présentation
	Services
	Rest API

	IHM Front - Requêtes HTTP et Tenant ID
	Cette documentation décrit le process de récupération / sélection et communication du tenant ID depuis IHM-DEMO front vers les API publiques VITAM
	Gestion du tenantId
	Coté front
	Coté serveur d’app

	Création de requêtes HTTP utilisant un tenantID (front)
	Utilisation de ihmDemoClient
	Requêtes http personnalisées

	Gestion des droits sur IHM demo
	Cette documentation décrit la gestion des droits sur IHM-demo.
	Gestion des autorisations
	Gestion des permissions

	IHM Filter for X-Request-ID
	Description
	Côté serveur
	Côté IHM Front

	IHM Demo serveur
	IhmMain
	Classe BusinessApplication
	Configuration

	IHM demo
	IHM Front
	Cette documentation décrit la partie front/Angular de l’IHM et en particulier sa configuration et ses idéologies architecturales
	Utils et général / Composition du projet Angular
	Builds et lancement des tests
	Composant de Page
	Service de Composant
	Sous Composant

	ihm-recette
	Présentation
	Services
	Rest API

	IHM Recette serveur
	IhmRecette
	Classe BusinessApplication
	Configuration
	Fichier ihm-recette.conf

	Ingest
	Introduction
	DAT : module ingest-internal
	Modules et packages
	Classes métier
	ingest-internal-model
	ingest-internal-api
	ingest-internal-core
	ingest-internal-rest
	ingest-internal-client

	DAT : module ingest-external
	Modules et packages
	Classes métiers
	ingest-external-common
	ingest-external-api
	ingest-external-core
	ingest-external-rest
	ingest-external-client

	ingest-internal-client
	Utilisation
	Paramètres
	La factory
	Le Mock

	Le client

	ingest-external-client
	Utilisation
	Paramètres
	La factory
	Le Mock

	Le client

	ingest-external-antivirus
	INGEST
	L’application rest
	ingest-internal : IngestInternalApplication
	ingest-external : IngestExternalApplication

	Security-Internal
	Introduction
	But de cette documentation

	Certificats
	Utilisation
	La factory

	Le Mock
	Le client

	Logbook
	Introduction
	But de cette documentation

	Logbook
	Utilisation
	Paramètres
	La factory
	Le Mock

	Le client
	Exemple d’usage générique
	Exemple Ingest
	Exemple ihm-demo-web-application

	Données

	Logbook-lifecycle
	Utilisation
	Paramètres
	La factory
	Le Mock

	Le client

	Metadata
	Métadata - Introduction
	DAT : module metadata
	Modules et packages
	Classes métiers
	metadata-api
	metadata-core
	metadata-rest
	metadata-client

	Métadata
	Utilisation
	Paramètres
	Le client
	Créer le client metadata
	Accéder aux fonctionnalités
	Insérer des ArchiveUnits
	Insérer des ObjectGroups

	Sélection des ArchiveUnits
	Sélection d’un ObjectGroup

	Métadata : API REST Raml
	Présentation
	Rest API

	Métadata-tenant
	Métadata
	Utilisation
	Paramètres
	Calcul des règles de gestion pour une unité archivistique via API dédiée
	La prévention d’héritage
	L’exclusion d’héritage
	La redéfinition de règles ou de propriétés

	Calcul des règles de gestion pour une unité archivistique (déprécié)

	Désynchronisation des bases de données
	Traitement

	Processing
	Introduction
	But de cette documentation

	Paramètres
	WorkerParamerterName, les noms de paramètre
	ParameterHelper, le helper
	WorkerParametersFactory, la factory
	AbstractWorkerParameters, les implémentations par défaut
	DefaultWorkerParameters, l’implémentation actuelle

	Processing Management
	Présentation
	Processing-management
	Rest API
	Core
	La machine à état:
	Processing-management-client
	Utilisation
	Exemple:

	Processing-data

	Configuration

	Processing Distributor
	Présentation
	Processing-distributor

	Rest API
	Core
	Processing-distributor-client

	Processing Engine
	Présentation
	Api
	Core

	Etudes en cours
	Workspace
	Arborescence

	Workflow
	DefaultIngestWorkflow
	Etapes
	Création d’un nouveau step

	DefaultRulesUpdateWorkflow

	Nombre d’objets numériques conforme
	Usage
	Pour l’usage interne Vitam

	Métriques
	Introduction
	Liste des métriques

	Scheduler
	Introduction
	SCHEDULER
	Création d’un nouveau job

	Storage
	Présentation
	Storage Driver
	Utilisation d’un Driver
	Vérifier la disponibilité de l’offre
	Vérification de la capacité de l’offre
	Put d’un objet dans l’offre de stockage
	Get d’un objet dans l’offre de stockage
	Head d’un objet dans l’offre de stockage
	Delete d’un objet dans l’offre de stockage
	Lister des types d’objets dans l’offre de stockage
	Récupérer les metadatas d’un objet

	Storage Engine
	Modes ReadOnly / Write Protection
	Storage Engine Client
	La factory
	Le Mock
	Le mode de production

	Les services

	Métriques
	Introduction
	Liste des métriques

	Technical administration
	Introduction

	Worker
	Introduction
	But de cette documentation

	Worker
	Présentation
	Worker-server
	Rest API
	Registration
	Configuration de worker
	WorkerBean
	Persistence des workers
	Désenregistrement d’un worker

	Worker-core
	Focus sur la gestion des entrées / sorties des Handlers
	Cas particulier des Tests unitaires
	Création d’un nouveau handler

	Details des Handlers
	Détail du handler : CheckConformityActionHandler
	Description
	Exécution
	4.1.3 journalisation

	logbook lifecycle
	modules utilisés
	cas d’erreur

	Détail du handler : CheckObjectsNumberActionHandler
	description

	Détail du handler : CheckObjectUnitConsistencyActionHandler
	Détail du handler : CheckSedaActionHandler
	Détail du handler : CheckStorageAvailabilityActionHandler
	Détail du handler : CheckVersionActionHandler
	Détail du handler : ExtractSedaActionHandler
	description
	Détail des différentes maps utilisées
	Vérifier les ArchiveUnit du SIP
	Détails du data dans l’itemStatus retourné

	Détail du handler : IndexObjectGroupActionHandler
	4.7.1 description

	4.8 Détail du handler : IndexUnitActionHandler

	4.8.1 description
	4.9 Détail du handler : StoreObjectGroupActionHandler

	4.9.1 description
	4.10 Détail du handler : FormatIdentificationActionHandler

	4.10.1 Description
	4.10.2 Détail des différentes maps utilisées :
	4.10.3 exécution
	4.10.4 journalisation : logbook operation? logbook life cycle?
	4.10.5 modules utilisés
	4.10.6 cas d’erreur
	Détail du handler : TransferNotificationActionHandler
	Description
	Détail des différentes maps utilisées
	exécution
	journalisation : logbook operation? logbook life cycle?
	modules utilisés
	cas d’erreur

	Détail du handler : AccessionRegisterActionHandler
	Description
	Détail des maps utilisées
	Exécution

	Détail du handler : CheckIngestContractActionHandler
	Description
	Détail des données utilisées
	Exécution

	Détail du handler : CheckNoObjectsActionHandler
	Description
	Détail des données utilisées
	exécution

	Détail du plugin : CheckArchiveUnitSchema
	Description
	Détail des données utilisées
	exécution
	détail des vérifications

	Détail du handler : CheckArchiveProfileActionHandler
	Description
	exécution

	Détail du handler : CheckArchiveProfileRelationActionHandler
	Description
	exécution

	Détail du handler : ListArchiveUnitsActionHandler
	Description
	exécution

	Détail du handler : ListRunningIngestsActionHandler
	Description
	exécution

	Détail du plugin : ArchiveUnitRulesUpdateActionPlugin
	Description
	exécution

	Détail du plugin : RunningIngestsUpdateActionPlugin
	Description
	exécution

	Détail du handler : ListLifecycleTraceabilityActionHandler
	Description
	exécution

	Détail du plugin : CreateObjectSecureFileActionPlugin
	Description
	exécution

	Détail du plugin : CreateUnitSecureFileActionPlugin
	Description
	exécution

	Détail du plugin : CheckClassificationLevelActionPlugin
	Description
	exécution

	Détail du handler : FinalizeLifecycleTraceabilityActionHandler
	Description
	exécution

	Détail du handler : GenerateAuditReportActionHandler
	Description
	exécution

	Détail du plugin : AuditCheckObjectPlugin
	Description
	exécution

	Détail du plugin : CheckExistenceObjectPlugin
	Description
	exécution

	Détail du plugin : CheckIntegrityObjectPlugin
	Description
	exécution

	Worker-common
	Worker-client

	Worker Client
	La factory
	Le Mock
	Le mode de production

	Les services

	Worker Plugin
	Présentation
	Présentation de l’architecture VITAM
	Définition du plugin VITAM

	Gestion des entrants du plugin
	WorkerParameters
	HandlerIO
	Récupérer un Json sur le workspace
	Transférer un fichier sur le Workspace
	Récupérer un objet spécifique déterminé dans le workflow
	Travailler sur le Workspace sur un fichier temporaire
	Enregistrer un output

	Gestion des statuts du plugin : ItemStatus
	Journalisation : opération et cycle de vie

	Intégration d’un nouveau plugin
	Ajout de l’action dans le Workflow
	Ajout du plugin dans la liste des plugins
	Création du plugin
	Installation du plugin

	Idempotence
	Introduction
	Modifications
	HandlerIO
	Handlers / plugins
	AccessionRegisterActionHandler
	ExtractSedaActionHandler
	IndexObjectGroupActionPlugin
	IndexUnitActionPlugin
	StoreObjectGroupActionPlugin

	WorkerImpl

	Workspace
	Introduction
	But de cette documentation

	workspace
	1- Consommer les services exposés par le module:
	2.2 - Exemple d’utilisation
	2- Configuration du pom

	Parallélisation des tests
	Séparation des tests TDD et tests d’intégration
	Parallélisation de tests unitaires
	Configuration de build avec les options de tests

	Plugin ICU Elasticsearch
	Gestion des bases de données
	Gestion de l’ajout d’un champ
	metadata-core : Unit et ObjectGroup
	Pour les autres collections

	Modification d’une collection : check list

	Ressources et clients
	Ressources
	Client

	Création d’une machine de dev contenant Swift
	Préparation de la machine virtuelle avec Qemu
	Préparation de la machine virtuelle avec Virtualbox
	Installation de devstack

	Annexes
	Index

