PROGRAMME

VIEGM

aaG ® @ G @ G &
archivage numerique

VITAM - Manuel Integration Applicative

Version 7.1.5

VITAM

janv. 13, 2026

Table des matieres

VITAM

1.1 Architecture générale e e e e e e e e e e

1.2 Architecturedes flux

API

2.1 Formation générale des APl externes e
211 Services i e e e e
2.1.2 Quelques Ressources L e e e e
213 Format. L e e e e e e e

2.2 Clientsd’appelsJava o 0 o 0 e e e e e e e e

Exemples

3.1 Recherche d’unités archivistiques par ArchivalAgencyArchiveUnitldentifier

3.2 Recherche de registre de fonds par producteur (FRAN_NP_005568)

3.3 Recherche d’unités archivistiques par titre AND description AND dates

3.4 Recherche d’unités archivistiques par libre titre OR description

DSL Java Vitam

4.1 Générationderequétes DSLenJava L e e

4.2 Exemplesd’usagesduDSL L
42.1 Partie SQUETY e e e e e e e
422 Partie $action dans la fonction Update,

Utilisation des clients externes

5.1
52

5.3

Client Ingest e
CHENt ACCESS . . . v v v o e e e e e e e e e e e e e e e e e
S22 ACCESS . .
522 Admin
Configuration d’'un client externe oL e

N —

LW W W W W W

0 J N L

cHAPITRE 1

VITAM

1.1 Architecture générale

Connecteurs pour
les dépots de SIP
(SEDA - Z44-022)

Connecteurs pour
les requétes
depuis des

Applications métiers

VITAM

(OAIS + Z 42-013)

Connecteur d'acceés)
Lecture / Ecriture L
aux archives

Plusieurs offres
de stockage

concurremment
(aumoins 1 sera
proposée par VITAM)

VITAM - Manuel Intégration Applicative, Version 7.1.5

1.2 Architecture des flux

Archiviste
Super

Utilisateur !ﬁ

.
.

Utilisées en fabsance da SIA ™~

(Pariode 2017 - 2019)

APPLICATIONS TIERS |

Apps. Versantes
(SI, Téléversement,
autres,...)
Référentiels
extemes

FRONT OFFICE

- %;
& Archivistes Metiers

IHM SIA

==

ARl inama

Gestion Gestion Radhachss Racharches
des des g Avcds
Entrées Archives Acoes

L R

Domaines "StoryMap"

. Entrées

i Gestion des archives
J existantes

Accés
. Préservation

| Administration

. Stockage

Vitam

Gestion de
la préservation,

AP dadmin. Fetalla

AP Moteur domnées

P

AP1 Gast journaaux

Stockage archives

AP gest offre sock

Stockage archives

Archiviste

| — Super

“Ulili‘;’;‘mu
o

Administrateur
technique

Chapitre 1. VITAM

CHAPITRE 2

API

2.1 Formation générale des API externes

2.1.1 Services

e ingest-external : Opérations d’entrées
e access-external : Opérations d’acces et journaux d’opérations

e admin-external : Gestion du référentiel et opérations d’administration

2.1.2 Quelques Ressources

e /ingest-external/vl/ingests
e /admin-external/vl/formats

e /access—external/vl/units

2.1.3 Format

POST /access-external /vl /units
VERB Endpoint Version Ressource

La documentation des API REST décrit en détail les endpoints, les conventions d’appels ainsi que le language de
requétes DSL.

2.2 Clients d’appels Java

Vitam est livré avec des clients d’appels externes en Java. Ils sont notamment accessibles depuis les packages des
clients suivants :

VITAM - Manuel Intégration Applicative, Version 7.1.5

e Ingest External Client : fr.gouv.vitam.ingest.external.client
e Access External Client : fr.gouv.vitam.access.external.client

De plus, plusieurs helpers sont disponibles pour la construction des requétes DSL dans common/
common-database-vitam/common-database-public:

e fr.gouv.vitam.common.database.builder.query ; notamment VitamFieldsHelper et QueryHelper
e fr.gouv.vitam.common.database.builder.query.action ; dont UpdateActionHelper

e fr.gouv.vitam.common.database.builder.request.multiple ; dont DeleteMultiQuery, SelectMultiQuery, Insert-
MultiQuery, UpdateMultiQuery

e fr.gouv.vitam.common.database.builder.request.single ; dont Delete, Insert, Select, Update

La documentation JavaDoc décrit en détail les API clientes Java.

4 Chapitre 2. API

CHAPITRE 3

Exemples

3.1 Recherche d’unités archivistiques par ArchivalAgencyArchiveU-
nitldentifier

EndPoint : /access-external/v1/units

Client Java

try (AccessExternalClient client = AccessExternalClientFactory.getInstance().

—getClient ()) {
Integer tenantId = 0; // a titre d'exemple
String contract = "myContract"; // a titre d'exemple
final String selectQuery = "{\"Squery\": [{\"Seg\": {\
—"ArchivalAgencyArchiveUnitIdentifier\" : \"20130456/3\"}}]1}";

final JsonNode queryJson = JsonHandler.getFromString(selectQuery);

client.selectUnits (new VitamContext (tenantId) .setAccessContract (contract),

—queryJdson) ;
} catch (InvalidParseOperationException

///Log

VitamClientException e) {

Client Java avec construction DSL

EndPoint : access-external/v1/units

JsonNode queryDsgl = null;
Integer tenantId = 0; // a titre d'exemple
String contract = "myContract"; // a titre d'exemple

try (AccessExternalClient client = AccessExternalClientFactory.getInstance().

—getClient ()) {
Query query = QueryHelper.eqg("ArchivalAgencyArchiveUnitIdentifier",

SelectMultiQuery select = new SelectMultiQuery ()

.addQueries (query)
.setLimitFilter (0, 100);

"20130456/3");

(suite sur Ja page suivante)

VITAM - Manuel Intégration Applicative, Version 7.1.5

(suite de la page précédente)

client.selectUnits (new VitamContext (tenantId) .setAccessContract (contract), select.
—getFinalSelect ());
} catch (InvalidCreateOperationException | InvalidParseOperationException |
—VitamClientException e) {

///Log ..

Postman
POST /access-external/v1/units

Indiquer pour la requéte POST :
e Header :
X-Http-Method-Override : GET
X-Tenant-1d : 0
e X-Access-Contract-Id : myContract

Accept : application/json

Content-Type : application/json
Body :

"S$Sroots": [],
"$query": [
{
"Seq":
"ArchivalAgencyArchiveUnitIdentifier": "20130456/3"

}
]I
"$filter": {1},
"$projection": {}

3.2 Recherche de registre de fonds par producteur
(FRAN_NP_005568)

Client Java

Endpoint : /admin-external/v1/accessionregisters

Integer tenantlId = 0; // a titre d'exemple
String contract = "myContract"; // a titre d'exemple
final String queryDsl = "{\"Squery\": [{\"Seg\": {\"OriginatingAgency\" : \"FRAN_NP_
—005568\"}1}11}";
try (AdminExternalClient client = AdminExternalClientFactory.getInstance() .
—getClient ()) {
final JsonNode queryJson = JsonHandler.getFromString(queryDsl);
client.findAccessionRegister (new VitamContext (tenantId) .
—setAccessContract (contract), queryJdson);
} catch (InvalidParseOperationException | VitamClientException e) {
// LOG

6 Chapitre 3. Exemples

VITAM - Manuel Intégration Applicative, Version 7.1.5

Client Java avec construction DSL

Endpoint : /admin-external/v1/accessionregisters

Integer tenantld = 0; // a titre d'exemple
String contract = "myContract"; // a titre d'exemple=
Select select = new Select ();
try (AdminExternalClient client = AdminExternalClientFactory.getInstance() .
—getClient ()) {

select.setQuery (QueryHelper.eq("OriginatingAgency", "FRAN_NP_005568"));

client.findAccessionRegister (new VitamContext (tenantId) .
—setAccessContract (contract),

select.getFinalSelect ());

} catch (VitamClientException | InvalidCreateOperationException e) {
// LOG

}

Postman

POST /admin-external/v1/accessionregisters

Indiquer pour la requéte POST :

e Header :

e X-Http-Method-Override : GET

o X-Tenant-Id : 0

o X-Access-Contract-Id : myContract
e Accept : application/json

e Content-Type : application/json

e Body

n$query" . {
"$eq" : { "OriginatingAgency" : "FRAN_NP_005568" }
by
"$filter":{},
"$projection": {}

3.3 Recherche d’unités archivistiques par titre AND description AND
dates

Client Java

Endpoint : /access-external/v1/units

Integer tenantId = 0; // a titre d'exemple
String contract = "myContract"; // a titre d'exemple
Select select = new Select ();
try (AccessExternalClient client = AccessExternalClientFactory.getInstance().
—getClient ()) {
MatchQuery titleQ = QueryHelper.match("Title", "myTitle");
CompareQuery dateQ = QueryHelper.eqg("StartDate", "2015-07-24T02:15:28.2872");

(suite sur Ta page suivante)

3.3. Recherche d’unités archivistiques par titre AND description AND dates 7

VITAM - Manuel Intégration Applicative, Version 7.1.5

(suite de la page précédente)

MatchQuery descQ = QueryHelper.match ("Description", "myDescription");
select.setQuery (QueryHelper.and() .add(titleQ, dateQ, descQ));
client.selectUnits (new VitamContext (tenantId) .setAccessContract (contract), select.
—getFinalSelect ());
} catch (InvalidCreateOperationException | VitamClientException e) {
///Log ...
}

Postman
GET /access-external/v1/units Indiquer pour la requéte POST :

e Header :

e X-Http-Method-Override : GET
X-Tenant-Id : 0
X-Access-Contract-Id : myContract

Accept : application/json

Content-Type : application/json

e Body :
{
"$roots": [],
"$query": [
{
"$and": [
{
"Smatch": {
"Title" : "myTitle"
}
}V
{
"Smatch": {
"Description" : "myDescription"
}
}I
{
"Seq" : {
"StartDate" : "2015-07-24T02:15:28.282z2"

}

}
] r
"$filter": {1},
"$projection": {}

}

3.4 Recherche d’unités archivistiques par libre titre OR description

Client Java

Endpoint : /access-external/v1/units

8 Chapitre 3. Exemples

VITAM - Manuel Intégration Applicative, Version 7.1.5

Integer tenantld = 0; // a titre d'exemple

String contract = "myContract"; // a titre d'exemple

Select select = new Select ();

try (AccessExternalClient client = AccessExternalClientFactory.getInstance().
—getClient ()) {

MatchQuery titleQ = QueryHelper.match("Title", "myTitle");
MatchQuery descQ = QueryHelper.match ("Description”, "myDescription");
select.setQuery (QueryHelper.or () .add(titleQ, descQ));
client.selectUnits (new VitamContext (tenantId) .setAccessContract (contract), select.
—getFinalSelect ());
} catch (InvalidCreateOperationException
///Log

VitamClientException e) {

Postman
GET /access-external/v1/units
Indiquer pour la requéte POST :

e Header :

o X-Http-Method-Override : GET
X-Tenant-1d : 0
X-Access-Contract-Id : myContract

Accept : application/json

Content-Type : application/json

e Body :
{
"S$Sroots": [],
"$query": [
{
"Sor": [
{
"$match": {
"Title" : "myTitle"
t
b
{
"S$Smatch": {
"Description" : "myDescription"

"$filter": {},
"$projection": {}

3.4. Recherche d’unités archivistiques par libre titre OR description 9

CHAPITRE 4

DSL Java Vitam

Cette partie va essayer de montrer quelques exemples d’usages du DSL a I’aide de la librairie DSL Java Vitam dans

différentes conditions.

4.1 Génération de requétes DSL en Java

Les clients externes java Vitam offrent la possibilité de créer les requétes DSL a partir des librairies DSL. Il existent 4

types de requétes DSL au format Json :
requétes DSL de recherche (SELECT SINGLE)

e requétes DSL de recherche de type graphe (SELECT MULTIPLE) EXPERIMENTAL

requéte DSL d’acces unitaire (GET BY ID) qui peut se générer de deux manieres différentes

e requéte DSL de modification unitaire (UPDATE BY ID) qui peut se générer de deux manieres différentes

Pour le choix de la requéte nécessaire, se référer a la document de I’ API rest Vitam. Exemples de code de génération :

e requéte DSL graphe pour recherche sur métadonnées : Select Multi Query (collections multi-query : Unit et

Objects)

include fr.gouv.vitam.common.database.builder.request.multiple.SelectMultiQuery;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. *;
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;

Query queryl = match("Title", "titre").setDepthLimit (4);
Query query2 = exists("FilePlanPosition") .setDepthLimit (3);
SelectMultiQuery select = new SelectMultiQuery () .addRoots ("id0")
.addQueries (queryl, query2)
.setLimitFilter (0, 100)
.addProjection(id (), "Title", type(), parents(), object());
JsonNode json = select.getFinalSelect();

e requéte DSL unitaire d’acces pour les métadonnées : Select By Id (collections multi-query : Unit et Objects)

10

VITAM - Manuel Intégration Applicative, Version 7.1.5

include fr.gouv.vitam.common.database.builder.request.multiple.SelectMultiQuery;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. x;
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;

SelectMultiQuery select = new SelectMultiQuery ()
.addProjection (id (), "Title");
JsonNode json = select.getFinalSelectById();

e requéte DSL graphe pour recherche sur les données référentiel et logbook : Select Single Query

include fr.gouv.vitam.common.database.builder.request.single.Select;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. x;
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;

Query query = eq("Identifier", "ID");

Select select = new Select()
.setQuery (query)
.setLimitFilter (0, 100)
.addProjection();

JsonNode json = select.getFinalSelect();

e requéte DSL unitaire d’acces pour les données référentiel et logbook : Select By Id

include fr.gouv.vitam.common.database.builder.request.single.Select;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. x;
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. *;

Select select = new Select ()
.addProjection (id (), "Name");
JsonNode json = select.getFinalSelectById();

e requéte DSL de modification unitaire pour les métadonnées : Update By Id (collection multi-query : Unit et
Objects)

include fr.gouv.vitam.common.database.builder.request.multiple.UpdateMultiQuery;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. *;
static include fr.gouv.vitam.common.database.builder.query.action.UpdateActionHelper.

x g

Action action = set ("Description", "Ma nouvelle description");
UpdateMultiQuery update = new UpdateMultiQuery ()

.addAction (action);
JsonNode json = update.getFinalUpdateById();

e requéte DSL de modification unitaire pour les données référentiel et logbook : Update By Id (collection single)

include fr.gouv.vitam.common.database.builder.request.single.Update;
static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. *;
static include fr.gouv.vitam.common.database.builder.query.action.UpdateActionHelper.

kg

Action action set ("Name", "Mon nouveau nom");
Update update = new Update () .addActions (action);
JsonNode json = update.getFinalUpdateById() ;

4.1. Génération de requétes DSL en Java 11

VITAM - Manuel Intégration Applicative, Version 7.1.5

4.2 Exemples d’usages du DSL

4.2.1 Partie $query

e $and, $or, $not

{ "$and" : [{ "Sgte" : { "StartDate" : "2014-03-23T00:00:00" } 1}, { "s1t" : {

—"StartDate" : "2014-04-23T00:00:00" } } 1 1}

static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
Query query = and().add(gte("StartDate", dateFormat.parse("2014-03-23T00:00:00")),
lt("StartDate", dateFormat.parse("2014-04-23T00:00:00"));

o $eq, $ne, $lt, $lte, $gt, $gte

{ "$gte" : { "StartDate" : "2014-03-23T00:00:00" } }

static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
dateFormat.parse ("2014-03-23T00:00:00"));

Query query = gt ("StartDate",

e $range

{ "Srange" : { "StartDate" : { "Sgte" : "2014-03-23T00:00:00", "$lt" : "2014-04-

—23T00:00:00™ } } 1}

static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
Query query = range ("StartDate", dateFormat.parse("2014-03-23T00:00:00"), true,
dateFormat.parse ("2014-04-23T00:00:00"), true);

o S$exists

{ "Sexists" : "StartDate" }

static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;

Query query = exists("StartDate");

e $in, $nin

{ "$in" : { "#unitups" : ["idl", "id2"] } }

.vitam.common.database.builder.query.VitamFieldsHelper. x;

static include fr.gouv
.vitam.common.database.builder.query.QueryHelper. ;

static include fr.gouv
Query query = in(unitups(), "id1l", "id2");

e S$wildcard

{ "Swildcard" : { "#type" : "FACxO01l" } }

static include fr.gouv.vitam.common.database.builder.query.VitamFieldsHelper. x;
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;

Query query = wildcard(type(), "FAC*01");

12 Chapitre 4. DSL Java Vitam

VITAM - Manuel Intégration Applicative, Version 7.1.5
e $match, $match_all, $match_phrase, $match_phrase_prefix
{ "Smatch" : { "Title" : "Napoléon Waterloo" } }
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
Query query = match("Title", "Napoléon Waterloo");
{ "Smatch_phrase" : { "Description" : "le petit chat est mort" } }
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. *;
Query query = matchPhrase("Description", "le petit chat est mort");
o $regex
{ "Sregex" : { "Identifier" : "ACx" } }
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
Query query = regex("Title", "AC+");
e $search
{ "S$search" : { "Title" : "\"oeufs cuits\" +(tomate | patate) + —-frite" } }
static include fr.gouv.vitam.common.database.builder.query.QueryHelper. x;
Query query = search("Title", "\"oeufs cuits\" +(tomate | patate) + —frite");
4.2.2 Partie $action dans la fonction Update
o $set
{ "$set" : { "Title" : "Mon nouveau titre", "Description" : "Ma nouvelle description",
=1} }
static include fr.gouv.vitam.common.database.builder.query.action.UpdateActionHelper.
x;
Action action = set ("Title", "Mon nouveau titre").add("Description", "Ma nouvelle
—description");
e $unset
{ "Sunset" : ["StartDate", "EndDate"] }
static include fr.gouv.vitam.common.database.builder.query.action.UpdateActionHelper.
ok
Action action = unset ("StartDate", "EndDate");
4.2. Exemples d’usages du DSL 13

CHAPITRE

Utilisation des clients externes

Pour faciliter I’acces aux API externes, le projet VITAM met a disposition les clients externes Java correspondant.

Astuce : Le code d’ihm-demo est un bon exemple d’utilisation des clients présentés ci-dessous.

5.1 Client Ingest

Le client Java des API ingest externes a les coordonnées maven suivantes :

<dependency>
<groupId>fr.gouv.vitam</groupId>
<artifactId>ingest-external-client</artifactId>
<version>${vitam.version}</version>
</dependency>

La configuration du client est a réaliser conformément au paragraphe Configuration d’un client externe (page 16); le
fichier de configuration dédié a I’API d’ingest externe est le fichier ingest—-external-client.conf :

serverHost: {{ vitam.ingestexternal.host }}
serverPort: {{ vitam.ingestexternal.port_service }}
secure: true
sslConfiguration
keystore
- keyPath: {{ vitam_folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.pl2
keyPassword: {{ keystores.client external.ihm demo }}
truststore
- keyPath: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client external }}
hostnameVerification: true

Le fichier définitif doit s’appeler ingest-external-client.conf et doit étre placé dans le répertoire /
vitam/conf ou le répertoire défini par la surconfiguration du chemin de configuration par 1’argument passé a la

14

VITAM - Manuel Intégration Applicative, Version 7.1.5

JVM -Dvitam.config.folder=/monchemin ol monchemin estle lieu ou se trouve ce fichier de configura-
tion.

Une instance de client se récupere grace au code suivant :

import fr.gouv.vitam.ingest.external.client
IngestExternalClient client = IngestExternalClientFactory.getlInstance().getClient ()

Pour la suite, se référer a la javadoc de la classe IngestExternalClient.

5.2 Client Access

Le client Java des API access externes a les coordonnées maven suivantes :

<dependency>
<groupId>fr.gouv.vitam</groupId>
<artifactId>access—-external-client</artifactId>
<version>S${vitam.version}</version>
</dependency>

La configuration du client est a réaliser conformément au paragraphe Configuration d’un client externe (page 16); le
fichier de configuration dédié a I’ API d’access externe est le fichier access-external-client.conf:

serverHost: {{ vitam.acces
serverPort: {{ vitam.ac
secure: true

sslConfiguration
keystore
- keyPath: {{ vitam folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.pl2
keyPassword: {{ keystores.client external.ihm demo }}
truststore

- keyPath: {{ vitam folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client external }}
hostnameVerification: true

Le fichier définitif doit s’appeler access—external-client.conf et placé dans le répertoire par défaut /
vitam/conf ou le répertoire définit par la surconfiguration du chemin de configuration par 1’argument passé a la
JVM -Dvitam.config.folder=/monchemin ol monchemin est le lieu ou se trouve ce fichier de configura-
tion.

5.2.1 Access

Une instance de client se récupere griace au code suivant :

fr.gouv.vitam.access.external.client
AccessExternalClient client = AccessExternalClientFactory.getInstance().getClient ()

Pour la suite, se référer a la javadoc de la classe AccessExternalClient.

5.2.2 Admin

Une instance de client se récupere grice au code suivant :

5.2. Client Access 15

VITAM - Manuel Intégration Applicative, Version 7.1.5

fr.gouv.vitam.access.external.client
AdminExternalClient client = AdminExternalClientFactory.getInstance().getClient ()

Pour la suite, se référer a la javadoc de la classe AdminExternalClient.

5.3 Configuration d’un client externe

La configuration du client prend en compte les parametres et fichiers suivants :

e La propriété systtme Java vitam.config.folder : indique le répertoire dans laquelle les fichiers de
configuration des clients seront recherchés (ex de déclaration en ligne de commande : ~-Dvitam.config.
folder=/vitam/conf/clientvitam/);

o Le fichier de configuration (<api>-client.conf): doit étre présent dans le répertoire défini précédemment ;
c’est un fichier de configuration qui contient notamment les éléments de configuration suivants :

e serverHost et serverPort permettent d’indiquer I’hote et le port du serveur hébergeant 1’ API ex-
terne;

e keystore : keyPath et keyPassword permettent d’indiquer le chemin et le mot de passe du magasin
de certificats contenant le certificat client utilisé par le client externe pour s’authentifier aupres de 1’ API
externe;

e trusstore : keyPath et keyPassword permettent d’indiquer le chemin et le mot de passe du magasin
de certificats contenant les certificats des autorités de certification requise (i.e. AC des certificats client et
serveur).

Le client externe peut necessiter un header pour 1’authentification « X-Personal-Certificate » pour certaines resources
sensibles. Ces resources sont listées dans la collection certificate de la base de données identity.

16 Chapitre 5. Utilisation des clients externes

	VITAM
	Architecture générale
	Architecture des flux

	API
	Formation générale des API externes
	Services
	Quelques Ressources
	Format

	Clients d’appels Java

	Exemples
	Recherche d’unités archivistiques par ArchivalAgencyArchiveUnitIdentifier
	Recherche de registre de fonds par producteur (FRAN_NP_005568)
	Recherche d’unités archivistiques par titre AND description AND dates
	Recherche d’unités archivistiques par libre titre OR description

	DSL Java Vitam
	Génération de requêtes DSL en Java
	Exemples d’usages du DSL
	Partie $query
	Partie $action dans la fonction Update

	Utilisation des clients externes
	Client Ingest
	Client Access
	Access
	Admin

	Configuration d’un client externe

