
VITAM - Documentation d’exploitation
Version 7.1.5

VITAM

janv. 13, 2026

Table des matières

1 Introduction 1
1.1 But de cette documentation . 1
1.2 Destinataires de ce document . 1

2 Rappels 2
2.1 Information concernant les licences . 2
2.2 Documents de référence . 2

2.2.1 Documents internes . 2
2.2.2 Référentiels externes . 3

2.3 Glossaire . 3

3 Expertises requises 6

4 Architecture de la solution logicielle VITAM 9

5 Exploitation globale 11
5.1 Gestion des accès . 11

5.1.1 API . 11
5.1.2 IHM de démonstration . 11
5.1.3 IHM de recette . 11

5.2 Audit de cohérence de données entre MongoDb et Elasticsearch . 11
5.2.1 Principe de fonctionnement . 12

5.2.1.1 Configuration . 12
5.2.1.2 Exécution . 12
5.2.1.3 Lecture de l’oplog . 12
5.2.1.4 Traitement des opérations de l’oplog MongoDB et comparaison avec ES 12
5.2.1.5 Comportement de l’audit suite à la comparaison de données 12

5.2.2 Lancement de l’audit . 13
5.3 Configuration des champs ObjectGroup devant être exclus de la recherche 13

5.3.1 Configuration . 13
5.3.2 Fonctionnement . 14

5.4 Portails d’administration . 15
5.4.1 Technique . 15
5.4.2 Fonctionnel . 15

5.5 Paramétrage & configuration . 15
5.5.1 Mise à niveau de la configuration de l’environnement . 15

5.5.1.1 Mise à jour du nombre de tenants . 15

i

5.5.1.2 Mise à jour des paramètres JVM . 15
5.6 Déploiement / mises à jour . 15

5.6.1 Mise à jour des certificats . 15
5.6.2 Mise à jour de la solution logicielle VITAM . 16
5.6.3 Ajouter un/des instances de composants VITAM . 16

5.7 Interruption / maintenance . 16
5.7.1 Procédure d’arrêt complet . 16
5.7.2 Procédure de démarrage complet . 17
5.7.3 Procédure de statut . 17
5.7.4 Autres cas . 17

5.7.4.1 Procédure de maintenance / indisponibilité de VITAM 17
5.7.4.2 Procédure de maintenance liée aux timers systemD 17
5.7.4.3 Procédure de maintenance sur les composants d’administration 18
5.7.4.4 Procédure de maintenance des IHM . 18
5.7.4.5 Procédure de maintenance des Bases de données métier 18

5.8 Sauvegarde / restauration . 18
5.8.1 Sauvegarde . 19

5.8.1.1 mongoDB . 19
5.8.1.2 Elasticsearch . 19

5.8.2 Restauration . 20
5.8.2.1 mongoDB . 20
5.8.2.2 Elasticsearch . 20

5.8.3 Cas de la base mongo certificates . 20
5.9 Sauvegarde et restauration de mongodb gros volumes . 21

5.9.1 Préconisation . 21
5.9.2 Sauvegarde d’un cluster Mongo shardé . 21
5.9.3 Restauration d’un cluster Mongo shardé . 21
5.9.4 Cas particulier de l’offre froide . 24

5.9.4.1 Sauvegarde . 24
5.9.4.1.1 Script de sauvegarde du cluster mongodb 24
5.9.4.1.2 Sauvegarde des fichiers backup dans l’offre froide 25

5.9.4.2 Restauration . 25
5.9.4.2.1 Accès aux fichiers de l’offre froide . 25
5.9.4.2.2 Restaurer le cluster mongodb . 26

5.10 Gestion des profils de sécurité . 26
5.10.1 Hiérarchie : profils de sécurité, contextes et certificats . 26
5.10.2 Ajout/Suppression de profils de sécurité . 26

5.10.2.1 Configuration . 27
5.10.2.2 Ajout des fichiers crt . 27
5.10.2.3 Lancement du playbook . 27
5.10.2.4 Reconfiguration de VITAM . 28

5.10.2.4.1 Si utilisation de la PKI de tests . 28
5.10.2.4.2 Cas d’une autre PKI . 29
5.10.2.4.3 Application des stores mis à jour . 29

5.11 Certificats personae . 29
5.11.1 Configuration des permissions des certificats personae . 29
5.11.2 Déploiement des certificats personae . 29

5.11.2.1 Vitam n’est pas encore déployé . 29
5.11.2.2 Vitam est déjà déployé . 30

5.12 Gestion des indexes Elasticseach dans un contexte massivement multi-tenants 30
5.12.1 Présentation . 30
5.12.2 Recommandations d’implémentation . 30

5.13 Batchs et traitements . 31
5.13.1 Curator . 31

ii

5.13.2 Timers systemD . 31
5.13.2.1 Sécurisation des journaux d’opérations . 31
5.13.2.2 Sécurisation des cycles de vie . 31
5.13.2.3 Sécurisation des offres de stockages . 31
5.13.2.4 Autres timers . 31

5.14 Sauvegarde des données graphe (Log shipping) . 32
5.14.1 Déclenchement de la sauvegarde . 32
5.14.2 Reconstruction des données graphe . 32

5.15 Recalcul des données graphe . 33
5.15.1 Déclenchement . 33

5.16 Montée de version du fichier de signature de Siegfried . 34
5.17 Griffins . 34

5.17.1 Ajout de nouveaux / mise à jour de griffins . 34
5.17.1.1 Ajout de griffins . 34
5.17.1.2 Mise à jour des griffins . 35
5.17.1.3 Préparation du système . 35
5.17.1.4 Prise en compte technique par VITAM . 35

5.18 Reconstruction . 35
5.18.1 Procédure mono-site . 35
5.18.2 Procédure multi-sites . 35

5.18.2.1 Cas du site primaire . 35
5.18.2.2 Cas du site secondaire . 36

5.18.3 Contrôle des données reconstruites . 37
5.19 Plan de Reprise d’Activité (PRA) . 37

5.19.1 Déclenchement . 37
5.19.2 Retour en situation nominale . 38

5.19.2.1 Déclenchement . 38
5.20 Resynchronisation d’une offre . 39

5.20.1 Cas de l’ajout d’une nouvelle offre . 40
5.20.2 Procédure de resynchronisation d’une offre . 42
5.20.3 Procédure de resynchronisation partielle d’une offre . 45
5.20.4 Procédure de resynchronisation ciblée d’une offre . 46

5.21 Audit comparatif entre 2 offres de stockage miroirs . 47
5.21.1 Procédure de lancement et de suivi de l’audit comparatif d’offres 47

5.22 Procédure d’exploitation suite à la création ou la modification d’une ontologie 48
5.22.1 Création d’une ontologie . 48
5.22.2 Changement de type d’une ontologie existante . 48

5.23 L’ontologie externe suite à la montée de version de VITAM . 49
5.24 Procédure d’exploitation pour la mise en pause forcée d’une opération 50

5.24.1 Mise en pause forcée . 50
5.24.2 Sortie de la mise en pause forcée . 51

5.25 Réindexation . 51
5.25.1 Déclenchement . 52

5.26 Nettoyage des ingests incomplets . 53
5.26.1 Conditions d’éligibilité des ingests à nettoyer . 53
5.26.2 Déclenchement . 53

5.27 Suppression des DIP et des fichiers de transfert . 53
5.28 Procédure d’exploitation pour la révocation des certificats SIA et Personae 54
5.29 Activation/désactivation d’une offre . 55
5.30 Nettoyage d’un environnement . 56

5.30.1 Etat des lieux après purge . 57
5.30.2 Limitations . 57

6 Suivi de l’état du système 58

iii

6.1 Veille et patchs sécurité . 58
6.2 API de de supervision . 58

6.2.1 Patte d’administration . 58
6.2.1.1 /admin/v1/status . 59
6.2.1.2 /admin/v1/version . 59
6.2.1.3 /admin/v1/autotest . 60

6.2.2 Patte de service . 61
6.3 Logs . 61

6.3.1 Paramétrage des règles de log . 62
6.3.2 Rétention des index sous elasticsearch-log . 63

6.4 Audit . 64
6.4.1 Audit de cohérence . 64
6.4.2 Audit sur les collections d’administration . 64

6.5 Gestion de la capacité . 65
6.6 Suivi de l’état de sécurité . 65
6.7 Alerting . 65

6.7.1 Système . 65
6.7.2 Applicatif . 65

6.8 Suivi des Workflows . 65
6.8.1 Suivi . 65

6.8.1.1 IHM . 66
6.8.1.2 Appels REST . 66
6.8.1.3 Playbook ansible . 66

6.8.2 Cas des worklows en FATAL . 66
6.8.2.1 Plugins et Handlers . 66
6.8.2.2 Distributor . 68
6.8.2.3 Processing - State Machine . 68

6.8.3 Redémarrer un processus en cas de pause . 68
6.8.3.1 Trouver la cause . 68
6.8.3.2 Relancer le Workflow . 68

6.8.3.2.1 Vérifier les inputs . 68
6.8.3.2.2 Rejouer une étape . 68
6.8.3.2.3 Prochaine étape . 68
6.8.3.2.4 Finaliser le workflow . 69

6.9 Cohérence des journaux . 69
6.9.1 Lancement . 69
6.9.2 Résultat . 69

6.10 Liste des timers systemd . 69
6.10.1 Timers de maintenance des index elasticsearch-log . 70

6.10.1.1 vitam-curator-close-old-indexes . 70
6.10.1.2 vitam-curator-delete-old-indexes . 70

6.10.2 Timers de gestion des journaux (preuve systémique) . 70
6.10.2.1 vitam-storage-log-traceability . 70

6.10.3 Timers de reconstruction VITAM . 71
6.10.3.1 vitam-metadata-reconstruction . 71
6.10.3.2 vitam-metadata-store-graph . 71
6.10.3.3 vitam-metadata-computed-inherited-rules . 71

6.10.4 Timers techniques VITAM . 71
6.10.4.1 vitam-metadata-purge-dip . 71
6.10.4.2 vitam-metadata-purge-transfers-SIP . 72
6.10.4.3 vitam-offer-log-compaction . 72
6.10.4.4 vitam-metadata-audit-mongodb-es . 72

7 Exploitation des COTS de la solution logicielle VITAM 73

iv

7.1 Généralités . 73
7.2 COTS . 73

7.2.1 Cerebro . 73
7.2.1.1 Présentation . 73
7.2.1.2 Configuration / fichiers utiles . 73

7.2.1.2.1 Fichier /vitam/conf/cerebro/application.conf 73
7.2.1.3 Opérations . 75

7.2.2 Consul . 75
7.2.2.1 Présentation . 75

7.2.2.1.1 Cas serveur . 76
7.2.2.1.2 Cas agent . 76

7.2.2.2 Configuration / fichiers utiles . 76
7.2.2.2.1 Cas des applicatifs monitorés par Consul 76

7.2.2.2.1.1 Fichier /vitam/conf/consul/service-<composant>.
json . 76

7.2.2.3 Opérations . 77
7.2.3 Kibana interceptor . 78

7.2.3.1 Présentation . 78
7.2.3.2 Configuration / fichiers utiles . 78

7.2.3.2.1 Fichier elastic-kibana-interceptor.conf 78
7.2.3.3 Opérations . 79

7.2.4 Elasticsearch chaîne de log . 79
7.2.4.1 Présentation . 79
7.2.4.2 Configuration / fichiers utiles . 80

7.2.4.2.1 Fichier /vitam/conf/elasticsearch-log/log4j2.
properties . 80

7.2.4.2.2 Fichier /vitam/conf/elasticsearch-log/jvm.options . . . 85
7.2.4.2.3 Fichier /vitam/conf/elasticsearch-log/elasticsearch.

yml . 87
7.2.4.2.4 Fichier /vitam/conf/elasticsearch-log/sysconfig 90
7.2.4.2.5 Fichier /usr/lib/tmpfiles.d/elasticsearch-log.conf . . 92

7.2.4.3 Opérations . 92
7.2.5 Elasticsearch Data . 93

7.2.5.1 Présentation . 93
7.2.5.2 Configuration / fichiers utiles . 93

7.2.5.2.1 Fichier log4j2.properties . 93
7.2.5.2.2 Fichier jvm.options . 98
7.2.5.2.3 Fichier elasticsearch.yml . 100
7.2.5.2.4 Fichier sysconfig . 104
7.2.5.2.5 Fichier /usr/lib/tmpfiles.d/elasticsearch-data.conf . 106

7.2.5.3 Opérations . 106
7.2.6 Grafana . 107

7.2.6.1 Présentation . 107
7.2.6.2 Configuration / fichiers utiles . 107

7.2.6.2.1 Fichier /etc/grafana/grafana.ini 107
7.2.6.3 Opérations . 122

7.2.7 Kibana . 123
7.2.7.1 Présentation . 123
7.2.7.2 Configuration / fichiers utiles . 123
7.2.7.3 Opérations . 123

7.2.8 Log server . 124
7.2.8.1 Présentation . 124
7.2.8.2 Configuration / fichiers utiles . 124
7.2.8.3 Opérations . 124

v

7.2.9 MongoDB . 125
7.2.9.1 Service vitam-mongos . 125

7.2.9.1.1 Présentation . 125
7.2.9.1.2 Configuration / fichiers utiles . 125

7.2.9.1.2.1 Fichier mongos.conf . 126
7.2.9.1.2.2 Fichier keyfile . 126
7.2.9.1.2.3 Fichier de données . 126

7.2.9.1.3 Opérations . 126
7.2.9.2 Service vitam-mongoc . 127

7.2.9.2.1 Présentation . 127
7.2.9.2.2 Configuration / fichiers utiles . 128

7.2.9.2.2.1 Fichier mongoc.conf . 128
7.2.9.2.2.2 Fichier keyfile . 129
7.2.9.2.2.3 Fichier de données . 129

7.2.9.2.3 Opérations . 129
7.2.9.3 Service vitam-mongod . 130

7.2.9.3.1 Présentation . 130
7.2.9.3.2 Configuration / fichiers utiles . 131

7.2.9.3.2.1 Fichier mongod.conf . 132
7.2.9.3.2.2 Fichier keyfile . 132
7.2.9.3.2.3 Fichier de données . 133

7.2.9.3.3 Opérations . 133
7.2.9.4 Topologies de déploiement et tolérance aux pannes 133

7.2.9.4.1 Présentation . 133
7.2.9.4.2 Déploiement d’un cluster de développement 134
7.2.9.4.3 Déploiement d’un cluster de production 135
7.2.9.4.4 Déploiement d’un cluster de production avec réduction de la RAM 136

7.2.9.5 Exploitation d’un cluster MongoDB . 137
7.2.9.5.1 Extension du cluster : ajouter un ou n Shards 137

7.2.10 Prometheus . 139
7.2.10.1 Prometheus . 139

7.2.10.1.1 Présentation . 139
7.2.10.1.2 Configuration / fichiers utiles . 139

7.2.10.1.2.1 Fichier de configuration . 139
7.2.10.1.2.2 Génération du fichier de configuration 147
7.2.10.1.2.3 Fichier de variable d’environnement 148
7.2.10.1.2.4 Fichiers de données . 155
7.2.10.1.2.5 Règles livrées avec la solution VITAM 155
7.2.10.1.2.6 Etat de la machine . 155
7.2.10.1.2.7 Processeur . 156
7.2.10.1.2.8 Mémoire . 156
7.2.10.1.2.9 Disque . 157
7.2.10.1.2.10 Ajout de nouvelles règles . 158

7.2.10.1.3 Opérations . 158
7.2.10.2 Alertmanager . 159

7.2.10.2.1 Présentation . 159
7.2.10.2.2 Configuration / fichiers utiles . 159

7.2.10.2.2.1 Fichier de configuration . 159
7.2.10.2.2.2 Configuration de Prometheus . 159
7.2.10.2.2.3 Fichier de variable d’environnement 160
7.2.10.2.2.4 Fichiers de données . 160

7.2.10.2.3 Opérations . 160
7.2.10.3 Node Exporter . 161

7.2.10.3.1 Présentation . 161

vi

7.2.10.3.2 Configuration / fichiers utiles . 161
7.2.10.3.2.1 Fichier de variable d’environnement 161

7.2.10.3.3 Opérations . 161
7.2.10.4 Elasticsearch Exporter . 162

7.2.10.4.1 Présentation . 162
7.2.10.4.2 Configuration / fichiers utiles . 162

7.2.10.4.2.1 Fichier de variable d’environnement 162
7.2.10.4.3 Opérations . 162

7.2.11 Restic . 163
7.2.11.1 Présentation . 163

7.2.11.1.1 Comment fonctionne Restic ? . 163
7.2.11.1.1.1 La notion d’«Incremental For Ever» 163
7.2.11.1.1.2 La notion de snapshot . 164

7.2.11.2 Configuration / fichiers utiles . 164
7.2.11.2.1 Fichier restic.conf . 164
7.2.11.2.2 Fichier conf.d/{{ restic.backup.name }}.conf 164

7.2.11.3 Opérations . 164
7.2.11.3.1 restic_backup . 164
7.2.11.3.2 restic_restore . 164
7.2.11.3.3 Consultation des logs . 165

7.2.12 Siegfried . 165
7.2.12.1 Présentation . 165
7.2.12.2 Configuration / fichiers utiles . 165
7.2.12.3 Opérations . 165

8 Exploitation des composants de la solution logicielle VITAM 166
8.1 Généralités . 166
8.2 Composants . 166

8.2.1 Fichiers communs . 166
8.2.1.1 Fichier /vitam/conf/<composant>/sysconfig/java_opts 166
8.2.1.2 Fichier /vitam/conf/<composant>/logback-access.xml 167
8.2.1.3 Fichier /vitam/conf/<composant>/logback.xml 168
8.2.1.4 Fichier /vitam/conf/<composant>/jetty-config.xml 172
8.2.1.5 Fichier /vitam/conf/<composant>/logbook-client.conf 178
8.2.1.6 Fichier /vitam/conf/<composant>/server-identity.conf 178
8.2.1.7 Fichier /vitam/conf/<composant>/antisamy-esapi.xml 178
8.2.1.8 Fichier /vitam/conf/<composant>/vitam.conf 178
8.2.1.9 Fichier /vitam/conf/<composant>/java.security 180

8.2.2 Access . 181
8.2.2.1 access external . 181

8.2.2.1.1 Présentation . 181
8.2.2.1.2 Configuration / fichiers utiles . 181

8.2.2.1.2.1 Fichier access-external.conf 181
8.2.2.1.2.2 Fichier access-internal-client.conf 181
8.2.2.1.2.3 Fichier functional-administration-client.conf . . 181
8.2.2.1.2.4 Fichier ingest-internal-client.conf 182
8.2.2.1.2.5 Fichier internal-security-client.conf 182

8.2.2.1.3 Opérations . 182
8.2.2.2 access-internal . 182

8.2.2.2.1 Présentation du composant . 182
8.2.2.2.2 Configuration / fichiers utiles . 183

8.2.2.2.2.1 Fichier access-internal.conf 183
8.2.2.2.2.2 Fichier storage-client.conf 183
8.2.2.2.2.3 Fichier metadata-client.conf 183

vii

8.2.2.2.2.4 Fichier functional-administration-client.conf . . 183
8.2.2.2.3 Opérations . 183

8.2.3 Batch-Report . 184
8.2.3.1 Présentation . 184
8.2.3.2 Configuration . 184

8.2.3.2.1 Fichier batch-report.conf . 184
8.2.3.3 Client batch-report . 184
8.2.3.4 Opérations . 185

8.2.4 Collect . 185
8.2.4.1 Présentation . 185
8.2.4.2 Configuration / fichiers utiles . 185

8.2.4.2.1 Fichier collect.conf . 185
8.2.4.2.2 Fichier functional-administration-client.conf 186
8.2.4.2.3 Fichier internal-security-client.conf 186

8.2.4.3 Opérations . 186
8.2.5 common-plugin . 186

8.2.5.1 Présentation du composant . 186
8.2.5.2 Classes utiles . 186

8.2.5.2.1 Classe Item Status . 187
8.2.5.2.2 Classe VitamAutoCloseable . 187
8.2.5.2.3 Classe ParameterHelper . 187
8.2.5.2.4 Classe VitamParameter . 187
8.2.5.2.5 Classe ProcessingException . 187
8.2.5.2.6 Classe IOParameter . 187
8.2.5.2.7 Classe ProcessingUri . 187
8.2.5.2.8 Classe UriPrefix . 187
8.2.5.2.9 Classe AbstractWorkerParameters 187
8.2.5.2.10 Classe DefaultWorkerParameters 188
8.2.5.2.11 Classe WorkerParameterName . 188
8.2.5.2.12 Classe WorkerParameters . 188
8.2.5.2.13 Classe WorkerParametersDeserializer 188
8.2.5.2.14 Classe WorkerParametersFactory 188
8.2.5.2.15 Classe WorkerParametersSerializer 188
8.2.5.2.16 Interface HandlerIO . 188
8.2.5.2.17 Classe WorkerAction . 188
8.2.5.2.18 Classe HandlerIOImpl . 188

8.2.6 Common . 189
8.2.6.1 Présentation . 189
8.2.6.2 Format Identifiers . 189

8.2.6.2.1 Configuration des services d’identification des formats 189
8.2.7 Functional administration . 190

8.2.7.1 Présentation . 190
8.2.7.2 Configuration / fichiers utiles . 190

8.2.7.2.1 Fichier functional-administration.conf 190
8.2.7.2.2 Passage des identifiants des référentiels en mode esclave 192
8.2.7.2.3 Paramétrage du batch de calcul pour l’indexation des règles héritées . . . 193
8.2.7.2.4 Configuration du Functional administration 193

8.2.7.3 Opérations . 193
8.2.8 Hello World Plugin . 194

8.2.8.1 Présentation . 194
8.2.8.1.1 Comment intégrer votre plugins dans vitam? 194
8.2.8.1.2 Créer un nouveau workflow . 195

8.2.8.1.2.1 Comment ajouter un nouveau workflow dans vitam? 196
8.2.8.1.2.2 Comment ajouter la traduction de clés des Plugins? 196

viii

8.2.8.1.2.3 Comment appeler le nouveau workflow? 196
8.2.8.1.2.4 Remarques . 196
8.2.8.1.2.5 Securité . 196

8.2.9 ihm-demo . 197
8.2.9.1 Présentation . 197
8.2.9.2 Configuration / fichiers utiles . 197

8.2.9.2.1 Fichier access-external-client.conf 197
8.2.9.2.2 Fichier ihm-demo.conf . 197
8.2.9.2.3 Fichier ingest-external-client.conf 198
8.2.9.2.4 Fichier shiro.ini . 198

8.2.9.3 Configuration de apache shiro . 200
8.2.9.3.1 Présentation authentification via LDAP et via certificat 200
8.2.9.3.2 Décryptage de shiro.ini . 201

8.2.9.4 Opérations . 201
8.2.10 ihm-recette . 202

8.2.10.1 Présentation . 202
8.2.10.2 Configuration / fichiers utiles . 203

8.2.10.2.1 Fichier access-external-client.conf 203
8.2.10.2.2 Fichier driver-location.conf 203
8.2.10.2.3 Fichier driver-mapping.conf . 203
8.2.10.2.4 Fichier functional-administration-client.conf 203
8.2.10.2.5 Fichier ihm-recette-client.conf 203
8.2.10.2.6 Fichier ihm-recette.conf . 203
8.2.10.2.7 Fichier ingest-external-client.conf 207
8.2.10.2.8 Fichier shiro.ini . 207
8.2.10.2.9 Fichier static-offer.json . 209
8.2.10.2.10 Fichier static-strategy.json 209
8.2.10.2.11 Fichier storage-client.conf . 210
8.2.10.2.12 Fichier storage.conf . 210
8.2.10.2.13 Fichier storage-offer.conf . 211
8.2.10.2.14 Fichier tnr.conf . 211

8.2.10.3 Opérations . 211
8.2.11 Ingest . 212

8.2.11.1 Introduction . 212
8.2.11.2 ingest-external . 212

8.2.11.2.1 Présentation . 212
8.2.11.2.2 Configuration / fichiers utiles . 212

8.2.11.2.2.1 Fichier ingest-external.conf 212
8.2.11.2.2.2 Fichier ingest-internal-client.conf 213
8.2.11.2.2.3 Fichier internal-security-client.conf 213
8.2.11.2.2.4 Fichier format-identifiers.conf 213
8.2.11.2.2.5 Fichier functional-administration-client.conf . . 213
8.2.11.2.2.6 Fichier scan-clamav.sh . 214

8.2.11.2.3 Opérations . 215
8.2.11.3 ingest-internal . 215

8.2.11.3.1 Présentation . 215
8.2.11.3.2 Configuration / fichiers utiles . 216

8.2.11.3.2.1 Fichier ingest-internal.conf 216
8.2.11.3.2.2 Fichier storage-client.conf 216

8.2.11.3.3 Opérations . 216
8.2.12 Security-Internal . 217

8.2.12.1 Introduction . 217
8.2.12.2 security-internal-exploitation . 217

8.2.12.2.1 Fichier security-internal.conf 217

ix

8.2.12.2.2 Fichier personal-certificate-permissions.conf 217
8.2.12.3 Opérations . 220

8.2.13 Logbook . 221
8.2.13.1 Présentation . 221
8.2.13.2 Logbook Exploitation . 221

8.2.13.2.1 Configuration du Logbook . 221
8.2.13.2.2 Fichier logbook.conf . 222
8.2.13.2.3 Fichier functional-administration-client.conf 224
8.2.13.2.4 Fichier logbook-client.conf . 224
8.2.13.2.5 Fichier storage-client.conf . 224

8.2.13.3 Opérations . 224
8.2.14 Metadata . 225

8.2.14.1 Présentation . 225
8.2.14.2 Configuration / fichiers utiles . 225

8.2.14.2.1 Fichier metadata.conf . 225
8.2.14.2.1.1 Paramétrage des caches . 228
8.2.14.2.1.2 Paramétrage des mappings externes elasticsearch 229
8.2.14.2.1.3 Paramétrage de la limite du flux des unités archivestiques 229
8.2.14.2.1.4 Paramétrage de la limite du flux des groupes d’objets techniques . 229

8.2.14.2.2 Fichier functional-administration-client.conf 229
8.2.14.2.3 Fichier storage-client.conf . 230

8.2.14.3 Opérations . 230
8.2.15 Processing . 230

8.2.15.1 Introduction . 230
8.2.15.1.1 But de cette documentation . 230

8.2.15.2 Processing . 230
8.2.15.2.1 Configuration du worker . 231
8.2.15.2.2 Supervision du service . 231

8.2.15.3 Configuration / fichiers utiles . 231
8.2.15.3.1 Fichier processing.conf . 231
8.2.15.3.2 Fichier version.conf . 232
8.2.15.3.3 Fichier storage-client.conf . 232
8.2.15.3.4 Fichier metadata-client.conf 232

8.2.15.4 Opérations . 232
8.2.15.5 Parallélisation des workflows et des opérations . 233

8.2.16 scheduler . 234
8.2.16.1 Présentation . 234
8.2.16.2 Configuration / fichiers utiles . 234

8.2.16.2.1 Fichier scheduler.conf . 235
8.2.16.2.2 Fichier quartz.properties . 235
8.2.16.2.3 Fichier jobs-functional-administration.xml 235
8.2.16.2.4 Fichier jobs-internal-security.xml 235
8.2.16.2.5 Fichier jobs-logbook.xml . 235
8.2.16.2.6 Fichier jobs-metadata.xml . 235
8.2.16.2.7 Fichier jobs-offer.xml . 235
8.2.16.2.8 Fichier jobs-storage.xml . 235
8.2.16.2.9 Fichier internal-security-client.conf 235
8.2.16.2.10 Fichier logbook-client.conf . 235
8.2.16.2.11 Fichier metadata-client.conf 235
8.2.16.2.12 Fichier functional-administration-client.conf 235

8.2.16.3 Opérations . 235
8.2.16.4 Description . 235

8.2.16.4.1 Jobs quartz . 236
8.2.16.4.1.1 AuditObjectJob.java . 236

x

8.2.16.4.1.2 AuditDataConsistencyMongoEsJob.java 236
8.2.16.4.1.3 IdentityExpirationJob.java . 237
8.2.16.4.1.4 MetadataReconstructionJob.java 237
8.2.16.4.1.5 OfferLogCompactionJob.java . 237
8.2.16.4.1.6 PersistentIdentifierReconstructionJob.java 237
8.2.16.4.1.7 ProcessObsoleteComputedInheritedRulesJob.java 237
8.2.16.4.1.8 PurgeDipJob.java . 237
8.2.16.4.1.9 PurgeSipJob.java . 237
8.2.16.4.1.10 ReconstructionAccessionRegisterJob.java 237
8.2.16.4.1.11 ReconstructionOperationJob.java 238
8.2.16.4.1.12 ReconstructionReferentialJob.java 238
8.2.16.4.1.13 ReferentialCreateSymblolicAccessionRegisterJob.java 238
8.2.16.4.1.14 RuleManagementAuditJob.java 238
8.2.16.4.1.15 StorageBackupLogJob.java . 238
8.2.16.4.1.16 StorageLogTraceabilityJob.java 238
8.2.16.4.1.17 StoreGraphJob.java . 238
8.2.16.4.1.18 TraceabilityAuditJob.java . 239
8.2.16.4.1.19 TraceabilityJob.java . 239
8.2.16.4.1.20 TraceabilityLFCJob.java . 239

8.2.17 Storage . 239
8.2.17.1 Introduction . 239

8.2.17.1.1 But de cette documentation . 239
8.2.17.2 storage-engine . 239

8.2.17.2.1 Présentation . 239
8.2.17.2.2 Storage Engine . 240

8.2.17.2.2.1 Configuration du moteur de stockage 240
8.2.17.2.2.2 Configuration du driver de l’offre de stockage par défaut 242
8.2.17.2.2.3 Supervision du service . 242

8.2.17.2.3 Configuration / fichiers utiles . 242
8.2.17.2.3.1 Fichier driver-location.conf 242
8.2.17.2.3.2 Fichier driver-mapping.conf 242
8.2.17.2.3.3 Fichier static-offer.json 242
8.2.17.2.3.4 Fichier static-strategy.json 243
8.2.17.2.3.5 Fichier storage-engine.conf 244

8.2.17.2.4 Opérations . 244
8.2.17.2.4.1 access-log . 245

8.2.17.3 offer . 246
8.2.17.3.1 Présentation . 246
8.2.17.3.2 Storage Offer Default . 246

8.2.17.3.2.1 Configuration de l’offre de stockage 247
8.2.17.3.2.2 Supervision du service . 247

8.2.17.3.3 Configuration / fichiers utiles . 247
8.2.17.3.3.1 Fichier default-offer.conf 247
8.2.17.3.3.2 Fichier default-storage.conf 248

8.2.17.3.4 Opérations . 250
8.2.18 Technical administration . 251

8.2.18.1 Présentation . 251
8.2.19 Worker . 251

8.2.19.1 Introduction . 251
8.2.19.2 Configuration / fichiers utiles . 251

8.2.19.2.1 Fichier batch-report-client.conf 251
8.2.19.2.2 Fichier format-identifiers.conf 251
8.2.19.2.3 Fichier functional-administration-client.conf.j2 . . . 251
8.2.19.2.4 Fichier metadata-client.conf 252

xi

8.2.19.2.5 Fichier storage-client.conf . 252
8.2.19.2.6 Fichier verify-timestamp.conf 252
8.2.19.2.7 Fichier version.conf . 252
8.2.19.2.8 Fichier worker.conf . 252

8.2.19.3 Opérations . 253
8.2.20 Workspace . 254

8.2.20.1 Présentation . 254
8.2.20.2 Configuration / fichiers utiles . 254

8.2.20.2.1 Fichier workspace.conf . 254
8.2.20.3 Opérations . 254

9 Intégration d’une application externe dans Vitam 256
9.1 Prérequis . 256
9.2 Intégration de certificats clients de VITAM . 256

9.2.1 Authentification applicative SIA . 256
9.2.1.1 Ajout d’un certificat pour l’authentification applicative SIA 257

9.2.2 Authentification Personae . 257
9.2.2.1 Ajout d’un certificat pour l’authentification Personae 257
9.2.2.2 Suppression d’un certificat pour l’authentification Personae 257

9.3 Révocation de certificats clients de VITAM . 258
9.4 Déploiement des keystores . 258

9.4.1 Vitam n’est pas encore déployé . 258
9.4.2 Vitam est déjà déployé . 258

10 Aide à l’exploitation 259
10.1 Analyse de premier niveau . 259

10.1.1 Etat par Consul . 259
10.1.2 Etat par Kibana . 260

10.2 Playbook ansible pour échanger avec le support . 260
10.3 Identification des AU non conformes . 261

11 Questions Fréquemment Posées 262
11.1 Présentation . 262
11.2 Retour d’expérience / cas rencontrés . 262

11.2.1 Crash rsyslog, code killed, signal : BUS . 262
11.2.2 Mongo-express ne se connecte pas à la base de données associée 262
11.2.3 Elasticsearch possède des shard non alloués (état « UNASSIGNED ») 262
11.2.4 Elasticsearch possède des shards non initialisés (état « INITIALIZING ») 263
11.2.5 Elasticsearch est dans l’état « read-only » . 263
11.2.6 MongoDB semble lent . 264
11.2.7 Les shards de MongoDB semblent mal équilibrés . 265
11.2.8 L’importation initiale (profil de sécurité, certificats) retourne une erreur 265
11.2.9 Problème d’ingest et/ou d’access . 265

11.3 Erreur d’inconsistance des données MongoDB / ES . 265

12 Annexes 266
12.1 Cycle de vie des certificats . 266
12.2 Gestion des anomalies en production . 268

12.2.1 Numérotation des versions . 268
12.2.2 Mise à disposition du logiciel . 268
12.2.3 Gestion des patchs . 268

Index 272

xii

CHAPITRE 1

Introduction

1.1 But de cette documentation

Ce document a pour but de permettre de fournir à une équipe d’exploitants de la solution logicielle VITAM les procé-
dures et informations utiles et nécessaires au bon fonctionnement de la solution logicielle.

1.2 Destinataires de ce document

Ce document s’adresse à des exploitants du secteur informatique ayant de bonnes connaissances en environnement
Linux.

1

CHAPITRE 2

Rappels

2.1 Information concernant les licences

La solution logicielle VITAM est publiée sous la licence CeCILL 2.1 1 ; la documentation associée (comprenant le
présent document) est publiée sous Licence Ouverte V2.0 2.

Les clients externes java de solution VITAM sont publiés sous la licence CeCILL-C 3 ; la documentation associée
(comprenant le présent document) est publiée sous Licence Ouverte V2.0 4.

2.2 Documents de référence

2.2.1 Documents internes

TABLEAU 1 – Documents de référence VITAM
Nom Lien
DAT http://www.programmevitam.fr/ressources/DocCourante/html/archi
DIN http://www.programmevitam.fr/ressources/DocCourante/html/installation
DEX http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
DMV http://www.programmevitam.fr/ressources/DocCourante/html/migration
Release notes https://github.com/ProgrammeVitam/vitam/releases/latest

1. https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html
2. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
3. https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html
4. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf

2

https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
http://www.programmevitam.fr/ressources/DocCourante/html/archi
http://www.programmevitam.fr/ressources/DocCourante/html/installation
http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
http://www.programmevitam.fr/ressources/DocCourante/html/migration
https://github.com/ProgrammeVitam/vitam/releases/latest

VITAM - Documentation d’exploitation, Version 7.1.5

2.2.2 Référentiels externes

2.3 Glossaire

API Application Programming Interface

AU Archive Unit, unité archivistique

BDD Base De Données

BDO Binary DataObject

CA Certificate Authority, autorité de certification

CAS Content Adressable Storage

CCFN Composant Coffre Fort Numérique

CN Common Name

COTS Component Off The shelf ; il s’agit d’un composant « sur étagère », non développé par le projet VITAM, mais
intégré à partir d’un binaire externe. Par exemple : MongoDB, ElasticSearch.

CRL Certificate Revocation List ; liste des identifiants des certificats qui ont été révoqués ou invalidés et qui ne sont
donc plus dignes de confiance. Cette norme est spécifiée dans les RFC 5280 et RFC 6818.

CRUD create, read, update, and delete, s’applique aux opérations dans une base de données MongoDB

DAT Dossier d’Architecture Technique

DC Data Center

DEX Dossier d’EXploitation

DIN Dossier d’INstallation

DIP Dissemination Information Package

DMV Documentation de Montées de Version

DNS Domain Name System

DNSSEC Domain Name System Security Extensions est un protocole standardisé par l’IETF permettant de résoudre
certains problèmes de sécurité liés au protocole DNS. Les spécifications sont publiées dans la RFC 4033 et les
suivantes (une version antérieure de DNSSEC n’a eu aucun succès). Définition DNSSEC 5

DSL Domain Specific Language, langage dédié pour le requêtage de VITAM

DUA Durée d’Utilité Administrative

EBIOS Méthode d’évaluation des risques en informatique, permettant d’apprécier les risques Sécurité des systèmes
d’information (entités et vulnérabilités, méthodes d’attaques et éléments menaçants, éléments essentiels et be-
soins de sécurité. . .), de contribuer à leur traitement en spécifiant les exigences de sécurité à mettre en place, de
préparer l’ensemble du dossier de sécurité nécessaire à l’acceptation des risques et de fournir les éléments utiles
à la communication relative aux risques. Elle est compatible avec les normes ISO 13335 (GMITS), ISO 15408
(critères communs) et ISO 17799

EAD Description archivistique encodée

ELK Suite logicielle Elasticsearch Logstash Kibana

FIP Floating IP

GOT Groupe d’Objet Technique

IHM Interface Homme Machine

IP Internet Protocol

IsaDG Norme générale et internationale de description archivistique

JRE Java Runtime Environment ; il s’agit de la machine virtuelle Java permettant d’y exécuter les programmes com-
pilés pour.

5. https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

2.3. Glossaire 3

https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

VITAM - Documentation d’exploitation, Version 7.1.5

JVM Java Virtual Machine ; Cf. JRE

LAN Local Area Network, réseau informatique local, qui relie des ordinateurs dans une zone limitée

LFC LiFe Cycle, cycle de vie

LTS Long-term support, support à long terme : version spécifique d’un logiciel dont le support est assuré pour une
période de temps plus longue que la normale.

M2M Machine To Machine

MitM L’attaque de l’homme du milieu (HDM) ou man-in-the-middle attack (MITM) est une attaque qui a pour but
d’intercepter les communications entre deux parties, sans que ni l’une ni l’autre ne puisse se douter que le
canal de communication entre elles a été compromis. Le canal le plus courant est une connexion à Internet
de l’internaute lambda. L’attaquant doit d’abord être capable d’observer et d’intercepter les messages d’une
victime à l’autre. L’attaque « homme du milieu » est particulièrement applicable dans la méthode d’échange de
clés Diffie-Hellman, quand cet échange est utilisé sans authentification. Avec authentification, Diffie-Hellman
est en revanche invulnérable aux écoutes du canal, et est d’ailleurs conçu pour cela. Explication 6

MoReq Modular Requirements for Records System, recueil d’exigences pour l’organisation de l’archivage, élaboré
dans le cadre de l’Union européenne.

NoSQL Base de données non-basée sur un paradigme classique des bases relationnelles. Définition NoSQL 7

NTP Network Time Protocol

OAIS Open Archival Information System, acronyme anglais pour Systèmes de transfert des informations et données
spatiales – Système ouvert d’archivage d’information (SOAI) - Modèle de référence.

OOM Aussi apelé Out-Of-Memory Killer ; mécanisme de la dernière chance incorporé au noyau Linux, en cas de
dépassement de la capacité mémoire

OS Operating System, système d’exploitation

OWASP Open Web Application Security Project, communauté en ligne de façon libre et ouverte à tous publiant
des recommandations de sécurisation Web et de proposant aux internautes, administrateurs et entreprises des
méthodes et outils de référence permettant de contrôler le niveau de sécurisation de ses applications Web

PDMA Perte de Données Maximale Admissible ; il s’agit du pourcentage de données stockées dans le système qu’il
est acceptable de perdre lors d’un incident de production.

PKI Une infrastructure à clés publiques (ICP) ou infrastructure de gestion de clés (IGC) ou encore Public Key Infra-
structure (PKI), est un ensemble de composants physiques (des ordinateurs, des équipements cryptographiques
logiciels ou matériel type HSM ou encore des cartes à puces), de procédures humaines (vérifications, validation)
et de logiciels (système et application) en vue de gérer le cycle de vie des certificats numériques ou certificats
électroniques. Définition PKI 8

PCA Plan de Continuité d’Activité

PRA Plan de Reprise d’Activité

REST REpresentational State Transfer : type d’architecture d’échanges. Appliqué aux services web, en se basant
sur les appels http standard, il permet de fournir des API dites « RESTful » qui présentent un certain nombre
d’avantages en termes d’indépendance, d’universalité, de maintenabilité et de gestion de charge. Définition
REST 9

RGAA Référentiel Général d’Accessibilité pour les Administrations

RGI Référentiel Général d’Interopérabilité

RPM Red Hat Package Manager ; il s’agit du format de paquets logiciels nativement utilisé par les distributions Linux
RedHat/CentOS (entre autres)

SAE Système d’Archivage Électronique

SEDA Standard d’Échange de Données pour l’Archivage

6. https://fr.wikipedia.org/wiki/Attaque_de_l’homme_du_milieu
7. https://fr.wikipedia.org/wiki/NoSQL
8. https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
9. https://fr.wikipedia.org/wiki/Representational_state_transfer

4 Chapitre 2. Rappels

https://fr.wikipedia.org/wiki/Attaque_de_l'homme_du_milieu
https://fr.wikipedia.org/wiki/NoSQL
https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
https://fr.wikipedia.org/wiki/Representational_state_transfer
https://fr.wikipedia.org/wiki/Representational_state_transfer

VITAM - Documentation d’exploitation, Version 7.1.5

SGBD Système de Gestion de Base de Données

SGBDR Système de Gestion de Base de Données Relationnelle

SIA Système d’Informations Archivistique

SIEM Security Information and Event Management

SIP Submission Information Package

SSH Secure SHell

Swift OpenStack Object Store project

TLS Transport Layer Security

TNA The National Archives, Pronom 10

TNR Tests de Non-Régression

TTL Time To Live, indique le temps pendant lequel une information doit être conservée, ou le temps pendant lequel
une information doit être gardée en cache

UDP User Datagram Protocol, protocole de datagramme utilisateur, un des principaux protocoles de télécommuni-
cation utilisés par Internet. Il fait partie de la couche transport du modèle OSI

UID User IDentification

VITAM Valeurs Immatérielles Transférées aux Archives pour Mémoire

VM Virtual Machine

WAF Web Application Firewall

WAN Wide Area Network, réseau informatique couvrant une grande zone géographique, typiquement à l’échelle d’un
pays, d’un continent, ou de la planète entière

10. https://www.nationalarchives.gov.uk/PRONOM/

2.3. Glossaire 5

https://www.nationalarchives.gov.uk/PRONOM/

CHAPITRE 3

Expertises requises

Les équipes en charge du déploiement et de l’exploitation de la solution logicielle VITAM devront disposer en interne
des compétences suivantes :

6

VITAM - Documentation d’exploitation, Version 7.1.5

TABLEAU 1 – Matrice de compétences
ThèmeOutil Description de

l’outil
Ni-
veau
re-
quis

Ni-
veau
de
cri-
ti-
cité

Exemples de compétences requises

Sys-
tème

Linux
(Centos 7
ou Debian
10)

Système d’exploi-
tation

3/4 :
mai-
trise

3/4 :
Ma-
jeur

Etre à l’aise avec l’arborescence linux / Configurer une in-
terface réseau / Analyse avancée des logs systèmes et ré-
seaux

Confi-
gu-
ra-
tion

Git Suivi des mo-
difications
quotidiennes
des sources de
déploiement VI-
TAM

1/4 :
dé-
bu-
tant

1/4 :
Mi-
neur

Savoir éxécuter les commandes de bases (commit, pull,
push, etc. . .)

Confi-
gu-
ra-
tion

Git Adaptation
des sources de
déploiement
VITAM dans
le cadre d’une
montée de version

2/4 :
in-
ter-
me-
diaire

1/4 :
Mi-
neur

Savoir éxécuter les commandes intermédiaires (branche,
merge, etc. . .)

Confi-
gu-
ra-
tion

Ansible Gestion de
configuration
et déploiement
automatisé

3/4 :
mai-
trise

3/4 :
Ma-
jeur

Adapter les paramètres pour permettre une installation
spécifique / Comprendre l’arborescence des rôles et des
playbooks

Ex-
ploi-
ta-
tion

Consul Outil d’enregistre-
ment des services
VITAM

1/4 :
dé-
bu-
tant

4/4 :
cri-
tique

Contrôler l’état des services via l’interface consul Eteindre
et redémarrer un Consul Agent sur une machine virtuelle

Su-
per-
vi-
sion

Kibana Interface de vi-
sualisation du
contenu des bases
Elasticsearch

1/4 :
dé-
bu-
tant

2/4 :
si-
gni-
fi-
ca-
tif

Créer un nouveau dashboard avec des indicateurs spéci-
fiques / Lire et relever les données pertinentes dans un da-
shboard donné

Su-
per-
vi-
sion

Cerebro Interface de
contrôle des clus-
ters Elasticsearch

1/4 :
dé-
bu-
tant

2/4 :
si-
gni-
fi-
ca-
tif

Contrôler l’état des clusters elasticsearch via l’interface
cerebro

Base
de
don-
nées

Mon-
goDB

Base de données
NoSQL

2/4 :
in-
ter-
me-
diaire

4/4 :
cri-
tique

Effectuer une recherche au sein d’une base mongoDB /
Sauvegarder et restaurer une base mongoDB (data ou of-
fer) / Augmenter la capacité de stockage d’une base mon-
goDB

Base
de
don-
nées

Elastic-
search

Moteur de re-
cherche et d’in-
dexation de
données distribué

2/4 :
in-
ter-
me-
diaire

4/4 :
cri-
tique

Sauvegarder et restaurer une base elasticsearch (data ou
log) / Augmenter la capacité de stockage d’une base elas-
ticsearch / Effectuer une procédure de maintenance d’un
nœud au sein d’un cluster elasticsearch

Ap-
pli-
ca-
tif

Applica-
tifs Java

Composants logi-
ciels Vitam

2/4 :
in-
ter-
me-
diaire

4/4 :
cri-
tique

Appeler le point “v1/status” manuellement sur tous les
composants VITAM / Arrêter et relancer selectivement les
composants VITAM à l’aide d’Ansible (ordre important) /
Lancer une procédure d’indisponiblité de VITAM (ferme-
ture des services external, arrêt des timers)

Sto-
ckage

Solution
de sto-
ckage
objet
déployée
Swift ou
S3

Administration
du service de
stockage objet
Swift ou S3 (si
utilisé)

2/4 :
in-
ter-
me-
diaire

4/4 :
cri-
tique

pouvoir lister les containers/buckets et objets, vérifier la
capacité de stockage disponible. . .

Sto-
ckage

Biblio-
thèque de
bandes

Administration de
la bibliothèque de
bandes magné-
tiques (si utilisée)

3/4 :
mai-
trise

4/4 :
cri-
tique

pouvoir lister les bandes et lecteurs, vérifier l’état de la
robotique. . .

7

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Niveau requis : Qualifie le niveau de compétence attendue par l’exploitant de la solution logicielle Vitam.

∙ Niveau de criticité : Qualifie le degré d’importance pour le bon fonctionnement de la plateforme.

8 Chapitre 3. Expertises requises

CHAPITRE 4

Architecture de la solution logicielle VITAM

Le schéma ci-dessous représente une solution logicielle VITAM :

9

VITAM - Documentation d’exploitation, Version 7.1.5

FIG. 1 – Vue d’ensemble d’un déploiement VITAM : zones, composants

Voir aussi :

Se référer au DAT (et notamment le chapitre dédié à l’architecture technique) pour plus de détails, en particulier
concernant les flux entre les composants.

10 Chapitre 4. Architecture de la solution logicielle VITAM

CHAPITRE 5

Exploitation globale

5.1 Gestion des accès

5.1.1 API

La gestion des accès aux API externes se fait via les granted stores (cf. Fichiers communs (page 166) pour les fichiers
communs, cf. Configuration / fichiers utiles (page 181) pour access-external et Configuration / fichiers utiles (page 234)
pour ingest-external).

5.1.2 IHM de démonstration

Dans cette version, la gestion et l’authentification des utilisateurs peut se faire par :

∙ un fichier plat qui contient logins et mots de passe (peu sécurisé)

∙ certificat x509

∙ un ldap

5.1.3 IHM de recette

Dans cette version, la gestion des utilisateurs se fait par :

∙ un fichier plat qui contient logins et mots de passe (peu sécurisé)

∙ certificat x509

∙ un ldap

5.2 Audit de cohérence de données entre MongoDb et Elasticsearch

Cette partie décrit le process de l’audit de cohérence de données dans Vitam.

11

VITAM - Documentation d’exploitation, Version 7.1.5

5.2.1 Principe de fonctionnement

5.2.1.1 Configuration

Il s’agit en premier temps de pouvoir se connecter sur les différents shards du mongod (sachant qu’un seul peut shard
contient 1 ou plusieurs noeuds : lieu de stockage de data) NB : A ce jour, Vitam utilise un seul shard mongod. Cette
configuration existe dans le fichier metadata.conf :

mongodShardsConf:
dbUserName: vitamdb-localadmin
dbPassword: qwerty
mongoDbShards:
- shardName: shard0

mongoDbNodes:
- dbHost: 172.17.0.2
dbPort: 27019

On ajoute à cette configuration d’autres paramètres qui permettent de gérer l’audit :
∙ isDataConsistencyAuditRunnable : Permet de lancer ou pas l’audit

∙ enableDataConsistencyRectificationMode : Permet d’activer le mode correctif (non recommandé).

∙ dataConsistencyAuditOplogMaxSize : Spécifier la taille maximale de données à lire depuis les oplog par
noeud !

5.2.1.2 Exécution

Une fois l’audit est accessible, un contrôle est fait sur l’existence d’un audit qui pourrait déjà être en cours. S’il n’y a
pas d’audit en cours, Vitam crée un logbook pour la fonctionnalité, puis les clients de connexions MongoDB. Vitam
procède ensuite à la lecture des différents oplog des nœuds.

5.2.1.3 Lecture de l’oplog

L’oplogReader permet de parcourir l’ensemble des opérations de l’oplog et d’extraire les opérations les plus récentes
de type (insert, update et delete) sur les collections « Unit » et « ObjectGroup » et qui ont une date d’opération
postérieure à la dernière date de lancement d’audit (fichier de configuration nommé « mongoDbShardsTimestamp-
Configuration.json » placé dans /workspace/dataConsistencyAuditContainer).

5.2.1.4 Traitement des opérations de l’oplog MongoDB et comparaison avec ES

Une fois les opérations d’oplog récupérées et traitées, une comparaison sera faite avec les opérations associées et
récupérées depuis d’Elasticsearch afin de vérifier la cohérence et générer les différences.

5.2.1.5 Comportement de l’audit suite à la comparaison de données

Une fois la comparaison terminée, on distingue 2 cas de figure :
1. 0 différences : le logbook passera en mode success et on quitte l’audit.

2. Existence de différences : dans ce cas une correction sur ES devrait être faite, et une nouvelle comparaison
faite par rapport à ce correctif. A ce stade, on distingue à nouveau 2 cas de figure :

∙ 0 différences : (Données corrigées sur ES) le logbook passera en mode warning

∙ Existence de différences : (Données non corrigées sur ES) le logbook passera en mode ko

12 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.2.2 Lancement de l’audit

L’audit est un lancé par un timer configuré dans vitam_vars.yml :

metadata:
-
-
- name: vitam-metadata-audit-mongodb-es

frequency: "2020-01-01 00:00:00"

Pour pouvoir lancer l’audit, il faut :
∙ Modifier la fréquence de lancement du timer selon le besoin.

∙ Setter isDataConsistencyAuditRunnable à true au niveau de metadata.conf

Prudence : Il s’agit d’une fonction expérimentale de recette. Ne PAS utiliser en production.

5.3 Configuration des champs ObjectGroup devant être exclus de la
recherche

Cette partie décrit le process d’exclure des propriétes des groupes d’objets lors de leurs recherche dans Vitam en tenant
compte des différentes API qui remontent des données de groupes d’objets.

5.3.1 Configuration

Il faudrait tout d’abord configurer la propriéte objectGroupBlackListedFieldsForVisualizationByTenant,
qui définit une Map associant un tenant à une black liste de propriétes de groupe d’objets. Cette liste de propriétes
serait exclue d’affichage lors des recherchers faites sur la collection d’objet group pour le tenant concerné.

Ci-dessous un exemple de cette configuration, qui existe dans le fichier access-external.conf :

authentication: true
jettyConfig: jetty-config.xml
tenantFilter : true
authorizeTrackTotalHits : false
objectGroupBlackListedFieldsForVisualizationByTenant:
0: ['Filename', '#operations', 'Size']
1: ['Filename', '#opi']
2: ['Filename']
3: ['Filename']
4: ['Filename']
5: ['Filename']
6: ['Filename']
7: ['Filename']
8: ['Filename']
9: ['Filename']

Par défaut, tout les tenants du système (9 dans cet exemple) déclarent le champ Filename dans leur black liste.
Ensuite, libre à l’exploitant de gérer cette liste en rajoutant, modifiant, voir même supprimant le champ par défaut.

5.3. Configuration des champs ObjectGroup devant être exclus de la recherche 13

VITAM - Documentation d’exploitation, Version 7.1.5

5.3.2 Fonctionnement

Une fois la configuration de la black liste est faite, et le(s) service(s) access-external démarré(s), les requêtes qui
permettent de lancer des recherches sur les objets groupes, et qui prennent en considération un tenant d’utilisation, ne
remontent plus au niveau des réponses, les propriétes déja mis dans la liste.

Ci-dessous les points d’API concernés :

/objects:
displayName: Objects
description: |
API qui permet d'accéder aux objets groupes en se basant sur une requête qui

→˓utilisele langage de requête (DSL)
de Vitam en entrée et retourne l'objet d'archives selon le DSL Vitam en cas de

→˓succès.
get:
description: |
Requête qui retourne le résultat contenant un Object d'archives : ses

→˓métadonnées ou un de ses objets binaires.
Dans le cas des métadonnées, la requête utilise le langage de requête DSL de

→˓type **recherche unitaire (GET BY ID)** de Vitam en entrée.
'Accept' header est 'application/octet-stream' (objet binaire) ou 'application/

→˓json' (métadonnées)

Permissions requises:
- objects:read

is: [AccessTraits.AccessUniqueObjectQualifierResponse, AccessTraits.
→˓AccessUniqueObjectResponse]

headers:
Accept:

required: true
enum: ["application/octet-stream", "application/json"]

/units/{{unit-id}}/objects:
displayName: Objects of one ArchiveUnit
description: |
API qui définit les requêtes pour accéder à l'Objet d'archives associé à l'Unité d

→˓'archives s'il existe.
La requête utilise le langage de requête (DSL) de Vitam en entrée et retourne l

→˓'objet d'archives selon le DSL Vitam en cas de succès.
get:
description: |

Requête qui retourne le résultat contenant un Object d'archives : ses
→˓métadonnées ou un de ses objets binaires, rattachés

à l'identifiant de l'unité archivistique en paramétre.

Permissions requises:
- units:id:objects:read:json

ou
- units:id:objects:read:binary

is: [AccessTraits.AccessUniqueObjectQualifierResponse, AccessTraits.
→˓AccessUniqueObjectResponse]

headers:
Accept:
required: true
enum: ["application/octet-stream", "application/json"]

14 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.4 Portails d’administration

5.4.1 Technique

Aucun portail d’administration technique n’est prévu dans cette version de la solution logicielle VITAM.

5.4.2 Fonctionnel

Le portail d’administration fonctionnel est intégré au composant ihm-demo dans cette version de la solution logicielle
VITAM (cf. Présentation (page 197)).

5.5 Paramétrage & configuration

L’étape de paramétrage et la configuration sont essentiellement liées à la mise en place ou la mise à niveau de la
solution logicielle VITAM (ansible / inventaire).

Voir aussi :

Plus d’informations, et notamment les paramètres d’installation, sont disponibles dans le DIN.

5.5.1 Mise à niveau de la configuration de l’environnement

5.5.1.1 Mise à jour du nombre de tenants

Note : se référer au DIN pour plus d’informations à ce sujet.

5.5.1.2 Mise à jour des paramètres JVM

Un tuning fin des paramètres JVM de chaque composant VITAM est possible. Pour cela, il faut modifier le contenu
du fichier environments/group_vars/all/main/jvm_opts.yml

Note : se référer au DIN pour plus d’informations à ce sujet.

5.6 Déploiement / mises à jour

5.6.1 Mise à jour des certificats

Pour mettre à jour les certificats (avant expiration par exemple), il suffit de les mettre à jour dans les répertoires de
déploiement, puis de regénérer les stores (dans environments/keystores) et lancer leur redéploiement via cette
commande ansible :

ansible-playbook ansible-vitam/vitam.yml -i environments/hosts.<environnement> –ask-vault-
pass –tags update_vitam_certificates ansible-playbook ansible-vitam-extra/extra.yml -i environ-
ments/hosts.<environnement> –ask-vault-pass –tags update_vitam_certificates

5.4. Portails d’administration 15

VITAM - Documentation d’exploitation, Version 7.1.5

Voir aussi :

Le cycle de vie des certificats est rappelé dans les annexes. Une vue d’ensemble est également présentée dans le DIN.

5.6.2 Mise à jour de la solution logicielle VITAM

Pour la mise à jour de la solution logicielle VITAM (tout comme pour sa première installation), se référer au DIN, au
DMV , ainsi qu’à la release note associée à toute version.

Ces documents détaillent les pré-requis, la configuration des fichiers et les procédures éventuelles de migration de
données pour effectuer une mise à jour applicative. Le DMV explique également comment valider une montée de
version applicative de la solution logicielle VITAM.

Voir aussi :

Plus d’informations, et notamment les paramètres d’installation, sont disponibles dans le DIN.

Voir aussi :

Dans le cadre d’une montée de version, se référer également au DMV .

5.6.3 Ajouter un/des instances de composants VITAM

Dans le cas où le dimensionnement initial ne donne pas pleinement satisfaction, il est possible de rajouter à une
solution logicielle VITAM existante une/des instances supplémentaires de composants.

Pour le moment, il n’est pas possible de déplacer un composant automatiquement via ansible d’un serveur à un autre
(implique une suppression du composant sur l’ancien serveur non gérée pour le moment)

Prudence : Dans le cas d’ajout d’une offre, il est nécessaire de suivre la procédure de resynchronisation des offres.

Avertissement : Les composants « vitam-processing », « vitam-workspace » ne sont pas multi-instantiables.

Avertissement : Le composant « vitam-offer » n’est PAS mono-instantiable lorsqu’il est déployé en mode système
de fichiers, ou archivage sur bandes magnétiques. Le composant « vitam-offer » est multi-instantiable lorsqu’il est
déployé en mode S3 ou Swift.

1. Modifier l’inventaire avec la/les VM supplémentaire(s)

2. Lancer un déploiement comme indiqué dans le DIN en rajoutant la directive -l <liste de/des VM(s)
supplémentaire(s)>

5.7 Interruption / maintenance

5.7.1 Procédure d’arrêt complet

Un playbook ansible d’arrêt complet de la solution logicielle VITAM est fourni, sous deployment/
ansible-vitam-exploitation/stop_vitam.yml, pour réaliser de façon automatisée les actions néces-
saires. Ce playbook arrête aussi les timers systemD associés aux composants VITAM.

16 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

Avertissement : Ce script, en l’état, permet un EMERGENCY BREAK, autrement dit un arrêt brutal des compo-
sants, ne permettant pas de garantir, à l’issue, une cohérence des données. Il est donc fortement recommandé de
positionner les traitements courants en pause avant de lancer la procédure d’arrêt.

Note : Une confirmation est demandée pour lancer ce script d’arrêt de la solution logicielle VITAM. Cette confirma-
tion peut être automatisée en utilisant les extra-vars d’ansible -e "confirmation=yes"

5.7.2 Procédure de démarrage complet

Les machines hébergeant la solution logicielle VITAM doivent être allumées et en état de fonctionnement pour exécuter
cette procédure.

Un playbook ansible de démarrage complet de la solution logicielle VITAM est fourni, sous deployment/
ansible-vitam-exploitation/start_vitam.yml, pour réaliser de façon automatisée les actions néces-
saires. Ce playbook démarre aussi les timers systemD associés aux composants VITAM.

5.7.3 Procédure de statut

Un playbook ansible est fourni, sous deployment/ansible-vitam-exploitation/status_vitam.
yml, pour réaliser de façon automatisée les « autotest » intégrés dans la solution logicielle VITAM.

5.7.4 Autres cas

5.7.4.1 Procédure de maintenance / indisponibilité de VITAM

Deux playbooks ansible sont fournis dans deployment/ansible-vitam-exploitation :

∙ stop_external.yml : permettant d’arrêter uniquement les composants VITAM ingest-external et access-
external

∙ start_external.yml : permettant de démarrer uniquement les composants VITAM ingest-external et
access-external

Ces playbooks permettent d’empêcher l’accès à la solution logicielle VITAM par les services versants, tout en laissant
opérationnel le reste de la solution logicielle. Ils peuvent être utiles, voire nécessaires, dans le cadre d’une migration
de données ou de maintenance de la solution logicielle VITAM.

Ils ne stoppent donc pas :

∙ Les versements qui sont encore en cours de traitement (il est toutefois possible de les mettre en pause via ihm-
demo par exemple)

∙ Les timers qui lancent divers traitements comme des sécurisations, pour cela, se référer au chapitre suivant

5.7.4.2 Procédure de maintenance liée aux timers systemD

Deux playbooks ansible sont fournis dans deployment/ansible-vitam-exploitation :

∙ stop_vitam_scheduling.yml : permettant d’arrêter uniquement les Jobs Vitam

∙ start_vitam_scheduling.yml : permettant de démarrer uniquement les Jobs Vitam. Ce playbook est à
lancer une fois le démarrage des services correctement réalisé.

5.7. Interruption / maintenance 17

VITAM - Documentation d’exploitation, Version 7.1.5

5.7.4.3 Procédure de maintenance sur les composants d’administration

Deux playbooks sont fournis dans deployment/ansible-vitam-exploitation :

∙ stop_vitam_admin.yml : permettant d’arrêter sélectivement les composants Consul, la chaine de log (log-
stash / cluster elasticsearch-log / kibana-log), cerebro et les docker mongo-express et elasticsearch-head

∙ start_vitam_admin.yml : permettant de démarrer sélectivement les composants Consul, la chaine de log
(logstash / cluster elasticsearch-log / kibana-log), cerebro et les docker mongo-express et elasticsearch-head

Avertissement : En passant le playbook d’arrêt, l’ensemble de la solution logicielle VITAM devient inutilisable.

5.7.4.4 Procédure de maintenance des IHM

Deux playbooks sont fournis dans deployment/ansible-vitam-exploitation :

∙ stop_vitam_ihm.yml : permettant d’arrêter sélectivement les composants VITAM IHM ihm-demo et ihm-
recette

∙ start_vitam_ihm.yml : permettant de démarrer sélectivement les composants VITAM IHM ihm-demo et
ihm-recette

5.7.4.5 Procédure de maintenance des Bases de données métier

Quatre playbooks sont fournis dans deployment/ansible-vitam-exploitation :

∙ start_elasticsearch_data.yml : pemettant de démarrer le cluster elasticsearch-data

∙ start_mongodb.yml : permettant de démarrer les clusters mongodb (mongo-data & mongo-offer)

∙ stop_elasticsearch_data.yml : permettant d’arrêter le cluster elasticsearch-data

∙ stop_mongodb.yml : permettant d’arrêter les clusters mongodb (mongo-data & mongo-offer)

5.8 Sauvegarde / restauration

Note : La sauvegarde des bases de métadonnées MongoDB et Elasticsearch, ainsi que la restauration de leur contenu
en cohérence avec les offres sous-jacentes, est déjà gérée par les mécanismes intrinsèques à la solution VITAM, cf. le
DAT , chapitre reconstruction. Il est toutefois recommandé de réaliser des sauvegardes lors d’événements d’exploita-
tion, tel que l’upgrade de la plateforme, ou de manière régulière, lorsque le volume de données en base est important,
et ce, afin d’éviter un processus de reconstruction trop long.

Avertissement : Cette méthode s’applique uniquement pour des déploiements de petite taille et n’est pas recom-
mandée pour un usage en production dont le volume de données géré est important (plusieurs centaines de millions
d’AU).

Les procédures sont issues des documentations officielles :

∙ mongoDB : https://docs.mongodb.com/manual/tutorial/backup-and-restore-tools/

∙ elasticsearch : https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

18 Chapitre 5. Exploitation globale

https://docs.mongodb.com/manual/tutorial/backup-and-restore-tools/
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

VITAM - Documentation d’exploitation, Version 7.1.5

5.8.1 Sauvegarde

Note : Pour que cette sauvegarde soit fonctionnellement correcte, il faut que la solution logicielle VITAM soit dans
un état stable et cohérent, sans possibilité de réaliser des versements et sans travail de fond (jobs de sécurisation, . . .).
Il est recommandé de l’exécuter lorsque les services client des bases sont éteints. Pour une sauvegarde à chaud, se
référer à la documentation officielle afin de disposer de l’ensemble de la procédure sécurisée.

5.8.1.1 mongoDB

La commande suivante est à lancer depuis une machine hébergeant le composant vitam-mongod dans le cas d’un
serveur standalone ou vitam-mongos dans le cas d’un cluster shardé. Il est aussi possible de l’exécuter pour
chaque shard, en considérant le serveur primary comme un serveur standalone, autrement dit depuis un composant
vitam-mongod de chaque shard. La commande est à lancer pour le mongo data ET pour chaque mongo offer de
VITAM :

mongodump –host mongodb.example.net –port 27017 –out /data/backup/ –username vitamdb-admin
–password « pass » –gzip

Note : Vérifier que l’espace disponible dans le répertoire de sauvegarde (défini par --out) est cohérent au volume
de données à sauvegarder (compressé)

Note : Se reporter au fichier deployment/environments/group_vars/all/main/vault-vitam.yml
de l’ansiblerie de déploiement pour le mot de passe vitamdb-admin

Rapatrier sur un serveur approprié le produit généré dans la valeur de --out.

Pour rappel, il y a un cluster mongo de « data », ainsi qu’un cluster mongo « offer » associé à chaque offre. Pour un
système cohérent, il faut effectuer la sauvegarde de chacun de ces clusters.

5.8.1.2 Elasticsearch

La commande suivante est à lancer depuis une machine elasticsearch de VITAM ayant un espace suffisant dans le
répertoire de sauvegarde :

curl -X PUT http://elasticsearch-data.service.${consul_domain} :9200/_snapshot/vitam_backup -d “{
« type » : « fs », « settings » : { « location » : « ${output_dir} » } }”

Cette étape va créer le repository vitam_backup de sauvegarde, l’arborescence étant définie par ${output_dir}.

Pour vérifier l’état du repository vitam_backup sur les noeuds du cluster

curl -X POST http://elasticsearch-data.service.${consul_domain}:9200/_snapshot/vitam_
→˓backup/_verify

Pour lancer un snapshot (dans l’exemple, appelé snapshot_1)

curl -X PUT http://elasticsearch-data.service.${consul_domain}:9200/_snapshot/vitam_
→˓backup/snapshot_1?wait_for_completion=true

Note : la commande ne rendra la main qu’à la fin de la procédure de snapshot.

5.8. Sauvegarde / restauration 19

http://elasticsearch-data.service

VITAM - Documentation d’exploitation, Version 7.1.5

A l’issue de la sauvegarde, procéder à une recopie de ${output_dir} sur un serveur à part.

5.8.2 Restauration

Note : Comme pour la sauvegarde, la restauration ne peut s’effectuer que sur un environnement VITAM stable et
cohérent, sans possibilité de réaliser des versements et sans travail de fond (jobs de sécurisation, . . .). De plus, le
contenu restauré doit être cohérent avec le contenu des offres de stockage sous-jacentes.

5.8.2.1 mongoDB

Il faut d’abord procéder au rapatriement dans ${output_dir} de la sauvegarde à appliquer.

Avertissement : une sauvegarde ne peut se restaurer que sur un environnement dans la même version.

La commande suivante est à lancer depuis une machine mongo de VITAM possédant le répertoire de sauvegarde à
restaurer vers le serveur mongod ou mongos (selon le cas sélectionné à l’import et en rapport à la présence d’un
serveur standalone ou d’un cluster shardé) :

mongorestore –host mongodb1.example.net –port 27017 –username vitamdb-admin –password “pass”
${output_dir}/${fichier} –gzip

Note : Se reporter au fichier deployment/environments/group_vars/all/main/vault-vitam.yml
de l’ansiblerie de déploiement pour le mot de passe vitamdb-admin

5.8.2.2 Elasticsearch

Il faut d’abord procéder au rapatriement dans ${output_dir} de la sauvegarde à appliquer.

Commande pour lister les snapshots de vitam_backup (repository)

curl -X GET http://elasticsearch-data.service.${consul_domain}:9200/_snapshot/vitam_
→˓backup/

Pour lancer une restauration, placer le nom du snapshot à la place de *snapshot* dans l’URL suivante

curl -X POST http://elasticsearch-data.service.${consul_domain}:9200/_snapshot/vitam_
→˓backup/*snapshot*/_restore

5.8.3 Cas de la base mongo certificates

La solution logicielle VITAM fournit un playbook de sauvegarde de la base de données identity ; le backup réalisé
est stocké sur la machine de déploiement.

Pour lancer le playbook de sauvegarde

ansible-playbook ansible-vitam-exploitation/backup_database_certificates.yml -i
→˓environments/hosts.<environnement> --ask-vault-pass

20 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

Note : Il est recommandé de procéder à une sauvegarde régulière de la collection identity, ou suite à des modifications
sur les certificats (ajout / mise à jour / révocation).

5.9 Sauvegarde et restauration de mongodb gros volumes

5.9.1 Préconisation

La documentation officielle de MongoDB présente différentes techniques de sauvegarde et restauration :
∙ utilisation des outils mongodump/mongorestore (Cf. la section dédiée (page 18)))

∙ utilisation de Filesystem snapshots

∙ réalisation de copies de disque.

La technique sélectionnée par VITAM est la troisième pour les raisons suivantes :

∙ Le volume de donnée en production est important. Les outils mongodump et mongorestore ne sont pas conseillés
dans ce cas de figure car ils necessitent un temps d’exécution trop important (sauvegarde / restauration des
données et création d’indexes).

∙ La technique des snapshots des disques dépend fortement des outils disponibles de l’environnement matériel.

Voir aussi :

Pour plus d’information, veuillez-vous référer à la documentation officielle : mongodump 11 et Filesystem Snap-
shots 12.

La sauvegarde et la restauration d’une base de forte volumétrie doit être anticipée lors du déploiement :
∙ en limitant le volume de donnée, géré par un shard, à une taille raisonnable ;

∙ en prévoyant un espace disque de taille identique au volume géré ou au moyen d’ajouter un disque supplé-
mentaire.

5.9.2 Sauvegarde d’un cluster Mongo shardé

1. Identifier dans chaque replicaSet les instances mongo Primary (le replicaset configserver, géré par les compo-
sants vitam-mongoc, et le replicaset de chaque shard, géré par le composant vitam-mongod)

2. Arrêter proprement les services mongo

3. Réaliser la copie compressée (tar.gz, zip, . . .) du dossier /vitam/data/mongoc/db (pour l’instance Primary du
configserver) ou du dossier /vitam/data/mongod/db (pour l’instance Primary d’un shard), pour chaque replicaset
identifié précédemment, en veillant à respecter le nommage des sauvegardes : configsrv, shard0, shard1, . . .

4. Stocker les copies sur un disque séparé et sécurisé

5.9.3 Restauration d’un cluster Mongo shardé

Note : La documentation officielle est consultable ici : Restore sharded cluster 13.

11. https://docs.mongodb.com/manual/tutorial/backup-and-restore-tools/
12. https://docs.mongodb.com/manual/tutorial/backup-with-filesystem-snapshots/
13. https://docs.mongodb.com/manual/tutorial/restore-sharded-cluster/

5.9. Sauvegarde et restauration de mongodb gros volumes 21

https://docs.mongodb.com/manual/tutorial/backup-and-restore-tools/
https://docs.mongodb.com/manual/tutorial/backup-with-filesystem-snapshots/
https://docs.mongodb.com/manual/tutorial/backup-with-filesystem-snapshots/
https://docs.mongodb.com/manual/tutorial/restore-sharded-cluster/

VITAM - Documentation d’exploitation, Version 7.1.5

1. Si le cluster existant n’est pas utilisé pour restaurer la sauvegarde, déployer un nouveau cluster mongo vide,
avec les mêmes caractéristiques que l’existant (configuration et nombre de shards). Il est conseillé d’utiliser
l’ansiblerie VITAM, en modifiant l’inventaire, et en exécutant le playbook d’initialisation du cluster Mongo
(ansible-vitam/mongodb_data.yml)

2. Arrêter le cluster mongodb

3. Modifier la configuration des services vitam-mongoc (chaque membre du replicaset configserver) pour désac-
tiver la replication et le sharding, en commentant dans le fichier /vitam/conf/mongoc/mongoc.conf les lignes
suivantes

replication:
replSetName: configsvr # name of the replica set
enableMajorityReadConcern: true

sharding:
clusterRole: configsvr # role du shard

4. Modifier la configuration des services vitam-mongod (chaque membre du replicaset de chaque shard), en com-
mentant dans le fichier /vitam/conf/mongod/mongod.conf les lignes suivantes

replication:
replSetName: shardX # name of the replica set
enableMajorityReadConcern: true

sharding:
clusterRole: shardsvr # role du shard

5. Si les services vitam-mongoc et vitam-mongod sont dans une zone réseau privée et sécurisée, il est plus simple
de désactiver l’authentification en commentant la partie sécurité dans les fichiers de configuration modifiés
précédemment. Sinon, dans la suite de la procédure, un chapitre permet de tenir compte de cette contrainte.
Pour désactiver la sécurité, commenter les lignes suivantes

security:
authorization: enabled
clusterAuthMode: keyFile
keyFile: "/vitam/conf/mongoc/keyfile"

6. Copier et décompresser les sauvegardes, en respectant chaque nom de fichier vers la machine destinataire
(configsrv, shard0, shard1, . . .), dans le dossier /vitam/data/mongoX de chaque instance mongo, c’est à dire
de l’ensemble des membres de chaque replicaset

7. Démarrer tous les services mongo en commençant par les services vitam-mongoc puis les services
vitam-mongod, ou réutiliser le playbook ansible (start_mongo.yml) en limitant aux machines des groupes
hosts_mongoc_data et hosts_mongod_data (paramètre –limit)

8. Pour chacune des instances mongoc et mongod, se connecter au serveur avec le client mongo, et exécuter les
opérations suivantes :

1. Si l’authentification est activée, il faut créer un systemUser (pré-requis : il faut un utilisateur ayant un
role « root ») de manière à disposer des droits pour exécuter les prochaines opérations. Pour cela exécuter
les commandes suivantes :

use admin
// Authenticate as root user
db.auth("rootUser", "rootUserPassword")
// Create system user
db.createUser({user: "systmUser", pwd: "systemUserPassword", roles: [
→˓"__system"]})
// Authenticate as system user
db.auth("systmUser", "systemUserPassword")

22 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

2. Supprimer la base de données local

// Drop local database
use local
db.dropDatabase()

3. Pour les machines mongoc uniquement, et si la restauration est réalisée sur des nouvelles machines héber-
geant les services vitam-mongod, modifier la configuration des instances mongoc (configserver) : mettre à
jour la collection shards en spécifiant les nouvelles ips des machines :

use config
// spécifier les shards pour chaque mongoc
// Example
db.shards.updateOne({ "_id" : "shard0"}, { $set : { "host" : "shard0/
→˓ip_member0-1:27019,ip-member0-2:27019,ip-member0-3:27019"}})
db.shards.updateOne({ "_id" : "shard1"}, { $set : { "host" : "shard1/
→˓ip_member1-1:27019,ip-member1-2:27019,ip-member1-3:27019"}})
db.shards.updateOne({ "_id" : "shard2"}, { $set : { "host" : "shard2/
→˓ip_member2-1:27019,ip_member2-2:27019,ip_member2-3:27019"}})

4. Pour les machines mongod uniquement, et si la restauration est réalisée sur des nouvelles machines héber-
geant les services vitam-mongoc, modifier la configuration des instances mongod (les shards) : mettre à
jour la collection system.version en spécifiant les nouvelles ips des machines :

use admin
db.system.version.deleteOne({ "_id": "minOpTimeRecovery" })
// spécifier les mongoc pour chaque shard
// Example
db.system.version.updateOne({ "_id" : "shardIdentity" },{ $set :{
→˓"configsvrConnectionString" : "configserver/ip_member_1:27018,ip_
→˓member_2:27018,ip_member_3:27018"}})

5. Si un utilisateur ayant un role __system a été créé à l’étape (6.1), il faut le supprimer

// Remove system user
use admin
// Authenticate as root user
db.auth("rootUser", "rootUserPassword")
db.removeUser("systmeUser")

9. Arrêter l’ensemble des services mongo et réactiver la replication et le sharding (et l’authentification si désacti-
vée) dans les fichiers de configuration de chacune des instances

10. Démarrer l’ensemble des services mongoc et mongod (en respectant l’ordre déjà spécifié précédemment)

11. Activer les replicaSet pour chacun des mongoc et mongod (shards) en exécutant, avec le client mongo,
le script init-replica-config.js disponible sur chacune des machines dont le paramètre mongo_rs_bootstrap est
spécifié dans l’inventaire ansible. Aussi depuis chacune de ces machines, il faut exécuter le script en modifiant
le paramètre host de manière à l’exécuter sur chaque membre du replicaSet

// Sur un des mongoc
> mongo --host {{ ip_service }} --port {{ mongodb.mongoc_port }} {{ vitam_
→˓defaults.folder.root_path }}/app/mongoc/init-replica-config.js
// Pour chaque shards et sur un des shards d'un replicaset
> mongo --host {{ ip_service }} --port {{ mongodb.mongod_port }} {{ vitam_
→˓defaults.folder.root_path }}/app/mongod/init-replica-config.js

5.9. Sauvegarde et restauration de mongodb gros volumes 23

VITAM - Documentation d’exploitation, Version 7.1.5

Avertissement : Chaque membre Secondary activé effectue une synchronisation initiale pour reprendre l’ensemble
des commandes opérées sur le membre Primary. En fonction du volume de données géré par shard, ainsi que des
performances des machines et du réseau, cette opération peut s’exécuter en un temps important, durant lequel les
performances du cluster seront affaiblies.

1. Démarrer les services vitam-mongos

2. Test de la restauration

∙ Un document accessible depuis un shards devrait être accessible depuis mongos (faire la requête de test
sur chaque shard)

∙ Tester aussi les collections non shardées

∙ Il est conseillé d’exécuter une requête count sur chacune des collections avant la sauvegarde pour vérifier
lors de la restauration le bon compte.

Note : L’ansiblerie VITAM déploie dans chacune des instances mongoc et mongod des scripts préparés restore-
mongoc.js et restore-mongod.js respectivement

∙ {{ vitam_defaults.folder.root_path }}/app/mongoc/restaure-mongoc.js

∙ {{ vitam_defaults.folder.root_path }}/app/mongod/restaure-mongod.js

Toutes les informations sur les adresses ip et numéros de ports de toutes les instances du cluster mongodb sont auto-
matiquement renseignés dans ces scripts

Pour exécuter ces deux scripts, il faut lancer la commande suivante que vous pouvez automatiser dans un playbook :

// Sur mongoc
> mongo {{ ip_service }}:{{ mongodb.mongos_port }}/admin {{ mongo_credentials }} {{
→˓vitam_defaults.folder.root_path }}/app/mongoc/restore-mongoc.js
// Sur mongod

> mongo {{ ip_service }}:{{ mongodb.mongos_port }}/admin {{ mongo_credentials }} {{
→˓vitam_defaults.folder.root_path }}/app/mongod/restore-mongod.js

5.9.4 Cas particulier de l’offre froide

Dans le cas particulier d’une offre de stockage froide, les fichiers backup zip sont stockés dans des bandes magnétiques.

La procédure de backup du mongo de l’offre froide est très importante, car, la base de donnée est l’unique référentiel
de l’ensemble des fichiers écris dans les bandes magnétiques.

Avertissement : Si les données du cluster mongodb de l’offre froide sont perdues, toutes les informations enre-
gistrées sur les bandes magnétiques sont inutilisables. Pour cette raison, il est impératif de stocker les sauvegardes
du cluster mongo de l’offre froide dans une bande magnétique.

5.9.4.1 Sauvegarde

5.9.4.1.1 Script de sauvegarde du cluster mongodb

Un playbook, ayant les tâches ci-dessous, a été mis en place pour faire un backup du mongodb de l’offre froide :

1. Détection des noeuds mongodb Primary (confiserver et shards)

24 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

2. Arrêt de VITAM

3. Copie et ajout d’un fichier de description des instances en cours

4. Compression du dossier db de chaque instance Primary (configserver et shards)

5. Démarrage de VITAM

6. Envoi des fichiers zip (via CURL) vers l’offre froide (composant offer sur url d’admin spécifique au traitement
du backup) qui seront sauvegardés sur une bande magnétique

Pour exécuter le playbook :

Prudence : Le playbook ci-dessous est à exécuter uniquement sur un VITAM ayant une offre froide
tapeLibrary

ansible-playbook ansible-vitam-exploitation/backup_mongodb_tape_offer.yml -i
→˓environments/hosts.<environnement> --ask-vault-pass

5.9.4.1.2 Sauvegarde des fichiers backup dans l’offre froide

Lors de l’envoi des fichiers vers l’offre froide, cette dernière va procéder au traitement suivant :

∙ Réception du fichier zip dans une zone temporaire

∙ Copie du fichier dans une zone d’écriture sur bande magnétique

∙ Création d’un ordre spécifique pour écrire le fichier backup zip sur une bande magnétique ayant un tag backup

∙ Le worker « TapeDriveWorker » (Thread executé dans la jvm offer) qui va exécuter la tâche consigne son ordre
d’écriture dans le fichier log offer_tape_backup_DATE.log, en détaillant les informations : code de
la bande magnétique, mongoc ou mongod (shard(i), date.

Note : Lors de la lecture depuis une bande magnétique, on accède aux fichiers sans connaître leur nom et leur type.
Si on perd le cluster mongodb, le fichier de log offer_tape_backup_DATE.log sera l’unique moyen d’accéder
rapidement au nom du fichier sauvegardé associé au code de la bande magnétique où il a été enregistré. Le nom
DATE-disk-mongod-shard01_.zip que l’on récupère depuis le fichier log offer_tape_backup_DATE.
log nous renseigne sur la date et le fait que ce soit un backup du shard01.

Avertissement : Après chaque sauvegarde, le fichier offer_tape_backup_DATE.log doit être copié dans
un lieu sûr, pour le besoin de restauration en cas de perte du site. Dans le cas de la perte du site, si ce fichier
n’est pas disponible, la lecture de toutes les bandes magnétiques sera l’unique moyen pour récupérer les fichiers
de backup.

5.9.4.2 Restauration

5.9.4.2.1 Accès aux fichiers de l’offre froide

Sur l’offre froide, toutes les écritures des fichiers backup du mongodb de l’offre, sont tracées dans le fichier log
offer_tape_backup_DATE.log

Pour récupérer une sauvegarde, il convient donc de consulter les lignes de log ayant comme information :

∙ Le code de la bande magnétique sur laquelle est écrit le fichier

∙ Le nom du fichier de la forme DATE-disk-mongod-shard01_.zip

5.9. Sauvegarde et restauration de mongodb gros volumes 25

VITAM - Documentation d’exploitation, Version 7.1.5

Pour restaurer une date donnée

- Repérer dans le fichier log ‘‘offer_tape_backup_DATE.log‘‘ tous les fichiers backup
→˓‘‘(mongoc et mongod)‘‘ zip correspondant à cette date ainsi que les bandes
→˓magnétiques sur lesquelles les fichiers sont stockés
- Manuellement, charger les bandes magnétiques sur une ‘‘tape-library‘‘ pour lire les
→˓fichiers
- La lecture des fichiers doit être réalisée en spécifiant les noms avec la
→˓nomenclature adéquate (le nom se retrouve aussi à l'intérieur du fichier zip dans
→˓un fichier descriptif)
- Copier et décompresser chacun de ces fichiers dans l'instance mongo correspondante.
→˓Par exemple le fichier ayant pour nom ‘‘DATE-disk-mongod-shard01_.zip‘‘ est à
→˓copier et à décompresser dans tous les membres mongo du shard ‘‘shard01‘‘

5.9.4.2.2 Restaurer le cluster mongodb

Une fois tous les fichiers copiés et décompressés dans les instances mongo correspondantes, il faut suivre la procédure
de restauration décrite ci-dessus paragraphe Restauration d’un cluster Mongo shardé.

5.10 Gestion des profils de sécurité

La solution logicielle VITAM permet de gérer des profils de sécurité.

Le profil se base sur un contexte, lui-même basé sur une/des certificat(s).

Le processus d’installation met en place le profil de sécurité d’administration, qu’il est fortement recommandé de
laisser « tel quel », car ce dernier est utilisé pour des actes d’exploitation.

Il n’existe actuellement pas de point d’API permettant de mettre à jour des profils de sécurité directement dans leur
globalité, il sera donc nécessaire de les supprimer puis de l’ajouter à nouveau selon la procédure ci-dessous.

5.10.1 Hiérarchie : profils de sécurité, contextes et certificats

Afin d’avoir une vue ensembliste sur la relation entre les profils de sécurité, les contextes et les certificats déjà importés
dans VITAM, il est possible d’avoir une liste complète des données de ces collections, en tenant compte de leur
interdépendance.

Cette action est faite en lançant le playbook comme suit :

ansible-playbook ansible-vitam-exploitation/listing_securityProfiles_contexts_certificates_hierarchy.yml
-i environments/hosts.<environnement> –ask-vault-pass

Note : Les certificats personnels ne sont pas pris en compte dans ce listage, vu qu’ils dépendent plutôt du client
connecté et non pas du contexte.

5.10.2 Ajout/Suppression de profils de sécurité

Avertissement : Cette version est encore en cours de mise en place et est susceptible d’évoluer.

26 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.10.2.1 Configuration

Un playbook d’exploitation permet de rajouter des profils de sécurité.

Sur la machine de déploiement, il est nécessaire de configurer le fichier deployment/
environments/group_vars/all/main/postinstall_param.yml, dans la section
vitam_additional_securityprofiles.

Exemple :

1 ---
2

3 vitam_additional_securityprofiles:
4 - name: vitamui-security-profile
5 identifier: vitamui-security-profile
6 hasFullAccess: true
7 permissions: "null"
8 contexts:
9 - name: vitamui-context

10 identifier: vitamui-context
11 status: ACTIVE
12 enable_control: false
13 # No control, idc about permissions :)
14 permissions: "[{ \"tenant\": 0, \"AccessContracts\": [], \

→˓"IngestContracts\": [] }, { \"tenant\": 1, \"AccessContracts\": [], \
→˓"IngestContracts\": [] }]"

15 certificates: ['external/vitamui.crt']

Note : les certificats devraient être de type external/${fichier crt}.

5.10.2.2 Ajout des fichiers crt

Placer les certificats précédemment renseignés (fichiers crt) dans {{inventory_dir}}/certs/client-
external/clients/external/.

5.10.2.3 Lancement du playbook

∙ L’ajout de tous les profils de sécurité renseignés dans postinstall_param.yml se fait en lançant le playbook
comme suit :

ansible-playbook ansible-vitam-exploitation/add_contexts.yml -i environ-
ments/hosts.<environnement> –ask-vault-pass

Prudence : Ce playbook ne sait gérer que le cas d’ajout de profils/contextes/. . . . Il convient de s’assurer au
préalable que les champs name et identifier à ajouter n’existent pas déjà dans la solution logicielle VITAM.

∙ L’ajout d’un seul profil de sécurité issu du fichier postinstall_param.yml se fait en lançant le playbook comme
suit :

ansible-playbook ansible-vitam-exploitation/add_contexts.yml -i environ-
ments/hosts.<environnement> -e security_profile_id= »<security_profile_id> » –ask-vault-pass

∙ La suppression de tous les profils de sécurité se fait en lançant le playbook comme suit :

5.10. Gestion des profils de sécurité 27

VITAM - Documentation d’exploitation, Version 7.1.5

ansible-playbook ansible-vitam-exploitation/remove_contexts.yml -i environ-
ments/hosts.<environnement> –ask-vault-pass

Prudence : Ce playbook supprime l’ensemble des profils/contextes définis dans le fichier environments/
group_vars/all/main/postinstall_param.yml.

∙ La suppression d’un seul profil de sécurité se fait en lançant le playbook comme suit :

ansible-playbook ansible-vitam-exploitation/remove_contexts.yml -i environ-
ments/hosts.<environnement> -e security_profile_id= »<security_profile_id> » –ask-vault-pass

Prudence : Les opérations sur le contexte de sécurité admin-context sont interdites car réservé à Vitam.

∙ L’ajout d’un certificat pour un profil de sécurité existant se fait de la manière suivante :

ansible-playbook ansible-vitam-exploitation/update_context.yml -i environ-
ments/hosts.<environnement> -e security_profile_id= »<security_profile_id> » –ask-vault-pass

Prudence : Le profil de sécurité doit exister et il ne faut pas que plusieurs certificats identiques soient insérés !

5.10.2.4 Reconfiguration de VITAM

À l’issue de la bonne exécution du playbook, il faut relancer un déploiement partiel de VITAM pour les groupes ansible
[hosts_ingest_external] et [hosts_access_external]

5.10.2.4.1 Si utilisation de la PKI de tests

La procédure décrite ci-dessous est à appliquer dans le cas où la PKI de tests a été employée.

Ajouter les informations relatives au(x) certificat(s) supplémentaire(s) via la commande

ansible-vault edit environments/certs/vault-certs.yml --ask-vault-pass

Ajouter un couple clef/valeur pour chaque certificat supplémentaire selon le modèle suivant

client_client-external_<nom complet du fichier crt avec extension>_key: <la valeur du
→˓mot de passe>

Exemple :

client_client-external_appliexterne.crt_key : Motd3P@sse !

Note : appliexterne ne doit pas contenir de caractère « - »

Avertissement : Si le certificat à ajouter a été généré avec une CA non-connue de VITAM, il faut ajouter au bon
endroit la clé publique (se référer au DIN pour plus d’informations).

28 Chapitre 5. Exploitation globale

mailto:Motd3P@sse

VITAM - Documentation d’exploitation, Version 7.1.5

Prudence : Un fichier crt ne doit contenir qu’une clef publique

Ensuite, regénérer les stores Java avec les certificats supplémentaires (script generate_stores.sh ; se référer au
DIN pour plus d’informations)

5.10.2.4.2 Cas d’une autre PKI

Mettre à jour les stores java avec les certificats supplémentaires à truster.

5.10.2.4.3 Application des stores mis à jour

Rejeu du déploiement en limitant aux groupes ansible [hosts_ingest_external] et
[hosts_access_external] et avec le tag ansible update_vitam_certificates.

Exemple :

ansible-playbook ansible-vitam/vitam.yml -i environments/hosts.<environnement> –ask-vault-pass –limit
hosts_ingest_external,hosts_access_external –tags update_vitam_certificates

5.11 Certificats personae

5.11.1 Configuration des permissions des certificats personae

il est possible de configurer les endpoints nécessitant une authentification personae via le fichier deployment/ansible-
vitam/roles/vitam/templates/security-internal/personal-certificate-permissions.conf.j2 Les endpoints qui requièrent
une authentification personnelle doivent être déplacés de permissionsWithoutPersonalCertificate vers permissions-
RequiringPersonalCertificate

Exemple :

permissionsRequiringPersonalCertificate:
- 'elimination:action'

permissionsWithoutPersonalCertificate:
- 'dipexport:create'
- 'dipexportv2:create'
- 'dipexport:id:dip:read'

5.11.2 Déploiement des certificats personae

5.11.2.1 Vitam n’est pas encore déployé

Déployer Vitam en suivant la procédure indiquée dans le DIN.

Note : le certificat personnel doit être pré-provisionné dans Vitam, Ceci est réalise au moment
de l’installation via le paramètre admin_personal_certs du fichier de configuration {{ inventory_dir
}}/group_vars/all/advanced/vitam_security.yml, et en renseignant les certificats (clés publiques) dans le bon
dossier {{ inventory_dir }}/certs/client-vitam-users/clients.

5.11. Certificats personae 29

VITAM - Documentation d’exploitation, Version 7.1.5

5.11.2.2 Vitam est déjà déployé

Suivre la procédure de la section Intégration d’une application externe dans Vitam (page 256).

5.12 Gestion des indexes Elasticseach dans un contexte massive-
ment multi-tenants

5.12.1 Présentation

Prudence : Attention, cette fonctionnalité est compliquée à utiliser et n’est nécessaire qu’en cas de contexte
massivement multi-tenants. Il n’est pas utile de regrouper des tenants en dessous d’un usage inférieur à 10 tenants.
Au delà de 50 tenants, cette fonctionnalité peut être utile mais uniquement dans le cas où une majorité de ces 50
tenants contiennent peu de données.

L’objectif de cette fonctionnalité est de pouvoir gérer plusieurs milliers de tenants en limitant les impacts sur les
performances du cluster elasticsearch-data. Initialement, Vitam était prévu pour une gestion d’une dizaine de tenants
avec l’utilisation de la topologie suivante pour la gestion des indexes dans la base elasticsearch-data :

∙ Masterdata (accesscontract, ingestcontract, ontology, formats. . .) : 1 index pour tous les tenants

∙ unit, logbookoperation, objectgroup : 1 index par tenant

Ainsi, cette nouvelle fonctionnalité offre la possibilité de regrouper certains tenants qui contiendraient peu de données
afin d’éviter d’avoir un index dédié pour chaque tenant.

Prudence : Attention, en cas de modification de la distribution des tenants, une procédure de réindexation de
la base elasticsearch-data est nécessaire. Cette procédure est à la charge de l’exploitation et nécessite un arrêt de
service sur la plateforme. La durée d’exécution de cette réindexation dépend de la quantité de données à traiter.

5.12.2 Recommandations d’implémentation

En fonction de la quantité de données à traiter, il est conseillé de prévoir des plages de tenants en fonction de leur futur
usage. Il est tout à fait possible de prévoir à l’avance des plages de tenants même si ils ne sont pas encore utilisés. Cela
permet d’anticiper leur gestion future.

Par exemple, une recommandation serait de définir la convention suivante pour les plages de tenants en fonction de leur usage :

∙ [1-99] : Plage pour les gros tenants qui nécessitent un index dédié.

∙ [100-999] : Plage pour les tenants de taille moyenne qui pourraient être regroupés par dizaines.

∙ [1000-9999] : Plage pour les petits tenants qui pourraient être regroupés par centaines.

En fonction de l’usage qui sera fait de certains tenants, il peuvent être amenés à être regroupés différemment. Un suivi
de l’évolution de la quantité de données dans chacun des tenants et groupe de tenants est nécessaire afin d’anticiper
les modifications nécessaires à effectuer en fonction des regroupements.

30 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.13 Batchs et traitements

5.13.1 Curator

Il existe des jobs Curator de :

∙ fermeture d’index

∙ suppression d’index fermés

Ces jobs sont lancés via crontab toutes les nuits.

5.13.2 Timers systemD

Tous les timers systemD décrits ci-dessous sont paramétrables ; un comportement par défaut est appliqué. Se reporter
à la procédure changetimers pour la bonne prise en compte du paramétrage attendu ou souhaité.

5.13.2.1 Sécurisation des journaux d’opérations

Un timer systemd a été mis au point pour réaliser ces actions :

∙ Timers de reconstruction VITAM (page 71)

Ce timer est installé avec le composant logbook.

5.13.2.2 Sécurisation des cycles de vie

Des timers systemd ont été mis au point pour réaliser ces actions :

∙ systemd_timer_lfc_unit

∙ systemd_timer_lfc_og

Ces timers sont installés avec le composant logbook.

5.13.2.3 Sécurisation des offres de stockages

Des timers systemd ont été mis au point pour réaliser ces actions :

∙ systemd_timer_storage_backup

∙ systemd_timer_storage_traceability

Ces timers sont installés avec le composant storage.

5.13.2.4 Autres timers

Les timers suivants sont apportés par le composant functional_administration

vitam-create-accession-register-symbolic
vitam-functional-administration-accession-register-reconstruction
vitam-rule-management-audit
vitam-functional-administration-reconstruction

Les timers suivants sont apportés par le composant metadata

5.13. Batchs et traitements 31

VITAM - Documentation d’exploitation, Version 7.1.5

vitam-metadata-store-graph
vitam-metadata-reconstruction
vitam-metadata-computed-inherited-rules
vitam-metadata-purge-dip
vitam-metadata-purge-transfers-SIP
vitam-metadata-audit-mongodb-es

5.14 Sauvegarde des données graphe (Log shipping)

La sauvegarde des données graphe des métadonnées (UNIT/GOT) consiste à récupérer au fil de l’eau depuis la base
de données (MongoDB) les données graphe par (UNIT/GOT) pour les stocker dans les offres de stockage.

Prudence : En cas de problème de sauvegarde des données graphe, on écrit dans le fichier log une
[Consistency Error] qu’il conviendra de surveiller.

Avertissement : Si l’instance qui démarre le service de sauvegarde s’arrête, il faut lancer ce service de sauvegarde
dans une autre instance.

5.14.1 Déclenchement de la sauvegarde

La sauvegarde des données graphe est lancée via un timer systemd (vitam-metadata-store-graph (page 71)), qui
démarre le service systemd associé.

∙ Le timer se lance chaque 30 minutes (par défaut, modifiable selon le besoin - se reporter à changetimers -)
∙ Le sauvegarde des données graphe se fait sur un intervalle de temps (depuis la dernière sauvegarde jusqu’au

temps présent)
∙ Le fichier généré est un fichier au format zip, qui contient un ou plusieurs fichiers JSON. Ces fichiers JSON

contiennent un tableau de données graphe.
∙ Le nom du fichier de la dernière sauvegarde contient les dates début et fin de sauvegarde. Ce nom est utilisé

pour déterminer la dernière date de sauvegarde.
∙ La sauvegarde des UNIT est séparée de celle des GOT (Deux containers distincts dans chaque offre de stockage)

5.14.2 Reconstruction des données graphe

La reconstruction des données graphe se fait avec le même principe que la reconstruction des méta-données
(UNIT/GOT) :

∙ Gérer l’offset de reconstruction des fichiers de sauvegarde des données graphe.
∙ Mettre à jour uniquement les données graphe. Si un document n’est pas trouvé, une création de ce document est

faite et ne contiendra que les données du graphe.
∙ De même, la reconstruction des métadonnées ne modifie pas les données graphe potentiellement déjà existantes.
∙ Une purge est faite de tous les documents ayant uniquement les données graphe et qui sont vieux de (1 mois

Configurable)
∙ Les documents ayant uniquement les données graphe ne sont pas indexés dans ElasticSearch.
∙ La reconstruction est séquentielle (D’abord les métadonnées UNIT/GOT ensuite leur graphe)

Voir aussi :

Se reporter à la procédure de Reconstruction (page 35) des métadonnées pour plus d’informations.

32 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.15 Recalcul des données graphe

Il est possible de recalculer les données du graphe en utilisant une requête DSL. En effet, dans le cadre de la procédure
de PRA, il est nécessaire de pouvoir détecter les unités archivistiques ayant un graphe incohérent (construire le DSL
requis) selon la procédure de déclenchement décrite ci-dessous.

Le recalcul de graphe permet de rétablir la cohérence des données VITAM.

Prudence : En cas de données de graphe incohérentes, le résultat des requêtes DSL sur les unités archivistiques
pourra être incorrect. Il n’est pas recommandé d’utiliser des champs du graphe calculés tels que #allunitups.

Prudence : L’exécution des requêtes DSL n’est pas soumise à des filtres de sécurité définis dans les contrats
d’accès.

5.15.1 Déclenchement

Le recalcul du graphe est déclenché par l’appel au point d’API porté par l’URL suivante sur le composant metadata

http://{{ ip_admin }}:{{ vitam.metadata.port_admin }}/metadata/v1/computegraph

Exemple d’appel à l’aide de curl :

curl -s -X POST -H "X-Tenant-Id: <tenant>" -H "Content-Type: application/json" --user
→˓"${VITAM_ADMIN_AUTH}" --data @${CURRENT_DIR}/dslQuery.json ${URL}

Exemple de query DSL (dslQuery.json) :

{
"$roots": [
"aeaqaaaaaqhdytymabdeialenehzphiaaaeq",
"aeaqaaaaaqhdytymabdeialenehzpbyaaajq"

... , "guid_n"
],
"$query": [],
"$projection": {}

}

La valeur utilisée pour la basic authentication prend la forme suivante

VITAM_ADMIN_AUTH={{ admin_basic_auth_user }}:{{ admin_basic_auth_password }}

∙ Le paramètre adminUser correspond à la valeur admin_basic_auth_user déclarée dans le fichier
deployment/environments/group_vars/all/advanced/vitam_security.yml

∙ Le paramètre adminPassword correspond à la valeur admin_basic_auth_password déclarée dans le
fichier deployment/environments/group_vars/all/main/vault-vitam.yml

5.15. Recalcul des données graphe 33

VITAM - Documentation d’exploitation, Version 7.1.5

5.16 Montée de version du fichier de signature de Siegfried

La solution logicielle VITAM utilise l’outil Siegfried pour la détection des formats des fichiers contenus dans les SIP.
La nomenclature des formats est basée sur la norme « DROID » fournie par les archives nationales anglaises 14.

Ce fichier est régulièrement mis à jour et il est recommandé de procéder à sa mise en place dans VITAM.

Pour ce faire, il faut récupérer le fichier PRONOM 15 depuis les archives nationales anglaises et l’ajouter dans le
répertoire deployment/environments/.

Il faut ensuite modifier la valeur de la directive droid_filename dans le fichier deployment/
environments/group_vars/all/advanced/vitam_vars.yml (avec le nom du fichier récupéré précé-
demment).

Enfin, il faut lancer le playbook ansible suivant depuis le répertoire deployment/

ansible-playbook ansible-vitam-exploitation/roy_build_signature.yml -i environments/
→˓hosts.<environnement> --ask-vault-pass

5.17 Griffins

Note : Nouveauté introduite en R9.

Afin de prendre en compte des considérations de réidentification et/ou préservation, la solution logicielle VITAM
intègre désormais des griffins - greffons - pour réaliser les actions d’analyse, (ré)identification et préservation.

Comme décrit dans le DIN, le choix des griffins installés est défini dans le fichier environments/group_vars/
all/main/main.yml au niveau de la directive vitam_griffins.

Prudence : Cette version de la solution logicielle VITAM ne mettant pas encore en oeuvre de mesure d’isolation
particulière des griffins, il est recommandé de veiller à ce que l’usage de chaque griffin soit en conformité avec la
politique de sécurité de l’entité. Il est en particulier déconseillé d’utiliser un griffin qui utiliserait un outil externe
qui n’est plus maintenu.

5.17.1 Ajout de nouveaux / mise à jour de griffins

Il est possible d’ajouter ou mettre à jour des griffons à une installation de la solution logicielle VITAM.

5.17.1.1 Ajout de griffins

Pour cela, il faut modifier le fichier environments/group_vars/all/main/main.yml au niveau de la di-
rective vitam_griffins par ajout du/des griffon(s) dans la liste.

Exemple d’ajout du greffon vitam-un-nouveau-greffon-qui-est-nécessaire

vitam_griffins: ["vitam-imagemagick-griffin", "vitam-jhove-griffin", "vitam-un-
→˓nouveau-greffon-qui-est-nécessaire"]

14. http://www.nationalarchives.gov.uk/
15. http://www.nationalarchives.gov.uk/information-management/manage-information/preserving-digital-records/droid/

34 Chapitre 5. Exploitation globale

http://www.nationalarchives.gov.uk/
http://www.nationalarchives.gov.uk/information-management/manage-information/preserving-digital-records/droid/

VITAM - Documentation d’exploitation, Version 7.1.5

5.17.1.2 Mise à jour des griffins

Dans le cadre d’une montée de version des composants griffins, le playbook se charge de déployer les composants les
plus à jour ; il n’est pas nécessaire de modifier la directive vitam_griffins.

Note : Ne pas oublier, sur les partitions associées, de mettre à jour, si nécessaire, l’adresse du dépôt de binaires.

5.17.1.3 Préparation du système

Il faut également prévoir de mettre à disposition sur le(s) dépôt(s) de binaires les packages d’installation correspon-
dants. Le nom indiqué dans la liste doit correspondre au nom du package (format rpm ou deb selon la plateforme).
Les packages d’installation associés doivent se situer dans un dépôt accessible et connu par la machine sur laquelle ils
vont être installés.

5.17.1.4 Prise en compte technique par VITAM

Enfin, il suffit de relancer le playbook d’installation de VITAM avec, en fin de ligne, cette directive

--tags griffins

5.18 Reconstruction

La reconstruction consiste à recréer le contenu des bases de données (MongoDB-data, Elasticsearch-data) en cas de
perte de l’une ou l’autre à partir des informations présentes dans les offres de stockage. Elle part du principe que le
contenu des offres n’a pas été altéré.

Prudence : Dans cette version de la solution logicielle VITAM, la reconstruction nécessite de couper le service
aux utilisateurs.

Prudence : Une reconstruction complète à partir des offres de stockage peut être extrêmement longue, et ne doit
être envisagée qu’en dernier recours.

5.18.1 Procédure mono-site

La procédure à appliquer est la même que la procédure du site primaire pour une installation multi-sites.

5.18.2 Procédure multi-sites

5.18.2.1 Cas du site primaire

La reconstruction se réalise de la manière suivante :

1. Arrêt de VITAM sur le site à reconstruire

∙ Utiliser le playbook ansible-vitam-exploitation/stop_vitam.yml

5.18. Reconstruction 35

VITAM - Documentation d’exploitation, Version 7.1.5

Il est indispensable de valider que tous les services VITAM (y compris les timers systemd) sont bien arrêtés

2. Purge des données (le cas échéant) stockées dans MongoDB-data, excepté les bases identity, config et admin :

∙ Utiliser le playbook ansible-vitam-exploitation/start_mongodb.yml pour démarrer les
bases mongodb

∙ Procéder à la purge des données en utilisant l’outil mongo shell ou un outil équivalent :
∙ Se connecter avec l’utilisateur vitamdb-admin

∙ Lister les bases via la commande show dbs

∙ Pour chacune des bases, excepté les bases identity, config et admin, les vider via la commande
db.getCollectionNames().forEach(function(x) {db[x].remove({})});

∙ Utiliser le playbook ansible-vitam-exploitation/stop_mongodb.yml pour stopper les
bases mongodb

3. Purge des données (le cas échéant) stockées dans Elasticsearch-data :

∙ Utiliser le playbook ansible-vitam-exploitation/start_elasticsearch_data.yml
pour démarrer elasticsearch-data

∙ Dans le cas où Cerebro ou un outil équivalent est disponible, lister les indexes et les purger via l’IHM

∙ Sinon :
∙ Se connectant en ssh sur un des nœuds elasticsearch-data

∙ Lister les indexes ES via curl ’http://localhost:9200/_cat/indices?v’

∙ Pour chacun des indexes, vider l’index via : curl -XDELETE ’http://
localhost:9200/{index_name}’

(Pour cette action de purge d’elasticsearch-data un playbook équivalent est disponible :
ansible-vitam-exploitation/clean_indexes_es_data.yml)

∙ Utiliser le playbook ansible-vitam-exploitation/stop_elasticsearch_data.yml
pour stopper elasticsearch-data

4. Reconfiguration et démarrage en tant que site secondaire :

∙ Paramétrer la variable primary_site à false dans le fichier d’inventaire puis utiliser le playbook
ansible-vitam/vitam.yml

5. Dès lors, l’accès utilisateur reste coupé, et l’intégralité des données est reconstruite progressivement

∙ Le suivi de la reconstruction se fait en observant l’évolution de l’offset de reconstruction stocké dans
MongoDB-data

∙ Pour la release 8, la procédure est décrite dans la section « Recalcul des données graphe »

6. La collection Offset de la base de données metadata est créée et permet de suivre l’avancement de la
reconstruction.

7. Une fois la reconstruction terminée (plus de modification dans la collection Offset), il convient de reconfigurer
en tant que site primaire, puis redémarrer :

∙ Paramétrer la directive primary_site à true puis utiliser le playbook ansible-vitam/vitam.
yml

5.18.2.2 Cas du site secondaire

La reconstruction se réalise de la manière suivante :

1. Arrêt de VITAM sur le site à reconstruire

∙ Utiliser le playbook ansible-vitam-exploitation/stop_vitam.yml

Il est indispensable de valider que tous les services VITAM (y compris les timers systemd) sont bien arrêtés.

2. Purge des données (le cas échéant) stockées dans MongoDB-data, excepté les bases identity, config et admin
(procédure identique au cas du site primaire)

36 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

3. Purge des données (le cas échéant) stockées dans Elasticsearch-data (procédure identique au cas du site primaire)

4. Redémarrage du site secondaire Vitam

∙ Utiliser le playbook ansible-vitam-exploitation/start_vitam.yml

∙ La prochaine itération de reconstruction au fil de l’eau redémarrera la reconstruction à partir du début

∙ Attendre la fin de la reconstruction au fil de l’eau sur le site secondaire

∙ Le suivi de la reconstruction se fait en observant l’évolution de l’offset de reconstruction stocké dans
MongoDB-data

∙ Pour la release 7 (version 1.4.x) il faut lancer le service dédié
vitam-metadata-graph-builder.service sur le composant metadata pour recalcu-
ler le graphe des unités archivistiques et des groupes d’objets techniques n’ayant pas encore
reconstruit leurs données graphe

5.18.3 Contrôle des données reconstruites

La reconstruction des objets en base de données que ce soit sur MongoDB-data ou Elasticsearch-data est un processus
long. Afin de contrôler si tous les objets ont été reconstruits ou si la reconstruction est toujours en cours il est nécessaire
de compter les objets des collections Units et ObjectGroups de la base Metadata.

Un playbook a été réalisé afin de réaliser ce comptage à la fois sur Elasticsearch-data et sur MongoDB-data.

Il s’execute sur chacun des sites à comparer via le playbook ansible-vitam-exploitation/
reconstruction_doc_count.yml.

À l’issue de l’exécution, le fichier environments/unit_got_docs_count.<site_name> est généré.

5.19 Plan de Reprise d’Activité (PRA)

Le PRA consiste à passer un site VITAM secondaire en site primaire après incident majeur survenu sur le site primaire
(cas de l’indisponibilité complète du site primaire).

Note : Les actions en cours sur le site primaire sont perdues (versements non terminés, batchs etc.). L’incohérence
des données sera traitée dans une version ultérieure de VITAM..

Cette section décrit des actions qui ne peuvent donc s’effectuer que si une installation multi-sites a été effectuée au
préalable.

Cette section s’appuie sur les procédures décrites dans les chapitres suivants :

∙ Resynchronisation d’une offre à partir d’une autre offre (Resynchronisation d’une offre (page 39))

∙ Reconstruction des bases de données (MongoDB-data, Elasticsearch-data) en cas de perte de l’une ou l’autre, à
partir des informations présentes dans les offres (Reconstruction (page 35))

5.19.1 Déclenchement

Avant le déclenchement de la procédure de PRA, le système fonctionne en mode multi-sites (primaire/secondaire). Le
service est indisponible à la suite de la perte du site primaire.

Le déclenchement du PRA s’effectue selon la procédure suivante :

1. Vérifier que le site primaire est bien complètement arrêté

∙ Il est indispensable de valider que tous les services VITAM (y compris les timers systemd) sont bien arrêtés

5.19. Plan de Reprise d’Activité (PRA) 37

VITAM - Documentation d’exploitation, Version 7.1.5

2. Attendre la fin de la reconstruction au fil de l’eau sur le site secondaire

∙ Le suivi de la reconstruction se fait en observant l’évolution de l’offset de reconstruction stocké dans
MongoDB-data.

3. Reconfigurer le site secondaire en site primaire :

∙ Attention à adapter la stratégie de stockage en fonction du mode d’utilisation choisi pour le site de secours :

∙ Mode « lecture/écriture » : la stratégie de stockage doit être modifiée afin de limiter les écritures aux
seules offres encore disponibles sur le site de secours (Activation/désactivation d’une offre (page 55))

∙ Mode « lecture seule » (recherche et consultation avec profil de droits dédié) : la stratégie de stockage
ne change pas. Seule une reconfiguration du site primaire initial en mode secondaire permettra le
retour à un fonctionnement nominal (cf. ci-dessous)

∙ Paramétrer la variable primary_site à true dans le fichier d’inventaire puis jouer le playbook
ansible-vitam/vitam.yml

∙ Si le site secondaire était partiellement déployé, ne pas oublier de rajouter tous les composants requis pour
un fonctionnement en site primaire.

4. En lien avec le processus de reconstruction (cf. Reconstruction (page 35)), en cas de bascule sur le site se-
condaire, il sera préférable de purger les documents des Unit et ObjectGroup reconstruits mais ne contenant
potentiellement que des données de graphe (cas de l’éliminitaion par exemple). Cette opération s’effectue avec
la commande suivante :

curl -s -X DELETE -H "X-Tenant-Id: {{ vitam_tenant_admin }}" -H "Accept: application/
→˓json" -H "Content-Type: application/json" --user "{{ admin_basic_auth_user }}:{{
→˓admin_basic_auth_password }}" http://{{ ip_admin }}:{{ vitam.metadata.port_admin }}/
→˓metadata/v1/purgeGraphOnlyDocuments/[UNIT | OBJECTGROUP | UNIT_OBJECTGROUP]

Après modification des accès pour les applications versantes (action infra. de type modification DNS, routage, conf
etc.), le site secondaire peut alors être ouvert au service en tant que site primaire.

Le système fonctionne désormais en mode mono-site (primaire). Le service est de nouveau disponible sur le site de
secours.

5.19.2 Retour en situation nominale

Le retour à la solution nominale s’effectue en deux étapes :

∙ Rétablissement du contenu du site primaire initial par reconfiguration temporaire en tant que site secondaire

∙ Retour à la configuration multi-sites initiale

Avertissement : Dans cette version, la resynchronisation partielle d’une offre de stockage n’étant pas supportée,
le retour à la configuration multi-sites initiale nécessite de repartir d’offres vierges de toutes données sur le site à
resynchroniser (on parle ici d’offre de remplacement)

5.19.2.1 Déclenchement

Avant déclenchement de la procédure de PRA inverse (retour en situation nominale), le système fonctionne en mode
mono-site (primaire). Le service est disponible sur le site de secours.

Le déclenchement du PRA inverse s’effectue selon la procédure suivante :

∙ Vérifier que le site primaire initial est bien complètement arrêté

∙ Il est indispensable de valider que tous les services VITAM (y compris les timers systemd) sont bien arrêtés

∙ Purger les données (le cas échéant) stockées dans MongoDB-data, excepté les bases identity, config et admin

38 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Purger les données (le cas échéant) stockées dans Elasticsearch-data

∙ Reconfigurer et démarrer le site primaire initial en tant que site secondaire :

∙ Paramétrer la variable primary_site à false dans le fichier d’inventaire puis jouer le playbook
ansible-vitam/vitam.yml

∙ Le mécanisme de reconstruction du contenu des bases de données (MongoDB-data, Elasticsearch-data) à
partir des informations présentes dans les offres de stockage est actif (aucune donnée à resynchroniser à
cette étape)

∙ Resynchroniser les offres de stockage à partir des offres du site de secours en se référant à la procédure suivante
Resynchronisation d’une offre (page 39)

∙ En fonction du mode d’utilisation choisi pour le site de secours :

∙ Mode lecture/écriture : la stratégie de stockage du site de secours doit auparavant être modifiée afin
de référencer de nouveau les offres du site primaire initial

∙ Mode lecture seule : la stratégie de stockage ne change pas. Les offres du site primaire initial sont
toujours connues du site de secours

∙ Le mécanisme de reconstruction au fil de l’eau reconstruit progressivement le contenu des bases de données

∙ Le suivi de la reconstruction se fait en observant l’évolution de l’offset de reconstruction stocké dans
MongoDB data

∙ Pour la release 7 (version 1.4.x) il faut lancer le service dédié vitam-metadata-graph-builder.
service sur le composant metadata pour recalculer les données graphe des unités archivistiques et des
groupes d’objets techniques n’ayant pas encore reconstruit leurs données graphe

∙ Une fois la reconstruction terminée, reconfiguration en tant que site primaire et démarrage :

∙ Paramétrer la variable primary_site à true dans le fichier d’inventaire puis jouer le playbook
ansible-vitam/vitam.yml

∙ Reconfiguration et démarrage en tant que site secondaire du site de secours :

Avertissement : Cette opération provoque une indisponibilité temporaire des principaux services
VITAM (versement, gestion, recherche et consultation)

∙ Paramétrer la variable primary_site à false dans le fichier d’inventaire puis jouer le play-
book ansible-vitam/vitam.yml

Après modification des accès pour les applications versantes (action infra. de type modification DNS, routage, conf
etc.), le site primaire initial peut alors être de nouveau ouvert au service en tant que site primaire.

Le système fonctionne désormais de nouveau en mode multi-sites (primaire/secondaire). Le service est de nouveau
disponible sur le site primaire initial.

5.20 Resynchronisation d’une offre

Une offre de stockage peut être désynchronisée par rapport à une autre à la suite d’une indisponibilité plus ou moins
longue voire totale de l’offre (crash majeur du système, panne matérielle etc.) ou bien encore à la suite d’une mise en
maintenance programmée.

Le mécanisme de resynchronisation d’une offre par rapport à une autre nécessite une intervention d’exploitation ma-
nuelle permettant de remédier à la perte de données dans le système.

Note : En cas d’indisponibilité d’une offre, le processus d’entrée d’un SIP n’étant réussi que si et seulement si toutes
les offres de stockage définies dans la stratégie sont accessibles, et que tous les fichiers sont bien copiés sur la totalité

5.20. Resynchronisation d’une offre 39

VITAM - Documentation d’exploitation, Version 7.1.5

de ces offres, il sera nécessaire de désactiver l’offre (cf. chapitre Activation/désactivation d’une offre (page 55)) afin
de permettre à nouveau les entrées de SIP (ingest/versement).

Prudence : Il est recommandé de procéder à un audit d’intégrité dans le cadre d’opérations techniques ciblées,
telles que l’évolution de la stratégie de stockage, un changement de stockage.

5.20.1 Cas de l’ajout d’une nouvelle offre

Avertissement : Lors de l’ajout d’une nouvelle offre (portant un nouvel identifiant d’offre), les métadonnées des
AU / GOT existants ne seront pas mis à jour avec l’information sur la nouvelle stratégie de stockage utilisée.
L’ajout d’un mécanisme de mise à jour / propagation des métadonnées est prévu dans une version ultérieure.
Lors de l’ajout d’une offre en remplacement d’une précédente offre, l’intégrité des métadonnées sera garantie en
conservant le même identifiant d’offre.

L’ajout d’une nouvelle offre de stockage requiert le déploiement des applicatifs VITAM associés selon la procédure
suivante :

∙ Éditer le fichier de configuration de l’inventaire de déploiement (généralement, fichier hosts) afin d’ajouter
les nouveaux serveurs portant les composants à déployer (fonction de la topologie de déploiement retenue) :

[hosts_storage_offer_default]
hostname-new-storage-offer offer_conf=<offer-z>

[hosts_mongos_offer]
hostname-new-mongos-offer offer_conf=<offer-z>

[hosts_mongoc_offer]
hostname-new-mongoc-offer offer_conf=<offer-z>

[hosts_mongod_offer]
hostname-new-mongod-offer offer_conf=<offer-z>

∙ Éditer le fichier de configuration de la stratégie de stockage deployment/environments/group_vars/
all/offer_opts.yml afin d’ajouter la nouvelle offre :

vitam_strategy:
- name: <offer-x>

referent: true
rank: 0

<offer-z> is the new offer
- name: <offer-z>

referent: false
rank: 10

vitam_offers:
<offer-x>:

provider: filesystem
<offer-z> is the new offer
<offer-z>:

provider: filesystem

Si la nouvelle offre est utilisée dans une stratégie additionnelle (other_strategies), la modifi-
cation sera la suivante :

40 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

other_strategies:
metadata:
- name: <offer-x>

referent: false
rank: 0

<offer-z> is the new offer
- name: <offer-z>

referent: false
rank: 10

vitam_offers:
<offer-x>:

provider: filesystem
<offer-z> is the new offer
<offer-z>:

provider: filesystem

∙ Éditer le fichier de déclaration des secrets généraux deployment/environments/group_vars/all/
main/vault-vitam.yml afin d’y ajouter les secrets associés à la nouvelle offre :

mongodb:
<offer-z>:

passphrase: <passphrase>
admin:
user: <admin-user>
password: <admin-password>

localadmin:
user: <localadmin-user>
password: <localadmin-password>

offer:
user: <offer-user>
password: <offer-password>

∙ Exécuter la commande suivante afin de déployer les nouveaux composants storage-offer, mongos-offer, mongoc-
offer, mongod-offer :

Note : On considère que les étapes de génération des hostvars, de génération des magasins de certificats et de mise
en place des repositories VITAM ont été réalisées au préalable pour les serveurs concernées (se référer aux sections du
DIN correspondantes).

ansible-playbook ansible-vitam/vitam.yml -i environments/hosts.<environnement> --ask-
→˓vault-pass --limit "hostname-new-storage-offer,hostname-new-mongos-offer,hostname-
→˓new-mongoc-offer,hostname-new-mongod-offer"

La nouvelle offre doit ensuite être déclarée dans la stratégie de stockage par reconfiguration du moteur de stockage
selon la procédure suivante :

Avertissement : Cette opération provoque une indisponibilité temporaire des principaux services VITAM (verse-
ment, gestion, recherche et consultation)

∙ Exécuter la commande suivante afin de reconfigurer le composant storage-engine :

ansible-playbook ansible-vitam/vitam.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass --limit hosts_storage_engine --tags
→˓update_vitam_configuration

5.20. Resynchronisation d’une offre 41

VITAM - Documentation d’exploitation, Version 7.1.5

5.20.2 Procédure de resynchronisation d’une offre

La resynchronisation d’une offre à partir du contenu d’une autre offre s’effectue en suivant la procédure suivante :

Note : Cette procédure n’impacte pas les services VITAM. Le mécanisme de reconstruction du contenu des bases de
données (MongoDB-data, Elasticsearch-data) à partir des informations présentes dans les offres de stockage fonctionne
de manière concurrente au mécanisme de resynchronisation.

∙ Exécuter la commande suivante afin de resynchroniser la nouvelle offre vis-à-vis de l’offre (des offres)
source(s) :

curl -v -X POST -u adminUser:adminPassword --header 'content-type:
→˓application/json' --header 'accept: application/json' http://
→˓<storageengine>:29102/storage/v1/offerSync --data '
{

"sourceOffer": "<offer-x>.service.consul",
"targetOffer": "<offer-z>.service.consul",
"strategyId": <strategyId>,
"container": <datatype>,
"tenantId": <tenantId>

}'

∙ Le paramètre adminUser correspond à la valeur admin_basic_auth_user déclarée dans le fichier
deployment/environments/group_vars/all/advanced/vitam_security.yml

∙ Le paramètre adminPassword correspond à la valeur admin_basic_auth_password déclarée
dans le fichier deployment/environments/group_vars/all/main/vault-vitam.yml

∙ Le paramètre sourceOffer correspond à l”id de l’offre source utilisée pour la resynchronisation de la
nouvelle offre

∙ Le paramètre targetOffer correspond à l”id de l’offre à resynchroniser

∙ Le paramètre strategyId correspond à la stratégie des offres source et cible

∙ le paramètre tenantId correspond au tenant sur lequel appliquer la synchronisation

∙ Le paramètre container correspond à un élément datatype de la liste suivante :

"units"
"objects"
"objectgroups"
"logbooks"
"reports"
"manifests"
"profiles"
"storagelog"
"storageaccesslog"
"storagetraceability"
"rules"
"dip"
"agencies"
"backup"
"backupoperations"
"unitgraph"
"objectgroupgraph"
"distributionreports"
"accessionregistersdetail"

(suite sur la page suivante)

42 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

∙ Suivre les journaux de la resynchronisation dans les logs du composant storage offer avec la commande sui-
vante :

tail -F /vitam/log/storage/storage_offer_sync.*.log

∙ Vérifier l’état d’exécution de la synchronisation via la commande (peut être scriptée) :

curl -v -X HEAD -i -u adminUser:adminPassword http://<storageengine>
→˓:29102/storage/v1/offerSync

L’entête Running indique l’état d’exécution de processus de synchronisation.
∙ Vérifier le détail d’exécution de la synchronisation via la commande :

curl -v -X GET -u adminUser:adminPassword http://<storageengine>:29102/
→˓storage/v1/offerSync

∙ Exemple de script shell permettant de faire une resynchronisation complète de l’ensemble des containers d’une
offre à une autre. Ce script est à exécuter à partir d’une vm du groupe hosts_storage_engine. Il est recommandé
de l’exécuter à l’intérieur d’un screen car l’exécution peut-être longue en fonction de la volumétrie à transférer.

#!/bin/bash
Script permettant de lancer la synchronisation de l'ensemble des
→˓containers d'une offre de stockage à une autre.
/!\ Ce script est à exécuter à partir d'une vm du groupe hosts_storage_
→˓engine

##
→˓######
TODO: Paramètres à personnaliser

cat environments/group_vars/all/advanced/vitam_security.yml | grep
→˓admin_basic_auth_user
admin_basic_auth_user='adminUser'
ansible-vault view environments/group_vars/all/main/vault-vitam.yml --
→˓vault-password-file vault_pass.txt | grep admin_basic_auth_password
admin_basic_auth_password='adminPassword'

cat environments/group_vars/all/advanced/vitam_vars.yml | grep consul_
→˓domain:
consul_domain: consul
cat environments/group_vars/all/main/offers_opts.yml
vitam_strategy.{name,vitam_site_name}
cat environments/hosts.env | grep ^vitam_site_name
vitam_site_name=dc1

{{ vitam_strategy.name }}.service.{{ vitam_strategy.vitam_site_name }}.
→˓{{ consul_domain }}
ou l'id de l'offre à synchroniser tel que définit dans environments/
→˓group_vars/all/main/offers_opts.yml.
sourceOffer="offer-fs-1.service.dc1.consul"
targetOffer="offer-fs-2.service.dc1.consul"

(suite sur la page suivante)

5.20. Resynchronisation d’une offre 43

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

cat environments/group_vars/all/advanced/tenants_vars.yml | grep vitam_
→˓tenant_ids
declare -a tenants="0 1 2"

##
→˓######
Récupération de l'ip:port du processus storage-engine local
service_storage=‘netstat -ln | awk -F" " '{print $4}' | grep 29102‘

if [-z "$service_storage"]; then
echo "ERROR: Could not find service vitam-storage running on port

→˓29102."
exit 1

fi

Liste des containers
declare -a containers="units objects objectgroups logbooks reports
→˓manifests profiles storagelog storageaccesslog storagetraceability
→˓rules dip agencies backup backupoperations unitgraph objectgroupgraph
→˓distributionreports accessionregistersdetail accessionregisterssymbolic
→˓tmp archivaltransferreply"

Confirmation du lancement de la synchro
echo "Synchronisation de $sourceOffer => $targetOffer"
read -p "Étes-vous sûr de vouloir lancer la synchronisation ? YES/[NO]" GO
if [["$GO" != "YES"]]
then
echo "Arrêt de la procédure de synchronisation."
exit 0
fi

echo "# Lancement de la procédure de synchronisation de la nouvelle offre"
for tenant in $tenants; do

echo
→˓"**
→˓"

echo "# Synchronisation du tenant $tenant"
for container in $containers; do

echo "## Synchronisation ${tenant}_${container}"
curl -X POST -u $admin_basic_auth_user:$admin_basic_auth_password

→˓--header 'accept: application/json' --header 'content-type: application/
→˓json' http://$service_storage/storage/v1/offerSync \

--data "{ \"sourceOffer\": \"${sourceOffer}\", \"targetOffer\": \"
→˓${targetOffer}\", \"strategyId\": \"default\", \"container\": \"$
→˓{container}\", \"tenantId\": ${tenant} }'"

while curl --silent -X HEAD -i -u $admin_basic_auth_user:$admin_
→˓basic_auth_password http://$service_storage/storage/v1/offerSync | grep
→˓'Running: true'; do

curl -X GET -u $admin_basic_auth_user:$admin_basic_auth_
→˓password http://$service_storage/storage/v1/offerSync

echo ""
sleep 5

done
echo "## Fin de la synchronisation du tenant ${tenant}_$

→˓{container}"
curl -X GET -u $admin_basic_auth_user:$admin_basic_auth_password

→˓http://$service_storage/storage/v1/offerSync (suite sur la page suivante)

44 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

echo ""
done

done

5.20.3 Procédure de resynchronisation partielle d’une offre

∙ En cas de resynchronisation partielle d’une offre, il est possible d’exécuter le processus de resynchronisation à
partir d’un offset :

curl -v -X POST -u adminUser:adminPassword --header 'content-type:
→˓application/json' --header 'accept: application/json' http://
→˓<storageengine>:29102/storage/v1/offerSync --data '
{

"sourceOffer": "<offer-x>.<consul_domain>",
"targetOffer": "<offer-z>.<consul_domain>",
"strategyId": <strategyId>,
"offset": <offset>,
"container": <datatype>,
"tenantId": <tenantId>

}'

Où <datatype> doit prendre les valeurs suivantes :

"units"
"objects"
"objectgroups"
"logbooks"
"reports"
"manifests"
"profiles"
"storagelog"
"storageaccesslog"
"storagetraceability"
"rules"
"dip"
"agencies"
"backup"
"backupoperations"
"unitgraph"
"objectgroupgraph"
"distributionreports"
"accessionregistersdetail"
"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

∙ Le paramètre offset correspond à la valeur du dernier offset observé dans les logs du composant
storage offer (cas d’une reprise suite à interruption ou échec de la procédure de resynchronisation). Le
paramètre offset peut également être déterminé via les enregistrements de la collection OfferLog
(database offer) depuis la base MongoDB associée à l’offre à resynchroniser (cas d’une panne ou d’une
mise en maintenance programmée à une date précise).

5.20. Resynchronisation d’une offre 45

VITAM - Documentation d’exploitation, Version 7.1.5

5.20.4 Procédure de resynchronisation ciblée d’une offre

La release R13 permet l’exécution d’une resynchronisation ciblée d’une offre de stockage, à partir d’une liste d’items
à resynchroniser.

curl -v -X POST -u adminUser:adminPassword --header 'content-type: application/json' -
→˓-header 'accept: application/json' http://<storageengine>:29102/storage/v1/
→˓offerPartialSync --data '
{

"strategyId" : <strategyId>,
"sourceOffer" : "<offer-x>.service.consul",
"targetOffer" : "<offer-z>.service.consul",
"itemsToSynchronize" : [{

"container" : "objects",
"tenantId" : 0,
"filenames" : ["ObjectId0", "ObjectId1", "ObjectId2", "ObjectId3", "ObjectId4

→˓"]
},{

"container" : "units",
"tenantId" : 0,
"filenames" : ["UnitId0", "UnitId1"]

}]
}'

∙ Le paramètre adminUser correspond à la valeur admin_basic_auth_user déclarée dans le fichier
deployment/environments/group_vars/all/advanced/vitam_security.yml

∙ Le paramètre adminPassword correspond à la valeur admin_basic_auth_password déclarée dans le
fichier deployment/environments/group_vars/all/main/vault-vitam.yml

∙ Le paramètre sourceOffer correspond à l”id de l’offre source utilisée pour la resynchronisation de la nou-
velle offre

∙ Le paramètre targetOffer correspond à l”id de l’offre à resynchroniser

∙ Le paramètre strategyId correspond à la stratégie des offres source et cible

∙ le paramètre tenantId correspond au tenant sur lequel appliquer la synchronisation

∙ Le paramètre container correspond à un élément datatype de la liste suivante :

"units"
"objects"
"objectgroups"
"logbooks"
"reports"
"manifests"
"profiles"
"storagelog"
"storageaccesslog"
"storagetraceability"
"rules"
"dip"
"agencies"
"backup"
"backupoperations"
"unitgraph"
"objectgroupgraph"
"distributionreports"
"accessionregistersdetail"

(suite sur la page suivante)

46 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

Depuis l’offre sourceOffer, la procédure récupère les filenames pour le tenantId et le container
concerné. * Si les fichiers sont trouvés, ils sont alors recopiés sur l’offre targetOffer * Si les fichiers ne sont
pas trouvés, ils seront supprimés de l’offre targetOffer

5.21 Audit comparatif entre 2 offres de stockage miroirs

Une offre de stockage peut être désynchronisée par rapport à une autre à la suite d’une indisponibilité plus ou moins
longue voire totale de l’offre (crash majeur du système, panne matérielle etc.) ou bien encore à la suite d’une mise en
maintenance programmée.

Le mécanisme d’audit comparatif entre 2 offres est un audit technique à disposition de l’exploitant. Il permet d’iden-
tifier l’ensemble des fichiers désynchronisés entre les 2 offres (existence et size).

5.21.1 Procédure de lancement et de suivi de l’audit comparatif d’offres

Le déclenchement se fait de la manière suivante :

ansible-playbook ansible-vitam-exploitation/diff_offers.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass -e "offer1=offer-fs1.service.dc1.consul
→˓offer2=offer-fs-2.service.dc2.consul container=units,objects tenants=0,1,2"

∙ Le paramètre offer1 spécifie l’identifiant complet de la première offre à comparer
(<nom_offre>.service.<vitam_site_name>.consul).

∙ Le paramètre offer2 spécifie l’identifiant complet de la seconde offre à comparer
(<nom_offre>.service.<vitam_site_name>.consul). * Si votre vitam_strategy contient uniquement 2 offres,
elles seront automatiquement sélectionnées.

∙ le paramètre tenants correspond à la liste des tenants séparés par une virgule.

∙ Le paramètre containers correspond à la liste des containers séparés par une virgule selon la liste suivante :

"units"
"objects"
"objectgroups"
"logbooks"
"reports"
"manifests"
"profiles"
"storagelog"
"storageaccesslog"
"storagetraceability"
"rules"
"dip"
"agencies"
"backup"
"backupoperations"
"unitgraph"
"objectgroupgraph"
"distributionreports"

(suite sur la page suivante)

5.21. Audit comparatif entre 2 offres de stockage miroirs 47

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"accessionregistersdetail"
"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

Si l’audit comparatif des offres remonte des anomalies, les rapports sont mis à disposi-
tion sous le répertoire environments/offer_diff_reports/<offer1>_<offer2>/
<tenantId>_<container>-<timestamp>-<reportFileName>

∙ Les journaux de l’audit comparatif se trouvent dans les logs du composant storage. Ils peuvent être suivis via la
commande suivante :

tail -F /vitam/log/storage/storage_offer_diff.*.log

5.22 Procédure d’exploitation suite à la création ou la modification
d’une ontologie

Au préalable à la création ou à la modification d’une ontologie, les index Elasticsearch correspondant aux ontologies
doivent être créés ou mis à jour.

5.22.1 Création d’une ontologie

Suite à la création d’une nouvelle ontologie, les index Elasticsearch doivent être mis à jour selon la procédure suivante :

∙ Dans le cas d’une création, il suffit de créer un nouveau mapping dans les index concernés.

Ex : Ajout d’une propriété Licence dans tous les index unit (unit* signifiant tous les index unit unit_0, unit_1 etc . . .)

Commandes à lancer sur une des partitions hébergeant le cluster elasticsearch « data » :

curl -XPUT "http://localhost:9200/unit*/_mapping/typeunique?update_all_types" -d'
{

"properties": {
"Licence": {

"type": "text"
}

}
}'

Pour verifier sur un ou tous les index unit :

curl -XGET "http://localhost:9200/unit_0/_mapping/?pretty=true"

curl -XGET "http://localhost:9200/unit*/_mapping/?pretty=true"

5.22.2 Changement de type d’une ontologie existante

Dans ce cas, le changement de type dans elasticsearch n’est pas possible. Il faut donc créer un nouvel index Elastic-
Search avec un nouveau mapping, puis reindexer l’ancien index dans ce dernier.

On récupère d’abord l’ancien index

48 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

curl -XGET 'localhost:9200/unit_1/_mapping?pretty=true'

On créé un fichier json et on y copie les données obtenues (ne conserver que la balise « mappings » : { . . .} et son
contenu). On modifie le mapping en changeant le type des propriétés choisies. On créé un nouvel index on lui passant
en paramètre le fichier du nouveau mapping .

curl -XPUT "http://localhost:9200/new_unit_1" -H 'Content-Type: application/json' -d
→˓@newmapping.json

Verifier l’index :

curl -XGET 'localhost:9200/new_unit_1/_mapping/'

On reindexe unit_1 vers le nouvel index new_unit_1

curl -XPOST 'localhost:9200/_reindex' -H 'Content-Type:application/json' -d '{
"source" : {

"index" : "unit_1"
},
"dest" : {

"index" : "new_unit_1",
"version_type": "external"

}
}'

On efface l’alias de l’ancien index unit_1

curl -XDELETE 'localhost:9200/unit_1/_alias/unit_1'

et on l’affecte au nouvel index new_unit_1

curl -XPUT 'localhost:9200/new_unit_1/_alias/unit_1'

Avertissement : les index elasticsearch de VITAM sont créés par tenant. Il faudra refaire l’opération ci-dessus
pour chaque tenant.

Note : En cas du changement des mappings elasticsearch, il faudra veiller à ce qu’ils soient en cohérence avec
l’ontologie.

5.23 L’ontologie externe suite à la montée de version de VITAM

Lors de la montée de version, les ontologies externes en cours d’exploitation par VITAM ne sont pas touchées et seront
mergées avec les ontologies internes de VITAM.

Le fichier du référentiel de l’ontologie se trouve désormais dans environments/ontology/VitamOntology.
json

La procédure de merge manuelle du référentiel de l’ontologie avant chaque montée de version n’est plus nécessaire.
Depuis la version 3.4.0 de VITAM, le vocabulaire externe de l’ontologie est géré automatiquement avec le vocabulaire
interne. Cependant, il est nécessaire de s’assurer que le merge est effectivement possible sans conflits.

5.23. L’ontologie externe suite à la montée de version de VITAM 49

VITAM - Documentation d’exploitation, Version 7.1.5

Lors du lancement du procédure de mise à jour de VITAM, une phase de vérification devra être effectuée pour détecter
des éventuels conflits entre les vocabulaires internes et externes.

Cette vérification s’exécute avant de charger l’ontologie externe afin de préserver celle existante en cas de conflit de
merge.

Ainsi, il est recommandé, avant de procéder à une montée de version, de jouer le script ansible :
ansible-vitam-exploitation/check_ontologies.yml

Prudence : En cas d’échec lors de l’exécution de ce playbook, cela signifie qu’il y a des conflits entre les deux
vocabulaires. L’exploitant devra alors adapter l’ontology externe afin de résoudre ces conflits.

Prudence : Dans le cadre d’une montée de version, se référer également au DMV .

5.24 Procédure d’exploitation pour la mise en pause forcée d’une
opération

Pour permettre le traitement non-concurrent de certaines opérations (ingest et reclassement en particulier), il est pos-
sible de pouvoir forcer la mise en pause à la réception d’opérations (toutes ou seulement d’un type donné, sur tous les
tenants ou un tenant donné en particulier).

Concrètement, elle permet de forcer le mode « pas à pas » pour toutes ou un type donné seulement d’opérations, sur
l’ensemble des tenants ou sur un tenant donné seulement.

5.24.1 Mise en pause forcée

La mise en pause forcée est déclenchée par l’appel au point d’API porté par le composant access-external
à l’URL suivante : http://{{ ip_service }}:{{ vitam.accessexternal.port_service }}/
admin-external/v1/forcepause

Exemple d’appel à l’aide de curl :

curl -X POST -k
--key vitam-vitam_1.key
--cert vitam-vitam_1.pem
‘‘https://{{ ip_service }}:{{ vitam.accessexternal.port_service }}/admin-external/v1/
→˓forcepause‘‘
-H 'X-Tenant-Id: 0'
-H 'X-Access-Contract-Id: ContratTNR'
-H 'Content-Type: application/json;charset=UTF-8'
-H 'Accept: application/json'
--data-binary '{"type" : "INGEST", "tenant" : "0"}'
--compressed

Exemple de Json pour mettre une pause sur le processus d’ingest pour le tenant 0 :

'{"type" : "INGEST", "tenant" : "0"}'

Exemple de Json pour mettre une pause sur tous les processus pour le tenant 0 :

50 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

'{"tenant" : "0"}'

Exemple de Json pour mettre une pause sur tous les processus pour tous les tenants :

'{"pauseAll":true}'

5.24.2 Sortie de la mise en pause forcée

La sortie de mise en pause forcée est déclenchée par l’appel au point d’API porté par le composant
access-external à l’URL suivante : http://{{ ip_service }}:{{ vitam.accessexternal.
port_service }}/admin-external/v1/removeforcepause

Exemple d’appel à l’aide de curl :

curl -X POST -k
--key vitam-vitam_1.key
--cert vitam-vitam_1.pem
‘‘https://{{ ip_service }}:{{ vitam.accessexternal.port_service }}/admin-external/v1/
→˓removeforcepause‘‘
-H 'X-Tenant-Id: 0'
-H 'X-Access-Contract-Id: ContratTNR'
-H 'Content-Type: application/json;charset=UTF-8'
-H 'Accept: application/json'
--data-binary '{"type" : "INGEST", "tenant" : "0"}'
--compressed

Exemple de Json pour sortir de la mise en pause sur le processus d’ingest pour le tenant 0 :

'{"type" : "INGEST", "tenant" : "0"}'

Exemple de Json pour sortir de la mise en pause sur tous les processus pour le tenant 0 :

'{"tenant" : "0"}'

Exemple de Json pour sortir de la mise en pause sur tous les processus pour tous les tenants :

'{"pauseAll":false}'

Avertissement : Les états de mise en pause ne sont pas sauvegardés. En cas de redémarrage des applications (en
particulier le composant access-external), ces états sont perdus.

5.25 Réindexation

Cette procédure consiste à réindexer le contenu des bases de données Elasticsearch-data (cluster d’indexation dédié
aux données métier) en cas de perte ou d’inconsistance de données, à partir des informations présentes dans les bases
de données MongoDB-data (replicaset MongoDB stockant les données métier de Vitam). Elle part du principe que le
contenu des collections MongoDB-data n’a pas été altéré et que les différents indexes Elasticsearch-data sont toujours
existants.

5.25. Réindexation 51

VITAM - Documentation d’exploitation, Version 7.1.5

5.25.1 Déclenchement

La réindexation se déclenche de la manière suivante :

ansible-playbook ansible-vitam-exploitation/reindex_es_data.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass

Ce playbook s’assure que le composant vitam-functional-administration est démarré, puis procède à la
réindexation et au re-aliasing (bascule sur le nouvel index) des collections suivantes :

∙ unit

∙ objectgroup

∙ logbookoperation

∙ securityprofile

∙ context

∙ ontology

∙ ingestcontract

∙ agencies

∙ accessionregisterdetail

∙ archiveunitprofile

∙ accessionregistersummary

∙ accesscontract

∙ fileformat

∙ filerules

∙ profile

∙ griffin

∙ preservationscenario

∙ managementcontract

Note : La réindexation peut s’opérer au besoin sur uniquement l’une des collections ci-dessus en spécifiant l’option
–tags <collection> à l’exécution de la commande ansible.

Prudence : La réindexation de la collection griffin n’est pas utilisable dans cette version (bug 5762).

Prudence : La purge des anciens index n’est pas réalisée par cette procédure scriptée et est laissée à la charge de
l’exploitant.

Prudence : Le rôle elasticsearch-mapping n’est pas joué par ce playbook. En cas de modification des fi-
chiers de mapping ES des collections Unit et ObjectGroup, qui sont externalisés, il faudra rejouer les playbooks
metadata.yml et metadata_collect.yml avant de réindexer.

52 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

5.26 Nettoyage des ingests incomplets

Cette procédure permet de nettoyer les données suite à un ingest incomplet / corrompu. Elle permet de purger toutes
les unités archivistiques, groupes d’objets et objets binaires liés à l’ingest.

5.26.1 Conditions d’éligibilité des ingests à nettoyer

L’ingest à nettoyer doit satisfaire les conditions d’éligibilité suivantes :

∙ L’ingest n’est plus en cours d’exécution (RUNNING ou PAUSE)

∙ L’ingest s’est terminé avec une erreur (KO ou FATAL)

∙ Aucune unité d’un autre ingest n’a été rattachée en dessous d’une des unités de l’ingest à nettoyer

∙ L’ingest à nettoyer n’a pas rajouté d’objets binaires à un groupe d’objets existant

∙ Aucun autre ingest n’a rajouté d’objets binaires à l’un des groupes d’objets de l’ingest à nettoyer

∙ L’ingest à nettoyer n’a pas rattaché une unité à un groupe d’objets existant

∙ Aucun autre ingest n’a rattaché une autre unité à un groupe d’objets de l’ingest à nettoyer

5.26.2 Déclenchement

Le déclenchement se fait de la manière suivante :

ansible-playbook ansible-vitam-exploitation/ingest_cleanup.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass -e "ingestOperationId=${guid_ingest_a_nettoyer}" -
→˓e "tenantId=${tenant}"

Ce playbook s’assure que le composant vitam-functional-administration est démarré, puis procède au
lancement d’un workflow de nettoyage.

Note : Cette procédure ne doit être exécutée que pour nettoyer les ingests incomplets / corrompus qui sont éligibles
aux conditions d’éligibilité.

5.27 Suppression des DIP et des fichiers de transfert

Les DIP générés dans le cadre d’une demande de communication et les SIP générés dans le cadre d’une demande de
transfert sont stockés dans des dossiers spécifiques.

Ils sont purgés automatiquement à l’expiration d’un délai paramétrable par l’administrateur technique.

Par défaut, la solution logicielle Vitam retient les DIP durant 7 jours si l’espace libre du workspace représente plus
de 25% de la taille totale du workspace et durant 1 jour si ce dernier représente moins de 25% de la taille totale du
workspace, quel que soit leur type, et les efface au moyen d’un batch qui est lancé chaque heure à 0 minute 0 seconde.

Cette configuration par défaut peut être modifiée lors du paramétrage initial de la plate-forme par les administrateurs –
fonctionnel pour la définition du besoin et technique pour la saisie réelle des informations – de chaque implémentation
de la solution logicielle Vitam et définit, pour tous les tenants et pour chaque type de DIP – DIP générés dans le cadre
d’une demande de communication et SIP générés dans le cadre d’une demande de transfert – la durée de rétention
dans l’espace de stockage et la fréquence du batch permettant de les purger du système.

Le fichier de configuration (deployment/environments/group_vars/all/advanced/vitam_vars.
yml) se présente comme suit (paramétrage par défaut) :

5.26. Nettoyage des ingests incomplets 53

VITAM - Documentation d’exploitation, Version 7.1.5

global
[...]
vitam_timers:
[...]

metadata:
[...]
- name: vitam-metadata-purge-dip
frequency: "*-*-* *:00:00"

- name: vitam-metadata-purge-transfers-SIP
frequency: "*-*-* 02:25:00"

Composants Vitam
vitam:

[...]
metadata :
[...]
DIP cleanup delay (in minutes)

dipTimeToLiveInMinutes: 10080 # 7 days
criticalDipTimeToLiveInMinutes: 1440 # 1 day
transfersSIPTimeToLiveInMinutes: 10080 # 7 days
workspaceFreespaceThreshold: 25 # when below use critical time to live when

→˓above use normal time to live

Note : Veuillez vous référer aux documents d’architecture (chapitre 5.13.2 « Stockage ») et d’installation (chapitre
4.2.5.12 « Fichiers complémentaires ») pour obtenir plus d’informations sur le stockage dans la solution Vitam

5.28 Procédure d’exploitation pour la révocation des certificats SIA
et Personae

Cette section fait référence au chapitre Intégration d’une application externe dans Vitam (page 256).

La version 1.10.0 (« R8 ») introduit une nouvelle fonctionnalité permettant la révocation des certificats SIA et Personae
afin d’empêcher des accès non autorisés aux API de la solution logicielle VITAM (vérification dans la couche https des
CRL).

Le fonctionnement de la validation des certificats de la solution logicielle VITAM SIA et Personae par CRL est le
suivant :

∙ L’administrateur transmet à la solution logicielle VITAM le CRL d’un CA qui a émis le certificat présent dans la
solution logicielle VITAM, via le point d’API suivant

http://{{ hosts_security_internal }}:{{ vitam.security_internal.port_admin }}/v1/
→˓api/crl

Prudence : La CRL fournie doit être obligatoirement au format DER (cf. http://www.ietf.org/rfc/rfc3280.
txt »>RFC 3280 : Internet X.509 Public Key Infrastructure Certificate and CRL Profile)

Exemple :

curl -v -X POST -u {{ admin_basic_auth_user }}:{{ admin_basic_auth_password }} http:/
→˓/{{ hosts_security_internal }}:{{vitam.security_internal.port_admin}}/v1/api/crl -H
→˓'Content-Type: application/octet-stream' --data-binary @/path/to/crl/my.crl

54 Chapitre 5. Exploitation globale

http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Le paramètre adminUser correspond à la valeur admin_basic_auth_user déclarée dans le fichier
deployment/environments/group_vars/all/advanced/vitam_security.yml

∙ Le paramètre adminPassword correspond à la valeur admin_basic_auth_password déclarée dans le
fichier deployment/environments/group_vars/all/main/vault-vitam.yml

∙ Le système va contrôler tous les certificats (collections identity.Certificate et identity.
PersonalCertificate) émis par le IssuerDN correspondant à la CRL, en vérifiant si ces derniers sont
révoqués ou non. Si c’est le cas, alors la solution logicielle VITAM positionne le statut du certificat révoqué
à REVOKED. Cela a pour conséquence le rejet de tout accès aux API VITAM avec utilisation du certificat
révoqué (les filtres de sécurité émettront des exceptions dans les journaux de log).

∙ Une alerte de sécurité est émise dans les journaux en cas de révocation.

Prudence : La révocation d’un certificat peut également se faire via l’utilisation du playbook re-
voke_certificate.yml dans ansible-vitam-exploitation. Le playbook s’appelle de la manière suivante : ansible-
playbook -i environments/<your_host_file> ansible-vitam-exploitation/revoke_certificate.yml –vault-password-
file vault_pass.txt -e crl_file= »<your_crl_file_path> »

5.29 Activation/désactivation d’une offre

Dans le cadre de la maintenance ou de la perte ponctuelle d’une offre de stockage, il peut être nécessaire de la rendre
INACTIVE afin de permettre de nouveaux versements.

Prudence : Attention, durant toute la durée d’indisponibilité d’une offre, aucune donnée ne sera écrite dessus.
VITAM ne peux pas assurer la pérénité des données si le nombre de copies attendues selon l’homologation de
sécurité n’est pas atteint (>= 2). De plus, lors de la remise à status: ACTIVE, il sera nécessaire de faire une
resynchronisation de cette offre pour récupérer les données versées durant la durée d’indisponibilité (se référer au
chapitre Resynchronisation d’une offre (page 39)).

Pour chacune des offres de la vitam_strategy dans le fichier environments/group_vars/all/main/
offers_opts.yml, rajoutez le paramètre status: INACTIVE pour désactiver une offre (par défaut, la valeur
est status: ACTIVE).

Exemple pour rendre l’offre offer-fs-2 inactive :

vitam_strategy:
- name: offer-fs-1

referent: true
rank: 0

- name: offer-fs-2
referent: false
rank: 1
status: INACTIVE

Prudence : En cas de désactivation d’une offre considérée référente par VITAM, ne pas oublier de déclarer une
autre offre (contenant les données) comme nouvelle référente (modifications à apporter dans deployment/
environments/group_vars/all/main/offers_opts.yml par la directive referent: true).

∙ Afin d’appliquer la nouvelle stratégie de stockage, il va être nécessaire de reconfigurer le composant storage-
engine :

5.29. Activation/désactivation d’une offre 55

VITAM - Documentation d’exploitation, Version 7.1.5

ansible-playbook ansible-vitam/vitam.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass --limit hosts_storage_engine --tags
→˓update_vitam_configuration

Avertissement : Cette opération provoque une indisponibilité temporaire des principaux services VITAM (verse-
ment, gestion, recherche et consultation).

5.30 Nettoyage d’un environnement

Avertissement : La procédure suivante ne doit être appliquée QUE sur un environnement de recette et NE DOIT
PAS être utilisée sur un environnement de production.

Un playbook ansible de nettoyage d’un environnement est fourni et permet de purger un environnement afin de le
réinitialiser à son état presque initial.

Le nettoyage d’un environnement s’effectue selon la procédure suivante :

∙ Exécuter la commande suivante afin de nettoyer l’environnement (offres de stockage, workspace et bases de
données) :

ansible-playbook ansible-vitam-exploitation/cleaning.yml -i environments/
→˓hosts.<environnement> --ask-vault-pass

En détails, le nettoyage d’un environnement va exécuter la liste des actions suivantes :

1. Arrêt des modules externes, afin que Vitam ne puisse plus accepter de demandes provenant de l’extérieur.

2. Purge des collections MongoDB :

∙ LogbookLifeCycleObjectGroup

∙ LogbookLifeCycleObjectGroupInProcess

∙ LogbookLifeCycleUnit

∙ LogbookLifeCycleUnitInProcess

∙ LogbookOperation

∙ AccessionRegisterDetail

∙ AccessionRegisterSummary

∙ AccessionRegisterSymbolic

∙ ObjectGroup

∙ Unit

∙ EliminationActionObjectGroup

∙ EliminationActionUnit

∙ PreservationReport

3. Réindexation des collections à indexer et purgées en phase 2 : le but étant d’obtenir en fin de traitement des
indexes vides (ne contenant aucun document).

∙ LogbookOperation, ObjectGroup & Unit : une réindexation sera effectuée pour chaque tenant confi-
guré (ex : unit_0_20190130_104530, unit_1_20190130_104540, etc. . .).

56 Chapitre 5. Exploitation globale

VITAM - Documentation d’exploitation, Version 7.1.5

∙ AccessionRegisterDetail, AccessionRegisterSummary, AccessionRegisterSymbolic :
3 nouveaux indexes seront créés au total pour les 3 collections (ex :
accessionregistersymbolic_20190121_133507, accessionregistersummary_20190121_133503
& accessionregisterdetail_20190121_133505)

4. Nettoyage des offres de stockage. Selon la configuration de l’environnement, le script est en charge de nettoyer
chaque offre de stockage configurée :

∙ Pour chaque tenant configuré dans Vitam, le script va supprimer tous les sous-containers ainsi que leurs contenus
exceptés : « backup » (contenant les référentiels intégrés dans Vitam) et « rules ».

∙ Pour l’offre File-System, chaque sous-containers supprimé et vidé de son contenu, sera recréé à vide (ex :
int_0_accessionregisterdetail)

5. Nettoyage du workspace : le contenu des objets contenus dans le workspace sera purgé également.

Avertissement : Pour le moment, seules les offres de stockage S3 et File-System sont prises en compte dans la
purge des offres de stockage.

Prudence : Les nettoyage des offres Swift ne fonctionne que dans le cas d’une installation de la solution logicielle
VITAM en environnement CentOS.

Avertissement : Cette opération provoque une indisponibilité complète de VITAM

5.30.1 Etat des lieux après purge

Après le passage du script, l’environnement est purgé :

∙ Les référentiels sont toujours présents (Contrats d’accès, contrats d’entrée, rêgles de gestion, etc. . .).

∙ L’environnement est disponible et utilisable : les modules externes sont accessibles (IngestExternal et Acces-
sExternal).

∙ Les offres de stockage sont vidées, à l’exception des backups des référentiels.

∙ La cohérence entre MongoDB et ElasticSearch est assurée. La plupart des collections sont vidées, et les indexes
E/S associés ne contiennent aucun document.

∙ Le workspace est purgé, aucune opération n’est en cours et ne peut être relancée.

5.30.2 Limitations

Le fait de purger les journaux et non les référentiels provoquera une incohérence de la plate-forme vis-à-vis de la
norme NFZ-42020 (suppression des logs d’imports de référentiels, mais présence de ceux-ci).

5.30. Nettoyage d’un environnement 57

CHAPITRE 6

Suivi de l’état du système

6.1 Veille et patchs sécurité

Les éléments d’infrastructure suivants sont particulièrement sensibles pour la sécurité de la solution logicielle VITAM
et nécessitent d’être intégrés à la veille sécurité du système :

∙ Runtime Java (OpenJDK 11)

6.2 API de de supervision

Chaque composant VITAM peut dialoguer, selon le paramétrage, via 2 réseaux :

∙ patte d’administration

∙ patte de service

Si les partitions ne possèdent qu’une seule interface, les deux « pattes » passent par cette unique interface.

6.2.1 Patte d’administration

La solution logicielle VITAM expose en interne de la plate-forme les API REST suivantes sur ses composants :

∙ /admin/v1/status : statut simple, renvoyant un statut de fonctionnement incluant des informations tech-
niques sur l’état actuel du composant. Un exemple d’utilisation typique est l’intégration à un outil de supervision
ou à un élément actif tiers (ex : load-balancer, . . .) . L’appel doit être peu coûteux.

∙ /admin/v1/version : informations de version, build, commit git ayant servi à builder les différents jar.

∙ /admin/v1/autotest : autotest du composant, lançant un test de présence des différentes ressources re-
quises par le composant et renvoyant un statut d’état de ces ressources.

58

VITAM - Documentation d’exploitation, Version 7.1.5

6.2.1.1 /admin/v1/status

L’API de status renvoie un fichier JSON contenant les informations suivantes :

{
"serverIdentity": {

"Name":"vitam-iaas-app-01",
"Role":"logbook",

"PlatformId":425367
},
"status":true,
"detail": {
},

"componentsVersions": {
"e2eb99d93a74409b3ebc5224e596953e9b8a178f":18

}
}

Signification des champs :
∙ serverIdentity

∙ Name : hostname du serveur hébergeant le composant (type : texte)
∙ Role : Nom du composant (type : texte)
∙ PlatformId : ID de l’environnement (type : entier)

∙ status : Statut du composant (OK/KO) (type : booléen)
∙ detail : vide dans cette version, sera défini ultérieurement
∙ componentsVersions

∙ hash de commit git : nombre de jars avec buildés depuis ce hash

6.2.1.2 /admin/v1/version

L’API de version renvoie les informations suivantes :

[
{

"Scm-tags":"",
"Scm-commit-id":"e2eb99d93a74409b3ebc5224e596953e9b8a178f",
"Scm-commit-id-abbrev":"e2eb99d",
"Maven-version":"0.13.0-SNAPSHOT",
"Scm-dirty":"false",
"Scm-commit-time":"2017-01-11T16:38:14+01",
"Maven-build-timestamp":"2017-01-11T16:06:09Z",
"Scm-branch":"origin/master_iteration_13",
"Build-Jdk":"1.8.0_111",
"Maven-artefactId":"logbook-rest",
"Maven-groupId":"fr.gouv.vitam"

},
{

"Scm-tags":"",
"Scm-commit-id":"e2eb99d93a74409b3ebc5224e596953e9b8a178f",
"Scm-commit-id-abbrev":"e2eb99d",
"Maven-version":"0.13.0-SNAPSHOT",
"Scm-dirty":"false",
"Scm-commit-time":"2017-01-11T16:38:14+01",
"Maven-build-timestamp":"2017-01-11T16:06:09Z",

(suite sur la page suivante)

6.2. API de de supervision 59

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"Scm-branch":"origin/master_iteration_13",
"Build-Jdk":"1.8.0_111",
"Maven-artefactId":"logbook-administration",
"Maven-groupId":"fr.gouv.vitam"

},
...
...
...

]

Signification des champs :
∙ Scm-tags : en cours de définition
∙ Scm-commit-id : hash de commit git à partir duquel le composant à été buildé
∙ Scm-commit-id-abbrev : hash de commit abrégé
∙ Maven-version : Version indiquée à maven dans le fichier pom.xml
∙ Scm-dirty : Etat du repo git au moment du build (si présence de fichiers unstaged => dirty)
∙ Scm-commit-time : Date du commit git
∙ Maven-build-timestamp : Date du build par maven
∙ Scm-branch : Nom de la branche git à partir de laquelle le composant a été buildé
∙ Build-Jdk : Version de la jdk ayant servit à builder le composant
∙ Maven-artefactId : Nom du composant
∙ Maven-groupId : namespace du composant

6.2.1.3 /admin/v1/autotest

L’API d’autotest renvoie les informations suivantes :

{
"httpCode":200,
"code":"000000",
"context":"logbook",
"state":"OK",
"message":"All services are available",
"description":"All services are available",
"errors": [

{
"httpCode":200,
"code":"1",
"context":"LogbookMongoDbAccessImpl",
"state":"OK",
"message":"Sub service is available",
"description":"LogbookMongoDbAccessImpl service is available"

},
{

"httpCode":200,
"code":"2",
"context":"logbook",
"state":"OK",
"message":"Internal service is available",
"description":"vitam-iaas-app-01 service is available"

}
]

}

60 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

Signification des champs :

∙ httpCode : code de retour http

∙ code : en cours de définition ; futur code retour interne VITAM

∙ context : Nom du composant

∙ state : Etat du composant (OK/KO)

∙ message : Message de statut

∙ description : Message de description

∙ errors :
∙ httpCode : code de retour http

∙ code : code de retour

∙ context : nom du composant

∙ state : État du composant

∙ message : Message sur l’état du composant

∙ description : Description sur l’état du composant

6.2.2 Patte de service

∙ /<composant>/v1/status : statut simple, renvoyant un statut de fonctionnement incluant des informa-
tions techniques sur l’état actuel du composant. Un exemple d’utilisation typique est l’intégration à un outil de
supervision ou à un élément actif tiers (ex : load-balancer, . . .) . L’appel doit être peu coûteux. Le statut normal
HTTP renvoyé est 204.

Avertissement : Les composants vitam-elastic-kibana-interceptor, security-internal, library et les IHM ne
possèdent pas ce statut.

Note : Pour le composant security-internal, le point d”API est /v1/status.

6.3 Logs

La solution logicielle VITAM propose une solution ouverte, au choix de l’exploitant. Ce dernier peut, à l’installation,
comme à la mise à jour de la solution logicielle VITAM, choisir d’utiliser sa propre solution de « regroupement » des
logs ou la solution embarquée dans la solution logicielle VITAM.

Dans le cas de la solution embarquée, celle-ci se décompose en :

∙ rsyslog ou syslog-ng (choix à l’installation, se référer au DIN) déployé sur les machines « applicatives »
VITAM et les envois applicatifs syslog vers un serveur de centralisation de logs (via facility local0)

∙ un serveur de centralisation de logs, comprenant :

∙ un mono-noeud (au minimum, ou multi-noeuds) Elasticsearch

∙ un moteur logstash, parsant les messages VITAM

∙ un afficheur de rendu/aggrégation de données Kibana dédié

Voir aussi :

Les principes et implémentations du système de gestion de logs inclus dans VITAM sont décrits plus en détail dans le
DAT.

6.3. Logs 61

VITAM - Documentation d’exploitation, Version 7.1.5

6.3.1 Paramétrage des règles de log

Il est conseillé de modifier le paramétrage du rolling des fichiers de log afin d’éviter une saturation des volumes disque.
En fonction de la topologie de déploiement des composants vitam, il faut s’assurer que les quantités maximales de
fichiers de log (en nombre et taille) ne dépassent pas la taille du disque, en décomptant la volumétrie évaluée aux
données ainsi qu’aux fichiers temporaires.

Avertissement : Dans le cas de la colocalisation des composants Vitam, il faut prendre en compte les quantités
maximales par composant, afin de paramétrer des quantités cohérentes pour ne pas dépasser la taille du disque.

Pour cela, il faut éditer au niveau des fichiers deployment/environments/group_vars/all/main/
main.yml et deployment/environments/group_vars/all/advanced/vitam_vars.yml les para-
mètres suivants :

∙ logback_rolling_policy : { true | false } active le rolling des fichiers de logs (applicatif et accès), avec la po-
litique logback TimeBasedRollingPolicy (voir doc <http://logback.qos.ch/manual/appenders.
html#RollingFileAppender>) dont les paramètres sont définis ci-après. Si ce paramètre est désactivé,
les logs ne tournent pas et leur taille augmente à l’infini (cas ou l’implémentation de rolling est géré avec un
composant externe à Vitam). La valeur par défaut est true.

∙ Pour les logs applicatif :
∙ logback_max_file_size : { \d*[KB|MB|GB] } spécifie le seuil pour lequel une fois atteint, le fi-

chier tourne. Le nom du fichier de log est suffixé par un index. La valeur par défaut est « 10MB ».
∙ logback_total_size_cap : {struct yml} :

<type> : { file | security | offer_tape | offer_tape_backup | offersync } : spécifie le
type de fichier de log (correspond à un appender logback). Tous les composants Vitam
dispose au moins des types file et security. Les 3 autres types sont disponibles pour le
composant offer.

Pour chacun des types spécifiés dans la structure yml, les paramètres suivants sont éditables :
∙ history_days : { \d* } spécifie le nombre total de fichiers conservés. Ce nombre total est

équivalent en nombre de jour conservé lorsque le fichier ne tourne pas dans une journée
(lorsqu’il n’a pas atteint la limite logback_max_file_size). Cette équivalence est induite
par le mécanisme interne au framework logback qui utilise le pattern date spécifié dans
le nom du fichier (cf. documentation officielle pour plus de détail). Lorsqu’un fichier
tourne et que le nombre de fichier présent est atteint, le premier fichier qui a été tourné
est supprimé. La valeur par défaut est 10.

∙ totalsize : { \d*[KB|MB|GB] } spécifie la taille totale des fichiers de logs. Lorsque la taille
totale des fichiers présents dépasse la taille paramétrée, le premier fichier qui a été tourné
est supprimé. La valeur par défaut est 5GB.

L’ensemble de ces paramètres sont utilisés lors de la génération du fichier /vitam/conf/
<composant>/logback.xml qui ne doit pas être édité manuellement, au risque de perdre les
modifications au prochain déploiement.

∙ Pour les logs d’accès http :
∙ access_retention_days : { \d* } spécifie le nombre total de fichiers conservés. Ce nombre total

est équivalent en nombre de jour conservé lorsque le fichier ne tourne pas dans une journée
(lorsqu’il n’a pas atteint la limite logback_max_file_size). La valeur par défaut est 30.

∙ access_total_size_cap : { \d*[KB|MB|GB] } spécifie la taille totale des fichiers de logs. Lorsque
la taille totale des fichiers présents dépasse la taille paramétrée, le premier fichier qui a été tourné
est supprimé. La valeur par défaut est 10GB.

L’ensemble de ces paramètres sont utilisés lors de la génération du fichier /vitam/conf/
<service_id>/logback-access.xml qui ne doit pas être édité manuellement, au risque de
perdre les modifications au prochain déploiement.

62 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

Prudence : La configuration de la durée de rétention des logs d’accès et/ou leur externalisation devra être ajustée
pour respecter les contraintes légales en vigueur pour le système déployé.

D’autres paramètres sont disponibles :

∙ Pour les logs de la jvm :
∙ jvm_log : { true | false } : active les logs jvm en spécifiant les paramètres -XX :+UnlockDiag-

nosticVMOptions -XX :+LogVMOutput -XX :LogFile={vitam_folder_log}/jvm.log à la com-
mande java. La valeur par défaut est false.

Ce paramètre est utilisé lors de la génération du fichier /vitam/conf/<service_id>/
java_opts qui ne doit pas être édité manuellement, au risque de perdre les modifications au pro-
chain déploiement.
L’activation de ces logs peut être nécessaire pour analyser un problème en rapport avec la jvm. Si
besoin, d’autres paramètres sont disponibles, mais ne sont pas prévus dans les paramètres du fichier
de déploiement. Il est possible toutefois de les ajouter temporairement au fichier généré. Par exemple,
les paramètres des logs du GC sont :
∙ Niveau de détail : activation des détails et des timestamps (paramètres JVM
-XX:+PrintGCDetails -XX:+PrintGCApplicationStoppedTime)

∙ Roulement : le roulement des fichiers dépend de la taille des fichiers, avec un nombre de fichiers
maximal ; il est défini comme suit :
∙ Activation du roulement : paramètre JVM -XX:+UseGCLogFileRotation

∙ Nombre total de fichiers conservés : paramètre JVM -XX:NumberOfGCLogFiles=10

∙ Taille unitaire maximale d’un fichier de logs : paramètre JVM
-XX:GCLogFileSize=10M

∙ Pattern des fichiers : dans le répertoire de logs de l’application (paramètre
-Xloggc:$LOG_FOLDER/gc.log) pour le fichier courant ; après roulement, les fichiers
sont nommés gc.log.<n> (avec <n> le numéro du fichier, sur base 0).

∙ Pour les logs applicatif :
∙ performance_logger : { true | false } : active les traces qui consignent le temps d’exécution passé dans

un composant ou traitement vitam. Ces métriques sont utilisées dans le dashboard Kibana Metrics
workflow vitam. La valeur par défaut est false.

6.3.2 Rétention des index sous elasticsearch-log

Curator est l’outil défini dans VITAM pour nettoyer les index du cluster elasticsearch de log. Curator a été paramétré
avec les informations contenues, durant l’installation, dans le fichier main.yml pour les paramètres principaux et
cots_vars.yml pour les paramètres avancés.

Pour les différents index dans le cluster Elasticsearch de log, deux paramètres sont définis pour Curator :

∙ close : { \d* } nombre de jours avant clôture de l’index. La valeur par défaut est 7 (5 pour metricbeat/packetbeat).

∙ delete : { \d* } nombre de jours avant suppression de l’index. La valeur par défaut est 30 (10 pour metric-
beat/packetbeat).

Note : concernant les index « logstash-* », il est recommandé de laisser une durée de rétention de 1 an dans un
contexte de production.

Il est possible de modifier le comportement de curator. Pour ce faire, il faut :

1. modifier le fichier environments/group_vars/all/main/main.yml

2. rejouer le playbook de déploiement, en ajoutant en fin de commande --tags curator_logs.

6.3. Logs 63

VITAM - Documentation d’exploitation, Version 7.1.5

6.4 Audit

Divers audits sont mis à disposition des utilisateurs et administrateurs par le biais de l”IHM de démonstration sont
décrits dans le Manuel Utilisateurs.

6.4.1 Audit de cohérence

Note : Il est recommandé de procéder à un audit de cohérence aléatoire dans le cadre d’opérations techniques ciblées,
telles qu’une migration de plate-forme et de données.

Pour lancer un audit de cohérence, il faut lancer le playbook comme suit :

ansible-playbook ansible-vitam-exploitation/audit_coherence.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass -e "tenantId=<tenant id> access_contract=<access
→˓contrat> operationIds=<operationid1,operationid2...>"

Les paramètres à spécifier sont :

∙ tenantId : Le tenant à auditer

∙ access_contract : Le contrat d’accès

∙ operationIds : La liste des opérations d’entrée (ingest) à auditer au format guid1,guid2,. . .guidN (séparées par
des virgules, sans espaces). L’audit portera sur les unités archivistiques versées au cours des opérations d’entrée
spécifiées.

Les identifiants des opérations d’entrée (ingest) à cibler peuvent être récupérés depuis l’IHM via le journal des opéra-
tions, en filtrant sur les opérations de type « Entrée » (INGEST). Il peut s’agir d’opérations choisies aléatoirement ou
ciblées sur une période donnée.

Prudence : L’audit de cohérence est un workflow lourd qui doit être lancé sur un volume modéré d’unités archi-
vistiques (100K maximum). Les opérations d’entrée (ingest) à auditer doivent être renseignées en conséquent (ex.
Si les versement contiennent 10K unités archivistiques en moyenne, ne pas renseigner plus de 10 opérations).

6.4.2 Audit sur les collections d’administration

Note : Cet audit permet de contrôler la présence/absence d’un référentiel (une collection d’administration fonction-
nelle ou technique) sur les offres de stockage.

Pour lancer un audit des référentiels, il faut lancer le playbook comme suit :

ansible-playbook ansible-vitam-exploitation/audit_referential.yml -i environments/
→˓hosts.<environnement> --ask-vault-pass -e "tenant_id=<tenant> collectionName=<nom_
→˓collection>"

Liste des collectionName disponible pour l’audit :

∙ Access_Contract

∙ Accession_Register_Summary

∙ Agencies

∙ Archive_Unit_Profile

64 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Formats

∙ Ingest_Contract

∙ Profile

∙ Rules

Indication : L’audit est lancé sur un seul tenant et une seule collection. Le tenant doit être le tenant d’administration
dans le cas où la collection n’est accessible que par le tenant d’administration.

6.5 Gestion de la capacité

La gestion de la scalabilité du système dépend de ses usages métier ; le lien entre les usages et les composants VITAM
sollicités est indiqué dans le DAT , avec des dimensionnements de plateforme standard pour différents usages.

Le suivi de la charge sur chaque serveur se fait par les outils standard de l’exploitant.

6.6 Suivi de l’état de sécurité

Une étude est actuellement en cours pour réaliser ce type de suivi.

6.7 Alerting

6.7.1 Système

Le suivi des alertes système est à charge de l’exploitant.

6.7.2 Applicatif

Les logs applicatifs de la solution VITAM permettent à l’exploitant de mettre en place un alerting adapté à l’usage de
son équipe métier et technique. Par défaut, et en guise d’exemple, des dashboards Kibana sont disponibles avec un
rassemblement des événements courants de sécurité / erreur (ex. : incohérence règles de gestion, désynchronisation
MongoDB / ElasticSearch. . .).

6.8 Suivi des Workflows

La solution logicielle VITAM intègre une solution de suivi et de gestion des Workflows. Elle permet entre autres de :

∙ Relancer un Workflow arrêté

∙ Mettre en pause un Workflow démarré

∙ Rejouer une étape d’un Workflow

∙ Annuler un workflow

6.8.1 Suivi

Le suivi peut être réalisé via IHM, par des appels REST ou par un playbook ansible.

6.5. Gestion de la capacité 65

VITAM - Documentation d’exploitation, Version 7.1.5

6.8.1.1 IHM

Il existe une page dans l”IHM de démonstration, permettant d’influer sur les processus en cours. Tous les processus
mis en pause, automatiquement (lors d’un FATAL) ou bien manuellement (Mode pas à pas) apparaissent sur cette
IHM. Il est également possible, à partir de cette IHM, de relancer le processus ou bien de rejouer une étape, après
action d’exploitation.

6.8.1.2 Appels REST

Il est possible d’exécuter ces différentes actions sur l”API en direct, via des appels curl par exemple sur le composant
access-external :

∙ PUT sur le endpoint /operations/GUID avec comme header X-Action :RESUME par exemple.

Pour plus d’information, consulter la documentation des API externes.

6.8.1.3 Playbook ansible

Lancer le script suivant

ansible-playbook ansible-vitam-exploitation/check_workflow_status.yml -i
→˓environments/hosts.<environnement> --ask-vault-pass -e '{"vitam_tenant_ids":[0,1,2],
→˓ "states":[PAUSE,RUNNING,COMPLETED], "statuses":[UNKNOWN, STARTED, OK, WARNING, KO,
→˓FATAL]}'

Paramètres optionnels:

∙ vitam_tenant_ids : Pour spécifier la liste des tenants à interroger (default values = variable vitam_tenant_ids
defined in environments/ files)

∙ states : Pour filter sur l’état des process (valid values = [RUNNING, PAUSE, COMPLETED])

∙ statuses : Pour filtrer sur le status des process (valid values = [UNKNOWN, STARTED, OK, WARNING, KO,
FATAL])

Avertissement : Le playbook ansible ne peut être exécuté que dans le cas où une installation a déjà été effectuée,
et que la PKI n’a pas été rejouée (les certificats présents dans environments/certs doivent être ceux mis en
place dans VITAM).

6.8.2 Cas des worklows en FATAL

Un workflow se met en pause dès qu’il se retrouve en statut FATAL. Plusieurs causes peuvent expliquer un tel état.

6.8.2.1 Plugins et Handlers

Plusieurs problèmes peuvent expliquer qu’un Handler ou un plugin retourne une erreur « FATAL » et donc provoque
la mise en pause du Worfklow.

Si le composant workspace est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour tous les Handlers
et plugins.

Si le composant logbook est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour les handlers
suivants :

66 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

∙ CommitLifeCycleActionHandler

∙ CommitLifeCycleObjectGroupActionHandler

∙ CommitLifeCycleUnitActionHandler

∙ ListLifecycleTraceabilityActionHandler

∙ FinalizeLifecycleTraceabilityActionHandler

∙ RollBackActionHandler

Si le composant functional-administration est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour
les Handlers suivants :

∙ CheckArchiveProfileRelationActionHandler

∙ CheckArchiveProfileActionHandler

∙ GenerateAuditReportActionHandler

∙ PrepareAuditActionHandler

Si le composant metadata est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour les Handlers
suivants :

∙ AccessionRegisterActionHandler

∙ ListArchiveUnitsActionHandler

∙ PrepareAuditActionHandler

∙ ArchiveUnitRulesUpdateActionPlugin

∙ AuditCheckObjectPlugin

∙ IndexObjectGroupActionPlugin

∙ IndexUnitActionPlugin

∙ RunningIngestsUpdateActionPlugin

Si le composant storage est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour les Handlers
suivants :

∙ CheckStorageAvailabilityActionHandler

∙ FinalizeLifecycleTraceabilityActionHandler

∙ GenerateAuditReportActionHandler

∙ PrepareTraceabilityCheckProcessActionHandler

∙ PutBinaryOnWorkspace

∙ CheckIntegrityObjectPlugin

∙ CheckExistenceObjectPlugin

∙ StoreMetaDataObjectGroupActionPlugin

∙ StoreMetaDataUnitActionPlugin

∙ StoreObjectActionHandler

∙ StoreObjectGroupActionPlugin

Si le composant processing est défectueux ou ne répond plus, alors un FATAL pourra être obtenu pour les Handlers
suivants :

∙ ListRunningIngestsActionHandler

Si le composant FormatIdentifier est défectueux et ne répond plus, alors un FATAL pourra être obtenu pour le Handler
suivant :

∙ FormatIdentificationActionPlugin

6.8. Suivi des Workflows 67

VITAM - Documentation d’exploitation, Version 7.1.5

6.8.2.2 Distributor

Plusieurs cas peuvent provoquer un FATAL au niveau du processing :
∙ si metadata ou workspace est injoignable
∙ si un handler (ou plugin) inexistant est appelé.
∙ si le distributeur tente d’appeler une famille de worker inexistante

6.8.2.3 Processing - State Machine

Dans le cas ou le Processing ne parvient pas à enregistrer l’état du workflow sur le workspace, un FATAL est provoqué.
Il en va de même si le composant logbook est défectueux.

6.8.3 Redémarrer un processus en cas de pause

6.8.3.1 Trouver la cause

De manière générale, il convient d’identifier le composant (ou les composants) posant problème. Il s’agira majoritai-
rement de metadata, de logbook, du storage ou encore du workspace.

A partir du Guid de l’opération mise en pause, il est facilement possible de voir, dans les logs du processing ou des
workers quels sont les composants incriminés.

6.8.3.2 Relancer le Workflow

A partir du Guid de l’opération mise en pause et une fois le composant redémarré, il est possible de relancer le
workflow.

6.8.3.2.1 Vérifier les inputs

S’assurer à partir du GUID de l’opération que l’on nommera X la présence :
∙ d’un fichier X.json dans /vitam/data/workspace/process/distributorIndex/
∙ d’un répertoire X dans /vitam/data/workspace/ contenant à minima une liste de sous-répertoires

(et notamment le SIP décompressé dans le sous répertoire SIP).

6.8.3.2.2 Rejouer une étape

Depuis l”IHM, relancer l’étape précédente en cliquant sur l’icône « Replay ». Via les API, il suffit de lancer un appel
curl sur le composant access external : PUT sur le endpoint /operations/GUID avec comme header X-Action :RE-
PLAY.

Cette action aura pour résultat d’exécuter une deuxième fois l’étape qui a échoué. En sortie de ce replay, le statut du
workflow doit passer à OK et l’état à PAUSE.

6.8.3.2.3 Prochaine étape

Depuis l”IHM, exécuter l’étape suivante en cliquant sur l’icône « Next ». Via les API, il suffit de lancer un appel curl
sur le composant « access-external » : PUT sur le endpoint /operations/GUID avec comme header X-Action :NEXT.

Cette action aura pour résultat d’exécuter l’étape suivante. En sortie de ce replay, le statut du workflow doit passer à
OK et l’état à PAUSE.

68 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

6.8.3.2.4 Finaliser le workflow

Il est possible de poursuivre le workflow jusqu’à son terme.

Depuis l”IHM, finaliser le workflow en cliquant sur l’icône « Fast Forward ».

Via les API, il suffit de lancer un appel curl sur le composant access-external : PUT sur le endpoint /opera-
tions/GUID avec comme header X-Action :RESUME.

6.9 Cohérence des journaux

Il existe un outil d’administration utilisable par l’exploitant afin de réaliser un test de cohérence des journaux. Cet outil
permet de vérifier que les données enregistrées dans la collection LogbookOperations sont bien en cohérence avec les
informations sauvegardées dans les collections LFC.

Actuellement, seuls les TNR utilisent le point d’API.

A l’avenir, il sera possible de préciser les modalités dans un fichier json associé, et il sera possible d’utiliser le contrôle
de cohérence indépendamment.

6.9.1 Lancement

Pour lancer l’outil de cohérence, il suffit de lancer une requête (curl, par exemple) sur le serveur logbook interne
(sur la « patte » d’administration) :

∙ POST sur le endpoint /checklogbook

6.9.2 Résultat

L’outil de cohérence renvoie un code OK, si l’opération s’est bien déroulée. En cas d’erreur interne, un code HTTP
500 sera renvoyé.

Dans le cadre d’un OK, un rapport au format Json sera généré, et sera enregistré sur les offres de stockage.

Le rapport contiendra les informations suivantes :

∙ checkedEvents : la liste des événements vérifiés.

∙ checkErrors : la liste des erreurs constatées.

6.10 Liste des timers systemd

Note : Dans les sections suivantes, les éléments de type <curator.log.metrics.close> correspondent à des
variables de l’inventaire ansible utilisé.

Voir aussi :

La fréquence de la plupart timers est modifiable (avec un comportement par défaut) ; se reporter au DIN et à changeti-
mers pour plus d’informations.

6.9. Cohérence des journaux 69

VITAM - Documentation d’exploitation, Version 7.1.5

6.10.1 Timers de maintenance des index elasticsearch-log

Ces timers gèrent la maintenance des index elasticsearch du cluster elasticsearch-log.

Ces timers sont activés sur tous les sites d’un déploiement multi-sites.

6.10.1.1 vitam-curator-close-old-indexes

Fermeture des anciens index logstash-<name>* (sur elasticsearch-log) de plus de <curator.indices.
<name>.close> jours (ces index contiennent les logs remontés par les composants et COTS VITAM).

Units systemd :

∙ vitam-curator-close-old-indexes.service

∙ vitam-curator-close-old-indexes.timer

Exécution :

∙ Localisation : groupe ansible [hosts_elasticsearch_log] (sur toutes les instances du groupe)

∙ Périodicité : Lancé chaque jour à 00 :10.

6.10.1.2 vitam-curator-delete-old-indexes

Suppression des index logstash-<name>* (sur elasticsearch-log) de plus de <curator.indices.<name>.
delete> jours (ces index contiennent les logs remontés par les composants et COTS VITAM).

Units systemd :

∙ vitam-curator-delete-old-indexes.service

∙ vitam-curator-delete-old-indexes.timer

Exécution :

∙ Localisation : groupe ansible [hosts_elasticsearch_log] (sur toutes les instances du groupe)

∙ Périodicité : Lancé chaque jour à 00 :20.

6.10.2 Timers de gestion des journaux (preuve systémique)

Ces timers gèrent la sécurisation des journaux métier VITAM.

Ces timers sont activés uniquement sur le site primaire d’un déploiement multi-sites.

6.10.2.1 vitam-storage-log-traceability

Sécurisation des journaux d’écriture de storage.

Units systemd :

∙ vitam-storage-log-traceability.service

∙ vitam-storage-log-traceability.timer

Exécution :

∙ Localisation : groupe ansible [hosts_storage_engine] (sur la dernière instance du groupe uniquement)

∙ Périodicité : Lancé toutes les 4 heures à 40 minutes 0 secondes, par défaut.

70 Chapitre 6. Suivi de l’état du système

VITAM - Documentation d’exploitation, Version 7.1.5

6.10.3 Timers de reconstruction VITAM

Ces timers gèrent la reconstruction des bases de données VITAM à partir des informations persistées dans les offres
de stockage.

Ces timers sont activés uniquement sur le site secondaire d’un déploiement multi-sites.

6.10.3.1 vitam-metadata-reconstruction

Reconstruction des données portées par le composant metadata.

Units systemd :

∙ vitam-metadata-reconstruction.timer

∙ vitam-metadata-reconstruction.service

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : lancé toutes les 5 minutes, par défaut.

6.10.3.2 vitam-metadata-store-graph

Log shipping des données graphes portées par le composant metadata.

Units systemd :

∙ vitam-metadata-store-graph.timer

∙ vitam-metadata-store-graph.service

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : lancé toutes les 30 minutes (00 :10, 00 :40, 01 :10. . .), par défaut.

6.10.3.3 vitam-metadata-computed-inherited-rules

Recalcul des computedInheritedRules pour les units dont les computedInheritedRules sont marquées comme obsolètes.

Units systemd :

∙ vitam-metadata-computed-inherited-rules.timer

∙ vitam-metadata-computed-inherited-rules.service

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : lancé toutes les nuits, à 2h30, par défaut.

6.10.4 Timers techniques VITAM

6.10.4.1 vitam-metadata-purge-dip

Nettoyage des exports DIPs expirés.

Units systemd :

∙ vitam-metadata-purge-dip.timer

∙ vitam-metadata-purge-dip.service

6.10. Liste des timers systemd 71

VITAM - Documentation d’exploitation, Version 7.1.5

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : Lancé chaque heure à 0 minute 0 seconde, par défaut.

6.10.4.2 vitam-metadata-purge-transfers-SIP

Nettoyage des exports transfers expirés.

Units systemd :

∙ vitam-metadata-purge-transfers-SIP.timer

∙ vitam-metadata-purge-transfers-SIP.service

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : lancé toutes les nuits, à 2h25, par défaut.

6.10.4.3 vitam-offer-log-compaction

Compaction technique des journaux des offres de stockage.

Units systemd :

∙ vitam-offer-log-compaction.timer

∙ vitam-offer-log-compaction.service

Exécution :

∙ Localisation : groupe ansible [hosts_storage_offer_default] (sur la dernière instance du groupe
uniquement)

∙ Périodicité : Lancé chaque heure à 40 minutes 0 secondes, par défaut.

6.10.4.4 vitam-metadata-audit-mongodb-es

Audit sur la cohérance de donées MongoDB et Elasticsearch

Units systemd :

∙ vitam-metadata-audit-mongodb-es.timer

∙ vitam-metadata-audit-mongodb-es.service

Exécution :

∙ Localisation : groupe ansible [hosts_metadata] (sur la dernière instance du groupe uniquement)

∙ Périodicité : lancé toutes les nuits, à 2h00, par défaut.

72 Chapitre 6. Suivi de l’état du système

CHAPITRE 7

Exploitation des COTS de la solution logicielle VITAM

7.1 Généralités

Les composants de la solution logicielle VITAM sont déployés par un playbook ansible qui :

1. déploie, selon l’inventaire employé, les packages nécessaires

2. applique la configuration de chaque composant selon son contexte défini dans l’inventaire

Les composants VITAM sont décrits ci-après.

Avertissement : En cas de modification de la configuration, redémarrer le service associé.

7.2 COTS

7.2.1 Cerebro

7.2.1.1 Présentation

Cerebro est un utilitaire de supervision de l’état d’un cluster ElasticSearch.

7.2.1.2 Configuration / fichiers utiles

7.2.1.2.1 Fichier /vitam/conf/cerebro/application.conf

http.port = {{ cerebro.port }}
http.address = {{ ip_admin }}
Secret will be used to sign session cookies, CSRF tokens and for other encryption
→˓utilities.

(suite sur la page suivante)

73

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

It is highly recommended to change this value before running cerebro in production.
secret = "{{ cerebro.secret_key }}"

Application base path
basePath = "/{{ cerebro.baseuri }}/"

Defaults to RUNNING_PID at the root directory of the app.
To avoid creating a PID file set this value to /dev/null
pidfile.path = "/dev/null"

Rest request history max size per user
rest.history.size = 50 // defaults to 50 if not specified

Path of local database file
data.path = "{{ vitam_defaults.folder.root_path }}/data/cerebro/cerebro.db"

Authentication
auth = {

Example of LDAP authentication
#type: ldap
#settings: {
#url = "ldap://host:port"
#base-dn = "ou=active,ou=Employee"
#method = "simple"
#user-domain = "domain.com"

#}
{% if cerebro.basicauth is defined %}

Simple username/password authentication
type: basic
settings: {

username = "{{ cerebro.basicauth.username }}"
password = "{{ cerebro.basicauth.password }}"

}
{% else %}

Example of simple username/password authentication
#type: basic
#settings: {
#username = "admin"
#password = "1234"

#}
{% endif %}
}

A list of known hosts
hosts = [
{% if groups['hosts_elasticsearch_log']|length > 0 %}

{
host = "http://{{ elasticsearch.log.host }}:{{ elasticsearch.log.port_http }}"
name = "{{ elasticsearch.log.cluster_name }}"

},
{% endif %}
{% if groups['hosts_elasticsearch_data']|length > 0 %}

{
host = "http://{{ elasticsearch.data.host }}:{{ elasticsearch.data.port_http }}"
name = "{{ elasticsearch.data.cluster_name }}"

},
{% endif %}

(suite sur la page suivante)

74 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

#{
host = "http://localhost:9200"
name = "Some Cluster"
#},
Example of host with authentication
#{
host = "http://some-authenticated-host:9200"
name = "Secured Cluster"
auth = {
username = "username"
password = "secret-password"
}
#}

]

7.2.1.3 Opérations

∙ Démarrage du service

Les commandes suivantes sont à passer sur les différentes machines hébergeant le composant vitam-elasticsearch-
cerebro.

En tant qu’utilisateur root : systemctl start vitam-elasticsearch-cerebro

∙ Arrêt du service

Les commandes suivantes sont à passer sur les différentes machines constituant le composant vitam-elasticsearch-
cerebro.

En tant qu’utilisateur root : systemctl stop vitam-elasticsearch-cerebro

∙ Sauvegarde du service

N/A

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:9000/
cerebro

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

N/A

∙ cas des batches

N/A

7.2.2 Consul

7.2.2.1 Présentation

Consul est un DNS applicatif.

7.2. COTS 75

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.2.1.1 Cas serveur

Le serveur Consul fédère les agents dans leurs requètes « DNS-like » et permet de rebondir sur un DNS externe, s’il
ne permet pas de lui-même, de faire la résolution.

7.2.2.1.2 Cas agent

L’agent Consul annonce aux serveurs les services qu’il permet de porter et checke régulièrement l’état de ces services.

7.2.2.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

7.2.2.2.1 Cas des applicatifs monitorés par Consul

Pour chaque composant VITAM nécessitant une supervision de la part de Consul, un fichier est installé sur l’agent de
la machine sous vitam/conf/consul et est basé sur ce squelette :

7.2.2.2.1.1 Fichier /vitam/conf/consul/service-<composant>.json

1 {
2 "service": {
3 {% if vitam_struct.vitam_component == vitam.storageofferdefault.vitam_component %}
4 "name": "{{ offer_conf }}",
5 "address": "{{ ip_wan | default(ip_service) }}",
6 {% else %}
7 "name": "{{ vitam_struct.vitam_component }}",
8 "address": "{{ ip_service }}",
9 {% endif %}

10 "port": {{ vitam_struct.port_service }},
11 "enable_tag_override": false,
12 {% if vitam_struct.vitam_component == vitam.storageengine.vitam_component %}
13 "tags": ["vitam","{{ vitam_struct.vitam_component }}", "{{ vitam_struct.vitam_

→˓component }}-{{ groups.hosts_storage_engine.index(inventory_hostname) + 1 }}"],
14 {% else %}
15 "tags": ["vitam","{{ vitam_struct.vitam_component }}"],
16 {% endif %}
17 "checks": [
18 {
19 "name": "{{ vitam_struct.vitam_component }} : business service check",
20 "notes": "HTTP{% if vitam_struct.https_enabled | bool == true %}S{% endif %}

→˓port opened",
21 "tcp": "{{ ip_service }}:{{ vitam_struct.port_service }}",
22 "interval": "{{ vitam_struct.consul_business_check | default(consul_business_

→˓check) }}s"
23 },
24 {
25 "name": "{{ vitam_struct.vitam_component }} : admin service check",
26 "notes": "Status admin : /admin/v1/status",
27 "http": "http://{{ ip_admin }}:{{ vitam_struct.port_admin }}/admin/v1/status",

(suite sur la page suivante)

76 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

28 "interval": "{{ vitam_struct.consul_admin_check | default(consul_admin_check)
→˓}}s"

29 }
30 {% if (vitam_struct.https_enabled | bool != true) and (vitam_struct.vitam_component !

→˓= vitam.elastickibanainterceptor.vitam_component) and (vitam_struct.vitam_component
→˓!= vitam.security_internal.vitam_component) and (vitam_struct.vitam_component !=
→˓vitam.ihm_demo.vitam_component) and (vitam_struct.vitam_component != vitam.ihm_
→˓recette.vitam_component) and (vitam_struct.vitam_component != vitam.library.vitam_
→˓component) %}

31 ,{
32 "name": "{{ vitam_struct.vitam_component }} : http business service check",
33 "notes": "Status business : /{{ vitam_struct.baseuri }}/v1/status",
34 "http": "http://{{ ip_service }}:{{ vitam_struct.port_service }}/{{ vitam_

→˓struct.baseuri }}/v1/status",
35 "interval": "{{ vitam_struct.consul_admin_check | default(consul_admin_check)

→˓}}s"
36 }
37 {% endif %}
38 {% if (vitam_struct.vitam_component == vitam.security_internal.vitam_component) %}
39 ,{
40 "name": "{{ vitam_struct.vitam_component }} : http business service check",
41 "notes": "Status business : /status",
42 "http": "http://{{ ip_service }}:{{ vitam_struct.port_service }}/status",
43 "interval": "{{ vitam_struct.consul_business_check | default(consul_business_

→˓check) }}s"
44 }
45 {% endif %}
46 {% if (vitam_struct.vitam_component == vitam.worker.vitam_component) or (vitam_struct.

→˓vitam_component == vitam.ingestexternal.vitam_component) or (vitam_struct.vitam_
→˓component == vitam.collect_internal.vitam_component) %}

47 ,{
48 "name": "Siegfried check",
49 "notes": "Is siegfried running ?",
50 "tcp": "localhost:{{ siegfried.port }}",
51 "interval": "{{ siegfried.consul_check }}s"
52 }
53 {% endif %}
54 {% if vitam_struct.antivirus is defined and install_mode != "container" %}
55 ,{
56 "name": "Antivirus check",
57 "notes": "Is {{ vitam_struct.antivirus }} running ?",
58 "args": ["{{ vitam_folder_conf }}/scan-{{ vitam_struct.antivirus}}.sh","{{

→˓vitam_folder_conf }}/scan-{{ vitam_struct.antivirus}}.sh"],
59 "interval": "30s",
60 "timeout": "5s"
61 }
62 {% endif %}
63]
64 }
65 }

7.2.2.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-consul

7.2. COTS 77

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-consul

Avertissement : en cas de redémarrage du cluster serveur consul, il faut procéder à un arret/relance par serveur
avant de passer au suivant.

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Logs

Les logs applicatifs sont envoyés par rsyslog à la solution de centralisation des logs ; il est néanmoins possible d’en
virsionner une représentation par la commande :

journalctl --unit vitam-consul

∙ Supervision du service

Consul possède une IHM permettant de superviser l’ensemble des services qu’il couvre.

http(s) ://<adresse> :<port>/ui

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

7.2.3 Kibana interceptor

7.2.3.1 Présentation

Le composant est une interface d’accès entre kibana « métier » et le cluster Elasticsearch de données métier.

Prudence : Ce composant N’EST PAS à installer en environnement de production.

7.2.3.2 Configuration / fichiers utiles

Les fichiers de configuration sont définis sous /vitam/conf/elastic-kibana-interceptor.

7.2.3.2.1 Fichier elastic-kibana-interceptor.conf

78 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

jettyConfig: jetty-config.xml

clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for server in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[server]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}
whitelist : ["tenant", "all", "mgt", "min", "max", "nbc", "og", "ops", "opi", "sp",
→˓"sps", "uds", "up", "us", "storage", "unitType", "v", "qualifiers"]

7.2.3.3 Opérations

∙ Démarrage du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch de données.

En tant qu’utilisateur root : systemctl start vitam-elastic-kibana-interceptor

∙ Arrêt du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch de données.

En tant qu’utilisateur root : systemctl stop vitam-elastic-kibana-interceptor

∙ Sauvegarde du service

N/A

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

∙ Modification de la liste blanche

Modifier dans le fichier /vitam/conf/elastic-kibana-interceptor/
elastic-kibana-interceptor.conf le contenu de la directive whitelist.

A l’issue, redémarrer le composant.

7.2.4 Elasticsearch chaîne de log

7.2.4.1 Présentation

Le composant vitam-elasticsearch-log est une instance de la base d’indexation elasticsearch stockant les
informations suivantes :

∙ les logs des applications VITAM;

∙ les logs des applications du sous-système de centralisation des logs ;

∙ les métriques applicatives.

7.2. COTS 79

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.4.2 Configuration / fichiers utiles

Se reporter au DIN, qui configure le cluster ElasticSearch de la chaîne de log.

Les fichiers de configuration sont définis sous /vitam/conf/elasticsearch-log.

7.2.4.2.1 Fichier /vitam/conf/elasticsearch-log/log4j2.properties

status = error

log action execution errors for easier debugging
logger.action.name = org.elasticsearch.action
logger.action.level = {{ composant.action_log_level }}

appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker
→˓%m%n

{% if syslog.name in ["rsyslog", "syslog-ng"] and (external_siem is defined or groups[
→˓'hosts_logstash']|length > 0) %}
appender.syslog.type = Syslog
appender.syslog.name = syslog
appender.syslog.appName = {{ composant.cluster_name }}
appender.syslog.facility = {{ vitam_defaults.syslog_facility }}
appender.syslog.host = {{ inventory_hostname }}
appender.syslog.protocol = UDP
appender.syslog.port = 514
appender.syslog.layout.type = PatternLayout
Note: rsyslog only parse RFC3195-formatted syslog messages by default ; AND, to
→˓make it work with log4j2, we need to start the layout by the app-name.
IF we were in 5424, we wouldn't have to do this.
appender.syslog.layout.pattern = {{ composant.cluster_name }}: [%d{ISO8601}][%-5p][%-
→˓25c{1.}] [%node_name]%marker%m%n
appender.syslog.format = RFC5424
appender.syslog.mdcId = esdata

rootLogger.appenderRef.syslog.ref = syslog
{% else %}
Disabling the Syslog Appender
By setting ‘appender.syslog.type = Null‘, this appender becomes inactive:
- No logs are sent to a Syslog daemon (e.g., rsyslog on 514/UDP).
- Prevents errors (e.g., AccessControlException) if rsyslog is not installed or
→˓configured.
- Logs are redirected to another active appender, here ‘console‘, to be captured by
→˓Filebeat.
Used as a fallback when rsyslog is not present on the system.
appender.syslog.type = Null
appender.syslog.name = syslog
rootLogger.appenderRef.console.ref = console
{% endif %}

appender.rolling.type = RollingFile
appender.rolling.name = rolling
appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.
→˓logs.cluster_name}.log

(suite sur la page suivante)

80 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker
→˓%.-10000m%n
appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.
→˓logs.cluster_name}-%d{yyyy-MM-dd}-%i.log.gz
appender.rolling.policies.type = Policies
appender.rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.rolling.policies.time.interval = 1
appender.rolling.policies.time.modulate = true
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size = {{ composant.log_appenders.rolling.max_log_file_
→˓size | default('10MB') }}
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.fileIndex = {{ composant.log_appenders.rolling.fileIndex |
→˓default('nomax') }}
appender.rolling.strategy.action.type = Delete
appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path}
appender.rolling.strategy.action.condition.type = IfFileName
appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-*
appender.rolling.strategy.action.condition.nested_condition.type = {{ composant.log_
→˓appenders.rolling.condition_type | default('IfAccumulatedFileSize') }}
appender.rolling.strategy.action.condition.nested_condition.exceeds = {{ composant.
→˓log_appenders.rolling.max_total_log_size | default('5GB') }}

rootLogger.level = {{ composant.log_appenders.root.log_level | default('info') }}
rootLogger.appenderRef.console.ref = console
rootLogger.appenderRef.rolling.ref = rolling

appender.deprecation_rolling.type = RollingFile
appender.deprecation_rolling.name = deprecation_rolling
appender.deprecation_rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_deprecation.log
appender.deprecation_rolling.layout.type = PatternLayout
appender.deprecation_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_
→˓name]%marker %.-10000m%n
appender.deprecation_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_deprecation-%i.log.gz
appender.deprecation_rolling.policies.type = Policies
appender.deprecation_rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.deprecation_rolling.policies.size.size = {{ composant.log_appenders.
→˓deprecation_rolling.max_log_file_size | default('10MB') }}
appender.deprecation_rolling.strategy.type = DefaultRolloverStrategy
appender.deprecation_rolling.strategy.max = {{ composant.log_appenders.deprecation_
→˓rolling.max_files | default('10') }}

logger.deprecation.name = org.elasticsearch.deprecation
logger.deprecation.level = {{ composant.log_appenders.deprecation_rolling.log_level |
→˓default('warn') }}
logger.deprecation.appenderRef.deprecation_rolling.ref = deprecation_rolling
logger.deprecation.additivity = false

appender.index_search_slowlog_rolling.type = RollingFile
appender.index_search_slowlog_rolling.name = index_search_slowlog_rolling
appender.index_search_slowlog_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_index_search_slowlog.log
appender.index_search_slowlog_rolling.layout.type = PatternLayout

(suite sur la page suivante)

7.2. COTS 81

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

appender.index_search_slowlog_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c] [
→˓%node_name]%marker %.-10000m%n
appender.index_search_slowlog_rolling.filePattern = ${sys:es.logs.base_path}$
→˓{sys:file.separator}${sys:es.logs.cluster_name}_index_search_slowlog-%d{yyyy-MM-dd}.
→˓log.gz
appender.index_search_slowlog_rolling.policies.type = Policies
appender.index_search_slowlog_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.index_search_slowlog_rolling.policies.time.interval = 1
appender.index_search_slowlog_rolling.policies.time.modulate = true

logger.index_search_slowlog_rolling.name = index.search.slowlog
logger.index_search_slowlog_rolling.level = {{ composant.log_appenders.index_search_
→˓slowlog_rolling.log_level | default('warn') }}
logger.index_search_slowlog_rolling.appenderRef.index_search_slowlog_rolling.ref =
→˓index_search_slowlog_rolling
logger.index_search_slowlog_rolling.additivity = false

appender.index_indexing_slowlog_rolling.type = RollingFile
appender.index_indexing_slowlog_rolling.name = index_indexing_slowlog_rolling
appender.index_indexing_slowlog_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_index_indexing_slowlog.log
appender.index_indexing_slowlog_rolling.layout.type = PatternLayout
appender.index_indexing_slowlog_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c] [
→˓%node_name]%marker %.-10000m%n
appender.index_indexing_slowlog_rolling.filePattern = ${sys:es.logs.base_path}$
→˓{sys:file.separator}${sys:es.logs.cluster_name}_index_indexing_slowlog-%d{yyyy-MM-
→˓dd}.log.gz
appender.index_indexing_slowlog_rolling.policies.type = Policies
appender.index_indexing_slowlog_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.index_indexing_slowlog_rolling.policies.time.interval = 1
appender.index_indexing_slowlog_rolling.policies.time.modulate = true

logger.index_indexing_slowlog.name = index.indexing.slowlog.index
logger.index_indexing_slowlog.level = {{ composant.log_appenders.index_indexing_
→˓slowlog_rolling.log_level | default('warn') }}
logger.index_indexing_slowlog.appenderRef.index_indexing_slowlog_rolling.ref = index_
→˓indexing_slowlog_rolling
logger.index_indexing_slowlog.additivity = false

appender.audit_rolling.type = RollingFile
appender.audit_rolling.name = audit_rolling
appender.audit_rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_audit.log
appender.audit_rolling.layout.type = PatternLayout
appender.audit_rolling.layout.pattern = {\

"@timestamp":"%d{ISO8601}"\
%varsNotEmpty{, "node.name":"%enc{\%map{node.name}}{JSON}"}\
%varsNotEmpty{, "node.id":"%enc{\%map{node.id}}{JSON}"}\
%varsNotEmpty{, "host.name":"%enc{\%map{host.name}}{JSON}"}\
%varsNotEmpty{, "host.ip":"%enc{\%map{host.ip}}{JSON}"}\
%varsNotEmpty{, "event.type":"%enc{\%map{event.type}}{JSON}"}\
%varsNotEmpty{, "event.action":"%enc{\%map{event.action}}{JSON}"}\
%varsNotEmpty{, "user.name":"%enc{\%map{user.name}}{JSON}"}\
%varsNotEmpty{, "user.run_by.name":"%enc{\%map{user.run_by.name}}

→˓{JSON}"}\
%varsNotEmpty{, "user.run_as.name":"%enc{\%map{user.run_as.name}}

→˓{JSON}"}\
(suite sur la page suivante)

82 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

%varsNotEmpty{, "user.realm":"%enc{\%map{user.realm}}{JSON}"}\
%varsNotEmpty{, "user.run_by.realm":"%enc{\%map{user.run_by.realm}}

→˓{JSON}"}\
%varsNotEmpty{, "user.run_as.realm":"%enc{\%map{user.run_as.realm}}

→˓{JSON}"}\
%varsNotEmpty{, "user.roles":%map{user.roles}}\
%varsNotEmpty{, "origin.type":"%enc{\%map{origin.type}}{JSON}"}\
%varsNotEmpty{, "origin.address":"%enc{\%map{origin.address}}{JSON}"}\
%varsNotEmpty{, "realm":"%enc{\%map{realm}}{JSON}"}\
%varsNotEmpty{, "url.path":"%enc{\%map{url.path}}{JSON}"}\
%varsNotEmpty{, "url.query":"%enc{\%map{url.query}}{JSON}"}\
%varsNotEmpty{, "request.method":"%enc{\%map{request.method}}{JSON}"}\
%varsNotEmpty{, "request.body":"%enc{\%map{request.body}}{JSON}"}\
%varsNotEmpty{, "request.id":"%enc{\%map{request.id}}{JSON}"}\
%varsNotEmpty{, "action":"%enc{\%map{action}}{JSON}"}\
%varsNotEmpty{, "request.name":"%enc{\%map{request.name}}{JSON}"}\
%varsNotEmpty{, "indices":%map{indices}}\
%varsNotEmpty{, "opaque_id":"%enc{\%map{opaque_id}}{JSON}"}\
%varsNotEmpty{, "x_forwarded_for":"%enc{\%map{x_forwarded_for}}{JSON}

→˓"}\
%varsNotEmpty{, "transport.profile":"%enc{\%map{transport.profile}}

→˓{JSON}"}\
%varsNotEmpty{, "rule":"%enc{\%map{rule}}{JSON}"}\
%varsNotEmpty{, "event.category":"%enc{\%map{event.category}}{JSON}"}\
}%n

"node.name" node name from the ‘elasticsearch.yml‘ settings
"node.id" node id which should not change between cluster restarts
"host.name" unresolved hostname of the local node
"host.ip" the local bound ip (i.e. the ip listening for connections)
"event.type" a received REST request is translated into one or more transport
→˓requests. This indicates which processing layer generated the event "rest" or
→˓"transport" (internal)
"event.action" the name of the audited event, eg. "authentication_failed", "access_
→˓granted", "run_as_granted", etc.
"user.name" the subject name as authenticated by a realm
"user.run_by.name" the original authenticated subject name that is impersonating
→˓another one.
"user.run_as.name" if this "event.action" is of a run_as type, this is the subject
→˓name to be impersonated as.
"user.realm" the name of the realm that authenticated "user.name"
"user.run_by.realm" the realm name of the impersonating subject ("user.run_by.name")
"user.run_as.realm" if this "event.action" is of a run_as type, this is the realm
→˓name the impersonated user is looked up from
"user.roles" the roles array of the user; these are the roles that are granting
→˓privileges
"origin.type" it is "rest" if the event is originating (is in relation to) a REST
→˓request; possible other values are "transport" and "ip_filter"
"origin.address" the remote address and port of the first network hop, i.e. a REST
→˓proxy or another cluster node
"realm" name of a realm that has generated an "authentication_failed" or an
→˓"authentication_successful"; the subject is not yet authenticated
"url.path" the URI component between the port and the query string; it is percent
→˓(URL) encoded
"url.query" the URI component after the path and before the fragment; it is percent
→˓(URL) encoded
"request.method" the method of the HTTP request, i.e. one of GET, POST, PUT, DELETE,
→˓ OPTIONS, HEAD, PATCH, TRACE, CONNECT

(suite sur la page suivante)

7.2. COTS 83

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"request.body" the content of the request body entity, JSON escaped
"request.id" a synthentic identifier for the incoming request, this is unique per
→˓incoming request, and consistent across all audit events generated by that request
"action" an action is the most granular operation that is authorized and this
→˓identifies it in a namespaced way (internal)
"request.name" if the event is in connection to a transport message this is the
→˓name of the request class, similar to how rest requests are identified by the url
→˓path (internal)
"indices" the array of indices that the "action" is acting upon
"opaque_id" opaque value conveyed by the "X-Opaque-Id" request header
"x_forwarded_for" the addresses from the "X-Forwarded-For" request header, as a
→˓verbatim string value (not an array)
"transport.profile" name of the transport profile in case this is a "connection_
→˓granted" or "connection_denied" event
"rule" name of the applied rulee if the "origin.type" is "ip_filter"
"event.category" fixed value "elasticsearch-audit"

appender.audit_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_audit-%d{yyyy-MM-dd}.log.gz
appender.audit_rolling.policies.type = Policies
appender.audit_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.audit_rolling.policies.time.interval = 1
appender.audit_rolling.policies.time.modulate = true

appender.deprecated_audit_rolling.type = RollingFile
appender.deprecated_audit_rolling.name = deprecated_audit_rolling
appender.deprecated_audit_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_access.log
appender.deprecated_audit_rolling.layout.type = PatternLayout
appender.deprecated_audit_rolling.layout.pattern = [%d{ISO8601}] %m%n
appender.deprecated_audit_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_access-%d{yyyy-MM-dd}.log.gz
appender.deprecated_audit_rolling.policies.type = Policies
appender.deprecated_audit_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.deprecated_audit_rolling.policies.time.interval = 1
appender.deprecated_audit_rolling.policies.time.modulate = true

logger.xpack_security_audit_logfile.name = org.elasticsearch.xpack.security.audit.
→˓logfile.LoggingAuditTrail
logger.xpack_security_audit_logfile.level = info
logger.xpack_security_audit_logfile.appenderRef.audit_rolling.ref = audit_rolling
logger.xpack_security_audit_logfile.additivity = false

logger.xpack_security_audit_deprecated_logfile.name = org.elasticsearch.xpack.
→˓security.audit.logfile.DeprecatedLoggingAuditTrail
set this to "off" instead of "info" to disable the deprecated appender
in the 6.x releases both the new and the previous appenders are enabled
for the logfile auditing
logger.xpack_security_audit_deprecated_logfile.level = info
logger.xpack_security_audit_deprecated_logfile.appenderRef.deprecated_audit_rolling.
→˓ref = deprecated_audit_rolling
logger.xpack_security_audit_deprecated_logfile.additivity = false

logger.xmlsig.name = org.apache.xml.security.signature.XMLSignature
logger.xmlsig.level = error
logger.samlxml_decrypt.name = org.opensaml.xmlsec.encryption.support.Decrypter
logger.samlxml_decrypt.level = fatal

(suite sur la page suivante)

84 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

logger.saml2_decrypt.name = org.opensaml.saml.saml2.encryption.Decrypter
logger.saml2_decrypt.level = fatal

7.2.4.2.2 Fichier /vitam/conf/elasticsearch-log/jvm.options

JVM configuration

##
IMPORTANT: JVM heap size
##
##
You should always set the min and max JVM heap
size to the same value. For example, to set
the heap to 4 GB, set:
##
-Xms4g
-Xmx4g
##
See https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
for more information
##
##

Xms represents the initial size of total heap space
Xmx represents the maximum size of total heap space

-Xms{{ elasticsearch_memory }}
-Xmx{{ elasticsearch_memory }}

##
Expert settings
##
##
All settings below this section are considered
expert settings. Don't tamper with them unless
you understand what you are doing
##
##

GC configuration
8-13:-XX:+UseConcMarkSweepGC
8-13:-XX:CMSInitiatingOccupancyFraction=75
8-13:-XX:+UseCMSInitiatingOccupancyOnly

G1GC Configuration
NOTE: G1 GC is only supported on JDK version 10 or later
to use G1GC, uncomment the next two lines and update the version on the
following three lines to your version of the JDK
10-13:-XX:-UseConcMarkSweepGC
10-13:-XX:-UseCMSInitiatingOccupancyOnly
14-:-XX:+UseG1GC
14-:-XX:G1ReservePercent=25
14-:-XX:InitiatingHeapOccupancyPercent=30

(suite sur la page suivante)

7.2. COTS 85

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

DNS cache policy
cache ttl in seconds for positive DNS lookups noting that this overrides the
JDK security property networkaddress.cache.ttl; set to -1 to cache forever
-Des.networkaddress.cache.ttl=60
cache ttl in seconds for negative DNS lookups noting that this overrides the
JDK security property networkaddress.cache.negative ttl; set to -1 to cache
forever
-Des.networkaddress.cache.negative.ttl=10

optimizations

pre-touch memory pages used by the JVM during initialization
-XX:+AlwaysPreTouch

basic
force the server VM (remove on 32-bit client JVMs)
-server

explicitly set the stack size
-Xss1m

set to headless, just in case
-Djava.awt.headless=true

ensure UTF-8 encoding by default (e.g. filenames)
-Dfile.encoding=UTF-8

use our provided JNA always versus the system one
-Djna.nosys=true

turn off a JDK optimization that throws away stack traces for common
exceptions because stack traces are important for debugging
-XX:-OmitStackTraceInFastThrow

flags to configure Netty
-Dio.netty.noUnsafe=true
-Dio.netty.noKeySetOptimization=true
-Dio.netty.recycler.maxCapacityPerThread=0

log4j 2
-Dlog4j.shutdownHookEnabled=false
-Dlog4j2.disable.jmx=true
Prevent from exploit in old log4j2 versions <2.17.1
-Dlog4j2.formatMsgNoLookups=true

-Dlog4j.skipJansi=true
-Djava.io.tmpdir=${ES_TMPDIR}

heap dumps

generate a heap dump when an allocation from the Java heap fails
heap dumps are created in the working directory of the JVM
-XX:+HeapDumpOnOutOfMemoryError

specify an alternative path for heap dumps; ensure the directory exists and
has sufficient space
-XX:HeapDumpPath={{ elasticsearch_log_dir }}

(suite sur la page suivante)

86 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

specify an alternative path for JVM fatal error logs
-XX:ErrorFile={{ elasticsearch_log_dir }}/hs_err_pid%p.log

JDK 8 GC logging

8:-XX:+PrintGCDetails
8:-XX:+PrintGCDateStamps
8:-XX:+PrintTenuringDistribution
8:-XX:+PrintGCApplicationStoppedTime
8:-Xloggc:/var/log/elasticsearch/gc.log
8:-XX:+UseGCLogFileRotation
8:-XX:NumberOfGCLogFiles=8
8:-XX:GCLogFileSize=32m

JDK 9+ GC logging
9-:-Xlog:gc*,gc+age=trace,safepoint:file={{ elasticsearch_log_dir }}/gc.log:utctime,
→˓pid,tags:filecount=8,filesize=32m

-Djna.tmpdir={{ vitam_defaults.folder.root_path }}/tmp/{{ composant.cluster_name }}

7.2.4.2.3 Fichier /vitam/conf/elasticsearch-log/elasticsearch.yml

======================== Elasticsearch Configuration =========================
#
NOTE: Elasticsearch comes with reasonable defaults for most settings.
Before you set out to tweak and tune the configuration, make sure you
understand what are you trying to accomplish and the consequences.
#
The primary way of configuring a node is via this file. This template lists
the most important settings you may want to configure for a production cluster.
#
Please consult the documentation for further information on configuration options:
https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
---------------------------------- Cluster -----------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: {{ composant.cluster_name }}
#
------------------------------------ Node ------------------------------------
#
Use a descriptive name for the node:
#
node.name: {{ inventory_hostname }}

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html
→˓#node-roles
node.roles: [master, data, data_content, data_hot, data_warm, data_cold, data_
→˓frozen, ingest, ml, remote_cluster_client, transform]
{% if groups['hosts_logstash'] | length > 0 %}
node.roles: {{ elasticsearch_roles | default(['master', 'data']) }}
{% else %}

(suite sur la page suivante)

7.2. COTS 87

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

node.roles: {{ elasticsearch_roles | default(['master', 'data', 'ingest']) }}
{% endif %}

https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-settings.html
xpack.ml.enabled: false

#
Add custom attributes to the node:
#
node.rack: r1
#
----------------------------------- Paths ------------------------------------
#
Path to directory where to store the data (separate multiple locations by comma):
#
path.data: {{ elasticsearch_data_dir }}
#
Path to log files:
#
path.logs: {{ elasticsearch_log_dir }}

#
Path for backup/snapshots:
#
{% if (composant.repo is defined) and (composant.repo|length > 0) and ("" not in
→˓composant.repo) %}
path.repo: ["{{ composant.repo | list | join ('\',\'') }}"]
{% endif %}

#
----------------------------------- Memory -----------------------------------
#
Lock the memory on startup:
= Disable swapping
bootstrap.memory_lock: true
#
Make sure that the ‘ES_HEAP_SIZE‘ environment variable is set to about half the
→˓memory
available on the system and that the owner of the process is allowed to use this
→˓limit.
#
Elasticsearch performs poorly when the system is swapping the memory.
#
---------------------------------- Network -----------------------------------
#
Set the bind address to a specific IP (IPv4 or IPv6):
#
Note : if installing to localhost, notably a docker container, we need to bind
→˓larger than localhost
{% if inventory_hostname in single_vm_hostnames %}
network.host: {{ composant.network_host | default('0.0.0.0') }}
http.cors.enabled: true
http.cors.allow-origin: "*"
{% else %}
KWA TODO: Check it again (ansible_hostname VS inventory_hostname VS ip_service)
network.host: {{ ip_admin }}
{% endif %}

(suite sur la page suivante)

88 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Set a custom port for HTTP:
#
http.port: {{ composant.port_http }}
#
For more information, consult the network module documentation.
#
--------------------------------- Discovery ----------------------------------
#
Pass an initial list of hosts to perform discovery when this node is started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
discovery.seed_hosts: [{% for host in groups['hosts_elasticsearch_log'] %}"{{
→˓hostvars[host]['ip_admin'] }}"{% if not loop.last %},{% endif %}{% endfor %}]
#
Bootstrap the cluster using an initial set of master-eligible nodes:
#
TODO OMA : faire mieux, plus propre et prenant bien en compte is_master de chaque
→˓membre
cluster.initial_master_nodes: [{% for host in groups['hosts_elasticsearch_log'] %}"{
→˓{ hostvars[host]['ip_admin'] }}"{% if not loop.last %},{% endif %}{% endfor %}]
#
For more information, consult the discovery and cluster formation module
→˓documentation.
#
---------------------------------- Gateway -----------------------------------
#
Block initial recovery after a full cluster restart until N nodes are started:
#
#gateway.recover_after_nodes: 3
#
For more information, consult the gateway module documentation.
#
---------------------------------- Various -----------------------------------
#
Require explicit names when deleting indices:
#
action.destructive_requires_name: true

related to https://www.elastic.co/guide/en/elasticsearch/reference/7.3/modules-
→˓fielddata.html
indices.fielddata.cache.size: {{ composant.indices_fielddata_cache_size }}

related to https://www.elastic.co/guide/en/elasticsearch/reference/7.3/circuit-
→˓breaker.html#fielddata-circuit-breaker
indices.breaker.fielddata.limit: {{ composant.indices_breaker_fielddata_limit }}

indices.mapping.dynamic_timeout: {{ composant.dynamic_timeout|default('30s') }}

thread_pool configuration
thread_pool:

analyze:
size: {{ (ansible_processor_cores * ansible_processor_threads_per_core) |

→˓round (0, 'floor') | int }}
queue_size: 5000

get:
size: {{ elasticsearch.log.thread_pool.get.size |default((ansible_processor_

→˓cores * ansible_processor_threads_per_core)| round (0, 'floor') | int) }}
(suite sur la page suivante)

7.2. COTS 89

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

queue_size: 1000
search:

size: {{ elasticsearch.log.thread_pool.search.size |default(((ansible_
→˓processor_cores * ansible_processor_threads_per_core * 3 / 2) + 1) | round (0,
→˓'floor') | int) }}

queue_size: 1000
write:

size: {{ elasticsearch.log.thread_pool.write.size |default((ansible_processor_
→˓cores * ansible_processor_threads_per_core + 1)| round (0, 'floor') | int) }}

queue_size: 5000
warmer:

core: 1
max: {{ elasticsearch.log.thread_pool.warmer.max |default(((ansible_processor_

→˓cores * ansible_processor_threads_per_core / 2) + 0.5) | round (0, 'floor') | int) }
→˓}

keep_alive: 2m

{% if groups['hosts_elasticsearch_log']|length > 1 %}
related to affinity and balancing between racks / rooms https://www.elastic.co/
→˓guide/en/elasticsearch/reference/current/allocation-awareness.html
cluster.routing.allocation.awareness.attributes: rack_id
node.attr.rack_id: {{ is_balancing|default(vitam_site_name) }}
{% endif %}

Related to https://www.elastic.co/guide/en/elasticsearch/reference/current/ilm-
→˓settings.html
indices.lifecycle.history_index_enabled: true

indices.breaker.total.use_real_memory: false

More tuning
xpack.security.enabled: false
xpack.watcher.enabled: false

7.2.4.2.4 Fichier /vitam/conf/elasticsearch-log/sysconfig

################################
Elasticsearch
################################

Elasticsearch home directory
#ES_HOME=/usr/share/elasticsearch

Elasticsearch configuration directory
ES_PATH_CONF={{ vitam_defaults.folder.root_path }}/conf/{{ composant.cluster_name }}

Elasticsearch data directory
#DATA_DIR={{ vitam_defaults.folder.root_path }}/data/{{ composant.cluster_name }}

Elasticsearch logs directory
#LOG_DIR={{ vitam_defaults.folder.root_path }}/log/{{ composant.cluster_name }}

Elasticsearch PID directory
#PID_DIR=/var/run/{{ composant.cluster_name }}

(suite sur la page suivante)

90 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Heap size defaults to 256m min, 1g max
Set ES_HEAP_SIZE to 50% of available RAM, but no more than 31g
#ES_JAVA_OPTS=

################################
Elasticsearch service
################################

SysV init.d
#
The number of seconds to wait before checking if Elasticsearch started successfully
→˓as a daemon process
ES_STARTUP_SLEEP_TIME=5

Heap new generation
#ES_HEAP_NEWSIZE=

Maximum direct memory
#ES_DIRECT_SIZE=

Additional Java OPTS
ES_JAVA_OPTS=""

Configure restart on package upgrade (true, every other setting will lead to not
→˓restarting)
#RESTART_ON_UPGRADE=true

Path to the GC log file
#ES_GC_LOG_FILE={{ vitam_defaults.folder.root_path }}/log/{{ composant.cluster_name }}
→˓/gc.log

ES_TMPDIR={{ vitam_defaults.folder.root_path }}/tmp/{{ composant.cluster_name }}

################################
Elasticsearch service
################################

SysV init.d
#
When executing the init script, this user will be used to run the elasticsearch
→˓service.
The default value is 'elasticsearch' and is declared in the init.d file.
Note that this setting is only used by the init script. If changed, make sure that
the configured user can read and write into the data, work, plugins and log
→˓directories.
For systemd service, the user is usually configured in file /usr/lib/systemd/system/
→˓elasticsearch.service

Note: useless for VITAM, as the startup is managed by systemd
ES_USER={{ vitam_defaults.users.vitamdb }}
ES_GROUP={{ vitam_defaults.users.group }}

The number of seconds to wait before checking if Elasticsearch started successfully
→˓as a daemon process
ES_STARTUP_SLEEP_TIME=5

(suite sur la page suivante)

7.2. COTS 91

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

################################
System properties
################################

Specifies the maximum file descriptor number that can be opened by this process
When using Systemd, this setting is ignored and the LimitNOFILE defined in
/usr/lib/systemd/system/elasticsearch.service takes precedence
#MAX_OPEN_FILES=65536

The maximum number of bytes of memory that may be locked into RAM
Set to "unlimited" if you use the 'bootstrap.memory_lock: true' option
in elasticsearch.yml (ES_HEAP_SIZE must also be set).
When using Systemd, the LimitMEMLOCK property must be set
in /usr/lib/systemd/system/elasticsearch.service
#MAX_LOCKED_MEMORY=unlimited

Maximum number of VMA (Virtual Memory Areas) a process can own
When using Systemd, this setting is ignored and the 'vm.max_map_count'
property is set at boot time in /usr/lib/sysctl.d/elasticsearch.conf
#MAX_MAP_COUNT=262144

7.2.4.2.5 Fichier /usr/lib/tmpfiles.d/elasticsearch-log.conf

d /var/run/{{ composant.cluster_name }} 0755 {{ vitam_defaults.users.vitamdb }} {
→˓{ vitam_defaults.users.group }} - -

7.2.4.3 Opérations

∙ Démarrage du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch.

En tant qu’utilisateur root : systemctl start vitam-elasticsearch-log

∙ Arrêt du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch.

En tant qu’utilisateur root : systemctl stop vitam-elasticsearch-log

∙ Sauvegarde du service

Dans cette version du système, seule une sauvegarde à froid du service est supportée (par la sauvegarde des fichiers de
données présents dans /vitam/data)

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ Réouverture d’un index fermé

92 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Les index sont fermés par action récurrente de Curator ; il est néanmoins possible de rouvrir un index fermé par la
commande suivante :

curl -XPOST ’<adresseIP>:<port>/<index_fermé>/_open’

Référence 16

∙ actions récurrentes

∙ cas des batches

N/A

7.2.5 Elasticsearch Data

7.2.5.1 Présentation

Le composant vitam-elasticsearch-data est une instance de la base d’indexation elasticsearch stockant les
informations relatives aux archives hébergées dans VITAM. Elle participe dans ce sens à l’indexation et la recherche
des données contenues dans MongoDB.

7.2.5.2 Configuration / fichiers utiles

Se reporter au DIN, qui configure le cluster ElasticSearch de données.

Les fichiers de configuration sont définis sous /vitam/conf/elasticsearch-data.

7.2.5.2.1 Fichier log4j2.properties

status = error

log action execution errors for easier debugging
logger.action.name = org.elasticsearch.action
logger.action.level = {{ composant.action_log_level }}

appender.console.type = Console
appender.console.name = console
appender.console.layout.type = PatternLayout
appender.console.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker
→˓%m%n

{% if syslog.name in ["rsyslog", "syslog-ng"] and (external_siem is defined or groups[
→˓'hosts_logstash']|length > 0) %}
appender.syslog.type = Syslog
appender.syslog.name = syslog
appender.syslog.appName = {{ composant.cluster_name }}
appender.syslog.facility = {{ vitam_defaults.syslog_facility }}
appender.syslog.host = {{ inventory_hostname }}
appender.syslog.protocol = UDP
appender.syslog.port = 514
appender.syslog.layout.type = PatternLayout
Note: rsyslog only parse RFC3195-formatted syslog messages by default ; AND, to
→˓make it work with log4j2, we need to start the layout by the app-name.

(suite sur la page suivante)

16. https://www.elastic.co/guide/en/elasticsearch/reference/2.4/indices-open-close.html

7.2. COTS 93

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/indices-open-close.html

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

IF we were in 5424, we wouldn't have to do this.
appender.syslog.layout.pattern = {{ composant.cluster_name }}: [%d{ISO8601}][%-5p][%-
→˓25c{1.}] [%node_name]%marker%m%n
appender.syslog.format = RFC5424
appender.syslog.mdcId = esdata

rootLogger.appenderRef.syslog.ref = syslog
{% else %}
Disabling the Syslog Appender
By setting ‘appender.syslog.type = Null‘, this appender becomes inactive:
- No logs are sent to a Syslog daemon (e.g., rsyslog on 514/UDP).
- Prevents errors (e.g., AccessControlException) if rsyslog is not installed or
→˓configured.
- Logs are redirected to another active appender, here ‘console‘, to be captured by
→˓Filebeat.
Used as a fallback when rsyslog is not present on the system.
appender.syslog.type = Null
appender.syslog.name = syslog
rootLogger.appenderRef.console.ref = console
{% endif %}

appender.rolling.type = RollingFile
appender.rolling.name = rolling
appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.
→˓logs.cluster_name}.log
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker
→˓%.-10000m%n
appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.
→˓logs.cluster_name}-%d{yyyy-MM-dd}-%i.log.gz
appender.rolling.policies.type = Policies
appender.rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.rolling.policies.time.interval = 1
appender.rolling.policies.time.modulate = true
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size = {{ composant.log_appenders.rolling.max_log_file_
→˓size | default('10MB') }}
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.fileIndex = {{ composant.log_appenders.rolling.fileIndex |
→˓default('nomax') }}
appender.rolling.strategy.action.type = Delete
appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path}
appender.rolling.strategy.action.condition.type = IfFileName
appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-*
appender.rolling.strategy.action.condition.nested_condition.type = {{ composant.log_
→˓appenders.rolling.condition_type | default('IfAccumulatedFileSize') }}
appender.rolling.strategy.action.condition.nested_condition.exceeds = {{ composant.
→˓log_appenders.rolling.max_total_log_size | default('5GB') }}

rootLogger.level = {{ composant.log_appenders.root.log_level | default('info') }}
rootLogger.appenderRef.console.ref = console
rootLogger.appenderRef.rolling.ref = rolling

appender.deprecation_rolling.type = RollingFile
appender.deprecation_rolling.name = deprecation_rolling
appender.deprecation_rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_deprecation.log

(suite sur la page suivante)

94 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

appender.deprecation_rolling.layout.type = PatternLayout
appender.deprecation_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_
→˓name]%marker %.-10000m%n
appender.deprecation_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_deprecation-%i.log.gz
appender.deprecation_rolling.policies.type = Policies
appender.deprecation_rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.deprecation_rolling.policies.size.size = {{ composant.log_appenders.
→˓deprecation_rolling.max_log_file_size | default('10MB') }}
appender.deprecation_rolling.strategy.type = DefaultRolloverStrategy
appender.deprecation_rolling.strategy.max = {{ composant.log_appenders.deprecation_
→˓rolling.max_files | default('10') }}

logger.deprecation.name = org.elasticsearch.deprecation
logger.deprecation.level = {{ composant.log_appenders.deprecation_rolling.log_level |
→˓default('warn') }}
logger.deprecation.appenderRef.deprecation_rolling.ref = deprecation_rolling
logger.deprecation.additivity = false

appender.index_search_slowlog_rolling.type = RollingFile
appender.index_search_slowlog_rolling.name = index_search_slowlog_rolling
appender.index_search_slowlog_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_index_search_slowlog.log
appender.index_search_slowlog_rolling.layout.type = PatternLayout
appender.index_search_slowlog_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c] [
→˓%node_name]%marker %.-10000m%n
appender.index_search_slowlog_rolling.filePattern = ${sys:es.logs.base_path}$
→˓{sys:file.separator}${sys:es.logs.cluster_name}_index_search_slowlog-%d{yyyy-MM-dd}.
→˓log.gz
appender.index_search_slowlog_rolling.policies.type = Policies
appender.index_search_slowlog_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.index_search_slowlog_rolling.policies.time.interval = 1
appender.index_search_slowlog_rolling.policies.time.modulate = true

logger.index_search_slowlog_rolling.name = index.search.slowlog
logger.index_search_slowlog_rolling.level = {{ composant.log_appenders.index_search_
→˓slowlog_rolling.log_level | default('warn') }}
logger.index_search_slowlog_rolling.appenderRef.index_search_slowlog_rolling.ref =
→˓index_search_slowlog_rolling
logger.index_search_slowlog_rolling.additivity = false

appender.index_indexing_slowlog_rolling.type = RollingFile
appender.index_indexing_slowlog_rolling.name = index_indexing_slowlog_rolling
appender.index_indexing_slowlog_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_index_indexing_slowlog.log
appender.index_indexing_slowlog_rolling.layout.type = PatternLayout
appender.index_indexing_slowlog_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c] [
→˓%node_name]%marker %.-10000m%n
appender.index_indexing_slowlog_rolling.filePattern = ${sys:es.logs.base_path}$
→˓{sys:file.separator}${sys:es.logs.cluster_name}_index_indexing_slowlog-%d{yyyy-MM-
→˓dd}.log.gz
appender.index_indexing_slowlog_rolling.policies.type = Policies
appender.index_indexing_slowlog_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.index_indexing_slowlog_rolling.policies.time.interval = 1
appender.index_indexing_slowlog_rolling.policies.time.modulate = true

(suite sur la page suivante)

7.2. COTS 95

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

logger.index_indexing_slowlog.name = index.indexing.slowlog.index
logger.index_indexing_slowlog.level = {{ composant.log_appenders.index_indexing_
→˓slowlog_rolling.log_level | default('warn') }}
logger.index_indexing_slowlog.appenderRef.index_indexing_slowlog_rolling.ref = index_
→˓indexing_slowlog_rolling
logger.index_indexing_slowlog.additivity = false

appender.audit_rolling.type = RollingFile
appender.audit_rolling.name = audit_rolling
appender.audit_rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_audit.log
appender.audit_rolling.layout.type = PatternLayout
appender.audit_rolling.layout.pattern = {\

"@timestamp":"%d{ISO8601}"\
%varsNotEmpty{, "node.name":"%enc{\%map{node.name}}{JSON}"}\
%varsNotEmpty{, "node.id":"%enc{\%map{node.id}}{JSON}"}\
%varsNotEmpty{, "host.name":"%enc{\%map{host.name}}{JSON}"}\
%varsNotEmpty{, "host.ip":"%enc{\%map{host.ip}}{JSON}"}\
%varsNotEmpty{, "event.type":"%enc{\%map{event.type}}{JSON}"}\
%varsNotEmpty{, "event.action":"%enc{\%map{event.action}}{JSON}"}\
%varsNotEmpty{, "user.name":"%enc{\%map{user.name}}{JSON}"}\
%varsNotEmpty{, "user.run_by.name":"%enc{\%map{user.run_by.name}}

→˓{JSON}"}\
%varsNotEmpty{, "user.run_as.name":"%enc{\%map{user.run_as.name}}

→˓{JSON}"}\
%varsNotEmpty{, "user.realm":"%enc{\%map{user.realm}}{JSON}"}\
%varsNotEmpty{, "user.run_by.realm":"%enc{\%map{user.run_by.realm}}

→˓{JSON}"}\
%varsNotEmpty{, "user.run_as.realm":"%enc{\%map{user.run_as.realm}}

→˓{JSON}"}\
%varsNotEmpty{, "user.roles":%map{user.roles}}\
%varsNotEmpty{, "origin.type":"%enc{\%map{origin.type}}{JSON}"}\
%varsNotEmpty{, "origin.address":"%enc{\%map{origin.address}}{JSON}"}\
%varsNotEmpty{, "realm":"%enc{\%map{realm}}{JSON}"}\
%varsNotEmpty{, "url.path":"%enc{\%map{url.path}}{JSON}"}\
%varsNotEmpty{, "url.query":"%enc{\%map{url.query}}{JSON}"}\
%varsNotEmpty{, "request.method":"%enc{\%map{request.method}}{JSON}"}\
%varsNotEmpty{, "request.body":"%enc{\%map{request.body}}{JSON}"}\
%varsNotEmpty{, "request.id":"%enc{\%map{request.id}}{JSON}"}\
%varsNotEmpty{, "action":"%enc{\%map{action}}{JSON}"}\
%varsNotEmpty{, "request.name":"%enc{\%map{request.name}}{JSON}"}\
%varsNotEmpty{, "indices":%map{indices}}\
%varsNotEmpty{, "opaque_id":"%enc{\%map{opaque_id}}{JSON}"}\
%varsNotEmpty{, "x_forwarded_for":"%enc{\%map{x_forwarded_for}}{JSON}

→˓"}\
%varsNotEmpty{, "transport.profile":"%enc{\%map{transport.profile}}

→˓{JSON}"}\
%varsNotEmpty{, "rule":"%enc{\%map{rule}}{JSON}"}\
%varsNotEmpty{, "event.category":"%enc{\%map{event.category}}{JSON}"}\
}%n

"node.name" node name from the ‘elasticsearch.yml‘ settings
"node.id" node id which should not change between cluster restarts
"host.name" unresolved hostname of the local node
"host.ip" the local bound ip (i.e. the ip listening for connections)
"event.type" a received REST request is translated into one or more transport
→˓requests. This indicates which processing layer generated the event "rest" or
→˓"transport" (internal)

(suite sur la page suivante)

96 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"event.action" the name of the audited event, eg. "authentication_failed", "access_
→˓granted", "run_as_granted", etc.
"user.name" the subject name as authenticated by a realm
"user.run_by.name" the original authenticated subject name that is impersonating
→˓another one.
"user.run_as.name" if this "event.action" is of a run_as type, this is the subject
→˓name to be impersonated as.
"user.realm" the name of the realm that authenticated "user.name"
"user.run_by.realm" the realm name of the impersonating subject ("user.run_by.name")
"user.run_as.realm" if this "event.action" is of a run_as type, this is the realm
→˓name the impersonated user is looked up from
"user.roles" the roles array of the user; these are the roles that are granting
→˓privileges
"origin.type" it is "rest" if the event is originating (is in relation to) a REST
→˓request; possible other values are "transport" and "ip_filter"
"origin.address" the remote address and port of the first network hop, i.e. a REST
→˓proxy or another cluster node
"realm" name of a realm that has generated an "authentication_failed" or an
→˓"authentication_successful"; the subject is not yet authenticated
"url.path" the URI component between the port and the query string; it is percent
→˓(URL) encoded
"url.query" the URI component after the path and before the fragment; it is percent
→˓(URL) encoded
"request.method" the method of the HTTP request, i.e. one of GET, POST, PUT, DELETE,
→˓ OPTIONS, HEAD, PATCH, TRACE, CONNECT
"request.body" the content of the request body entity, JSON escaped
"request.id" a synthentic identifier for the incoming request, this is unique per
→˓incoming request, and consistent across all audit events generated by that request
"action" an action is the most granular operation that is authorized and this
→˓identifies it in a namespaced way (internal)
"request.name" if the event is in connection to a transport message this is the
→˓name of the request class, similar to how rest requests are identified by the url
→˓path (internal)
"indices" the array of indices that the "action" is acting upon
"opaque_id" opaque value conveyed by the "X-Opaque-Id" request header
"x_forwarded_for" the addresses from the "X-Forwarded-For" request header, as a
→˓verbatim string value (not an array)
"transport.profile" name of the transport profile in case this is a "connection_
→˓granted" or "connection_denied" event
"rule" name of the applied rulee if the "origin.type" is "ip_filter"
"event.category" fixed value "elasticsearch-audit"

appender.audit_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}$
→˓{sys:es.logs.cluster_name}_audit-%d{yyyy-MM-dd}.log.gz
appender.audit_rolling.policies.type = Policies
appender.audit_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.audit_rolling.policies.time.interval = 1
appender.audit_rolling.policies.time.modulate = true

appender.deprecated_audit_rolling.type = RollingFile
appender.deprecated_audit_rolling.name = deprecated_audit_rolling
appender.deprecated_audit_rolling.fileName = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_access.log
appender.deprecated_audit_rolling.layout.type = PatternLayout
appender.deprecated_audit_rolling.layout.pattern = [%d{ISO8601}] %m%n
appender.deprecated_audit_rolling.filePattern = ${sys:es.logs.base_path}${sys:file.
→˓separator}${sys:es.logs.cluster_name}_access-%d{yyyy-MM-dd}.log.gz

(suite sur la page suivante)

7.2. COTS 97

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

appender.deprecated_audit_rolling.policies.type = Policies
appender.deprecated_audit_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.deprecated_audit_rolling.policies.time.interval = 1
appender.deprecated_audit_rolling.policies.time.modulate = true

logger.xpack_security_audit_logfile.name = org.elasticsearch.xpack.security.audit.
→˓logfile.LoggingAuditTrail
logger.xpack_security_audit_logfile.level = info
logger.xpack_security_audit_logfile.appenderRef.audit_rolling.ref = audit_rolling
logger.xpack_security_audit_logfile.additivity = false

logger.xpack_security_audit_deprecated_logfile.name = org.elasticsearch.xpack.
→˓security.audit.logfile.DeprecatedLoggingAuditTrail
set this to "off" instead of "info" to disable the deprecated appender
in the 6.x releases both the new and the previous appenders are enabled
for the logfile auditing
logger.xpack_security_audit_deprecated_logfile.level = info
logger.xpack_security_audit_deprecated_logfile.appenderRef.deprecated_audit_rolling.
→˓ref = deprecated_audit_rolling
logger.xpack_security_audit_deprecated_logfile.additivity = false

logger.xmlsig.name = org.apache.xml.security.signature.XMLSignature
logger.xmlsig.level = error
logger.samlxml_decrypt.name = org.opensaml.xmlsec.encryption.support.Decrypter
logger.samlxml_decrypt.level = fatal
logger.saml2_decrypt.name = org.opensaml.saml.saml2.encryption.Decrypter
logger.saml2_decrypt.level = fatal

7.2.5.2.2 Fichier jvm.options

JVM configuration

##
IMPORTANT: JVM heap size
##
##
You should always set the min and max JVM heap
size to the same value. For example, to set
the heap to 4 GB, set:
##
-Xms4g
-Xmx4g
##
See https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
for more information
##
##

Xms represents the initial size of total heap space
Xmx represents the maximum size of total heap space

-Xms{{ elasticsearch_memory }}
-Xmx{{ elasticsearch_memory }}

(suite sur la page suivante)

98 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

##
Expert settings
##
##
All settings below this section are considered
expert settings. Don't tamper with them unless
you understand what you are doing
##
##

GC configuration
8-13:-XX:+UseConcMarkSweepGC
8-13:-XX:CMSInitiatingOccupancyFraction=75
8-13:-XX:+UseCMSInitiatingOccupancyOnly

G1GC Configuration
NOTE: G1 GC is only supported on JDK version 10 or later
to use G1GC, uncomment the next two lines and update the version on the
following three lines to your version of the JDK
10-13:-XX:-UseConcMarkSweepGC
10-13:-XX:-UseCMSInitiatingOccupancyOnly
14-:-XX:+UseG1GC
14-:-XX:G1ReservePercent=25
14-:-XX:InitiatingHeapOccupancyPercent=30

DNS cache policy
cache ttl in seconds for positive DNS lookups noting that this overrides the
JDK security property networkaddress.cache.ttl; set to -1 to cache forever
-Des.networkaddress.cache.ttl=60
cache ttl in seconds for negative DNS lookups noting that this overrides the
JDK security property networkaddress.cache.negative ttl; set to -1 to cache
forever
-Des.networkaddress.cache.negative.ttl=10

optimizations

pre-touch memory pages used by the JVM during initialization
-XX:+AlwaysPreTouch

basic
force the server VM (remove on 32-bit client JVMs)
-server

explicitly set the stack size
-Xss1m

set to headless, just in case
-Djava.awt.headless=true

ensure UTF-8 encoding by default (e.g. filenames)
-Dfile.encoding=UTF-8

use our provided JNA always versus the system one
-Djna.nosys=true

turn off a JDK optimization that throws away stack traces for common
exceptions because stack traces are important for debugging

(suite sur la page suivante)

7.2. COTS 99

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

-XX:-OmitStackTraceInFastThrow

flags to configure Netty
-Dio.netty.noUnsafe=true
-Dio.netty.noKeySetOptimization=true
-Dio.netty.recycler.maxCapacityPerThread=0

log4j 2
-Dlog4j.shutdownHookEnabled=false
-Dlog4j2.disable.jmx=true
Prevent from exploit in old log4j2 versions <2.17.1
-Dlog4j2.formatMsgNoLookups=true

-Dlog4j.skipJansi=true
-Djava.io.tmpdir=${ES_TMPDIR}

heap dumps

generate a heap dump when an allocation from the Java heap fails
heap dumps are created in the working directory of the JVM
-XX:+HeapDumpOnOutOfMemoryError

specify an alternative path for heap dumps; ensure the directory exists and
has sufficient space
-XX:HeapDumpPath={{ elasticsearch_log_dir }}

specify an alternative path for JVM fatal error logs
-XX:ErrorFile={{ elasticsearch_log_dir }}/hs_err_pid%p.log

JDK 8 GC logging

8:-XX:+PrintGCDetails
8:-XX:+PrintGCDateStamps
8:-XX:+PrintTenuringDistribution
8:-XX:+PrintGCApplicationStoppedTime
8:-Xloggc:/var/log/elasticsearch/gc.log
8:-XX:+UseGCLogFileRotation
8:-XX:NumberOfGCLogFiles=8
8:-XX:GCLogFileSize=32m

JDK 9+ GC logging
9-:-Xlog:gc*,gc+age=trace,safepoint:file={{ elasticsearch_log_dir }}/gc.log:utctime,
→˓pid,tags:filecount=8,filesize=32m

-Djna.tmpdir={{ vitam_defaults.folder.root_path }}/tmp/{{ composant.cluster_name }}

7.2.5.2.3 Fichier elasticsearch.yml

======================== Elasticsearch Configuration =========================
#
NOTE: Elasticsearch comes with reasonable defaults for most settings.
Before you set out to tweak and tune the configuration, make sure you
understand what are you trying to accomplish and the consequences.
#

(suite sur la page suivante)

100 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

The primary way of configuring a node is via this file. This template lists
the most important settings you may want to configure for a production cluster.
#
Please consult the documentation for further information on configuration options:
https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
---------------------------------- Cluster -----------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: {{ composant.cluster_name }}
#
------------------------------------ Node ------------------------------------
#
Use a descriptive name for the node:
#
node.name: {{ inventory_hostname }}

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html
→˓#node-roles
node.roles: [master, data, data_content, data_hot, data_warm, data_cold, data_
→˓frozen, ingest, ml, remote_cluster_client, transform]
node.roles: {{ elasticsearch_roles | default(['master', 'data']) }}

https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-settings.html
xpack.ml.enabled: false

#
Add custom attributes to the node:
#
node.rack: r1
#
----------------------------------- Paths ------------------------------------
#
Path to directory where to store the data (separate multiple locations by comma):
#
path.data: {{ elasticsearch_data_dir }}
#
Path to log files:
#
path.logs: {{ elasticsearch_log_dir }}

#
Path for backup/snapshots:
#
{% if (composant.repo is defined) and (composant.repo|length > 0) and ("" not in
→˓composant.repo) %}
path.repo: ["{{ composant.repo | list | join ('\',\'') }}"]
{% endif %}

#
----------------------------------- Memory -----------------------------------
#
Lock the memory on startup:
= Disable swapping
bootstrap.memory_lock: true
#

(suite sur la page suivante)

7.2. COTS 101

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Make sure that the ‘ES_HEAP_SIZE‘ environment variable is set to about half the
→˓memory
available on the system and that the owner of the process is allowed to use this
→˓limit.
#
Elasticsearch performs poorly when the system is swapping the memory.
#
---------------------------------- Network -----------------------------------
#
Set the bind address to a specific IP (IPv4 or IPv6):
#
Note : if installing to localhost, notably a docker container, we need to bind
→˓larger than localhost
{% if inventory_hostname in single_vm_hostnames %}
network.host: {{ composant.network_host | default('0.0.0.0') }}
http.cors.enabled: true
http.cors.allow-origin: "*"
{% else %}
network.host: {{ ip_service }}
{% endif %}
#
Set a custom port for HTTP:
#
http.port: {{ composant.port_http }}
#
For more information, consult the network module documentation.
#
--------------------------------- Discovery ----------------------------------
#
Pass an initial list of hosts to perform discovery when this node is started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
discovery.seed_hosts: [{% for host in groups['hosts_elasticsearch_data'] %}"{{
→˓hostvars[host]['ip_service'] }}"{% if not loop.last %},{% endif %}{% endfor %}]
#
Bootstrap the cluster using an initial set of master-eligible nodes:
#
cluster.initial_master_nodes: [{% for host in groups['hosts_elasticsearch_data'] %}"{
→˓{ host }}"{% if not loop.last %},{% endif %}{% endfor %}]

cluster.no_master_block: all
#
For more information, consult the discovery and cluster formation module
→˓documentation.
#
---------------------------------- Gateway -----------------------------------
#
Block initial recovery after a full cluster restart until N nodes are started:
#
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-gateway.html
gateway.expected_data_nodes: {{ (groups['hosts_elasticsearch_data'] | length) }}
gateway.recover_after_data_nodes: {{ ((groups['hosts_elasticsearch_data']|length /
→˓2)+1)| round (0, 'floor')| int }}
#
For more information, see the documentation at:
<http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-gateway.
→˓html>

(suite sur la page suivante)

102 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

#
---------------------------------- Various -----------------------------------
#
Disable starting multiple nodes on a single system:
#
node.max_local_storage_nodes: 1
#
Require explicit names when deleting indices:
#
action.destructive_requires_name: true

For Vitam multiquery
indices.query.bool.max_clause_count: 10000

{% if composant.index_buffer_size_ratio is defined %}
some perforamnce tuning ; see https://www.elastic.co/guide/en/elasticsearch/
→˓reference/6.4/tune-for-indexing-speed.html
0.1 may be enough, cots_vars declares {{ composant.index_buffer_size_ratio }} as
→˓ratio on total memory {{ elasticsearch_memory }}
indices.memory.index_buffer_size: {{ ((elasticsearch_memory_value|int)*(composant.
→˓index_buffer_size_ratio|float))|round (0, 'floor')| int }}{{ elasticsearch_memory_
→˓unit }}
{% endif %}

indices.mapping.dynamic_timeout: {{ composant.dynamic_timeout |default('30s') }}

thread_pool configuration
thread_pool:

analyze:
size: {{ (ansible_processor_cores * ansible_processor_threads_per_core) |

→˓round (0, 'floor') | int }}
queue_size: 5000

get:
size: {{ elasticsearch.data.thread_pool.get.size |default((ansible_processor_

→˓cores * ansible_processor_threads_per_core)| round (0, 'floor') | int) }}
queue_size: 5000

search:
size: {{ elasticsearch.data.thread_pool.search.size |default(((ansible_

→˓processor_cores * ansible_processor_threads_per_core * 3 / 2) + 1) | round (0,
→˓'floor') | int) }}

queue_size: 5000
write:

size: {{ elasticsearch.data.thread_pool.write.size |default((ansible_
→˓processor_cores * ansible_processor_threads_per_core + 1)| round (0, 'floor') |
→˓int) }}

queue_size: 5000
warmer:

core: 1
max: {{ elasticsearch.data.thread_pool.warmer.max |default(((ansible_

→˓processor_cores * ansible_processor_threads_per_core / 2) + 0.5) | round (0, 'floor
→˓') | int) }}

keep_alive: 2m

Note : the 0.5 in the previous expression is for there is only 1 CPU (else the
→˓thread pool size would be zero) ! ; Note bis : max 10 threads #
Note : in ES5 and further : the thread pool "refresh" is of type scaling with a
→˓keep-alive of 5m and a max of min(10, (# of available processors)/2)

(suite sur la page suivante)

7.2. COTS 103

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

related to https://www.elastic.co/guide/en/elasticsearch/reference/6.8/modules-
→˓fielddata.html
indices.fielddata.cache.size: {{ composant.indices_fielddata_cache_size }}

related to https://www.elastic.co/guide/en/elasticsearch/reference/6.8/circuit-
→˓breaker.html#fielddata-circuit-breaker
indices.breaker.fielddata.limit: {{ composant.indices_breaker_fielddata_limit }}

{% if groups['hosts_elasticsearch_data']|length > 1 %}
related to affinity and balancing between racks / rooms https://www.elastic.co/
→˓guide/en/elasticsearch/reference/current/allocation-awareness.html
cluster.routing.allocation.awareness.attributes: rack_id
node.attr.rack_id: {{ is_balancing|default(vitam_site_name) }}
{% endif %}

indices.breaker.total.use_real_memory: false

Related to https://www.elastic.co/guide/en/elasticsearch/reference/current/ilm-
→˓settings.html
indices.lifecycle.history_index_enabled: false

More tuning
xpack.security.enabled: false
xpack.watcher.enabled: false

7.2.5.2.4 Fichier sysconfig

################################
Elasticsearch
################################

Elasticsearch home directory
#ES_HOME=/usr/share/elasticsearch

Elasticsearch configuration directory
ES_PATH_CONF={{ vitam_defaults.folder.root_path }}/conf/{{ composant.cluster_name }}

Elasticsearch data directory
#DATA_DIR={{ vitam_defaults.folder.root_path }}/data/{{ composant.cluster_name }}

Elasticsearch logs directory
#LOG_DIR={{ vitam_defaults.folder.root_path }}/log/{{ composant.cluster_name }}

Elasticsearch PID directory
#PID_DIR=/var/run/{{ composant.cluster_name }}

Heap size defaults to 256m min, 1g max
Set ES_HEAP_SIZE to 50% of available RAM, but no more than 31g
#ES_JAVA_OPTS=

################################
Elasticsearch service

(suite sur la page suivante)

104 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

################################

SysV init.d
#
The number of seconds to wait before checking if Elasticsearch started successfully
→˓as a daemon process
ES_STARTUP_SLEEP_TIME=5

Heap new generation
#ES_HEAP_NEWSIZE=

Maximum direct memory
#ES_DIRECT_SIZE=

Additional Java OPTS
ES_JAVA_OPTS=""

Configure restart on package upgrade (true, every other setting will lead to not
→˓restarting)
#RESTART_ON_UPGRADE=true

Path to the GC log file
#ES_GC_LOG_FILE={{ vitam_defaults.folder.root_path }}/log/{{ composant.cluster_name }}
→˓/gc.log

ES_TMPDIR={{ vitam_defaults.folder.root_path }}/tmp/{{ composant.cluster_name }}

################################
Elasticsearch service
################################

SysV init.d
#
When executing the init script, this user will be used to run the elasticsearch
→˓service.
The default value is 'elasticsearch' and is declared in the init.d file.
Note that this setting is only used by the init script. If changed, make sure that
the configured user can read and write into the data, work, plugins and log
→˓directories.
For systemd service, the user is usually configured in file /usr/lib/systemd/system/
→˓elasticsearch.service

Note: useless for VITAM, as the startup is managed by systemd
ES_USER={{ vitam_defaults.users.vitamdb }}
ES_GROUP={{ vitam_defaults.users.group }}

The number of seconds to wait before checking if Elasticsearch started successfully
→˓as a daemon process
ES_STARTUP_SLEEP_TIME=5

################################
System properties
################################

Specifies the maximum file descriptor number that can be opened by this process
When using Systemd, this setting is ignored and the LimitNOFILE defined in

(suite sur la page suivante)

7.2. COTS 105

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

/usr/lib/systemd/system/elasticsearch.service takes precedence
#MAX_OPEN_FILES=65536

The maximum number of bytes of memory that may be locked into RAM
Set to "unlimited" if you use the 'bootstrap.memory_lock: true' option
in elasticsearch.yml (ES_HEAP_SIZE must also be set).
When using Systemd, the LimitMEMLOCK property must be set
in /usr/lib/systemd/system/elasticsearch.service
#MAX_LOCKED_MEMORY=unlimited

Maximum number of VMA (Virtual Memory Areas) a process can own
When using Systemd, this setting is ignored and the 'vm.max_map_count'
property is set at boot time in /usr/lib/sysctl.d/elasticsearch.conf
#MAX_MAP_COUNT=262144

7.2.5.2.5 Fichier /usr/lib/tmpfiles.d/elasticsearch-data.conf

d /var/run/{{ composant.cluster_name }} 0755 {{ vitam_defaults.users.vitamdb }} {
→˓{ vitam_defaults.users.group }} - -

7.2.5.3 Opérations

∙ Démarrage du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch.

En tant qu’utilisateur root : systemctl start vitam-elasticsearch-data

∙ Arrêt du service

Les commandes suivantes sont à passer sur les différentes machines constituant le cluster Elasticsearch.

En tant qu’utilisateur root : systemctl stop vitam-elasticsearch-data

∙ Sauvegarde du service

Dans cette version du système, seule une sauvegarde à froid du service est supportée (par la sauvegarde des fichiers de
données présents dans /vitam/data)

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

106 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.6 Grafana

7.2.6.1 Présentation

Grafana est l’outil permettant de visualiser et de représenter de façon agrégée des données stockées dans Prometheus.

Afin de forcer la bonne version de grafana, VITAM déploie un installeur-chapeau vitam-grafana.

Prudence : Lors de la première installation de grafana, il convient de le configurer manuellement.

7.2.6.2 Configuration / fichiers utiles

Cet outil est fourni en tant que composant extra dans la suite logicielle VITAM.

Grafana sera déployé sur l’ensemble des machines renseignées dans le groupe [hosts_grafana] de votre fichier
d’inventaire.

Grafana est déployé avec un dashboard général pour le suivi des indicateurs clés de la solution Vitam ainsi qu’un
dashboard dédié à Elasticsearch.

Note : Dans le cas d’utilisation d’une offre froide, un dashboard dédié est disponible sur Grafana pour le suivi du bon
fonctionnement de l’offre.

7.2.6.2.1 Fichier /etc/grafana/grafana.ini

Ce fichier est à récupérer depuis la version à installer. Ensuite il faut apporter les modifications nécessaires.

Avertissement : Lors des montées de version de Grafana, il faut récupérer le fichier original grafana.ini de
la nouvelle version et reporter les modifications apportées par Vitam.

######################### Grafana Configuration ################################
#
Everything has defaults so you only need to uncomment things you want to
change

possible values : production, development
;app_mode = production

instance name, defaults to HOSTNAME environment variable value or hostname if
→˓HOSTNAME var is empty
;instance_name = ${HOSTNAME}

#################################### Paths #####################################
In 'install_mode: container', the following [paths] values are ignored.
See: https://grafana.com/docs/grafana/latest/setup-grafana/configure-docker/
→˓#default-paths
[paths]
Path to where grafana can store temp files, sessions, and the sqlite3 db (if that
→˓is used)
data = {{ grafana_data_dir }}

(suite sur la page suivante)

7.2. COTS 107

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Temporary files in ‘data‘ directory older than given duration will be removed
;temp_data_lifetime = 24h

Directory where grafana can store logs
logs = {{ grafana_log_dir }}

Directory where grafana will automatically scan and look for plugins
plugins = {{ grafana_path_plugins }}

folder that contains provisioning config files that grafana will apply on startup
→˓and while running.
provisioning = {{ grafana_path_provisioning }}

#################################### Server ####################################
[server]
Protocol (http, https, h2, socket)
;protocol = http

The ip address to bind to, empty will bind to all interfaces
;http_addr =

The http port to use
http_port = {{ grafana.http_port | default(3000) }}

The public facing domain name used to access grafana from a browser
;domain = localhost

Redirect to correct domain if host header does not match domain
Prevents DNS rebinding attacks
;enforce_domain = false

The full public facing url you use in browser, used for redirects and emails
If you use reverse proxy and sub path specify full url (with sub path)
;root_url = %(protocol)s://%(domain)s:%(http_port)s/

Serve Grafana from subpath specified in ‘root_url‘ setting. By default it is set to
→˓‘false‘ for compatibility reasons.
;serve_from_sub_path = false
##
VITAM added this, if you dont use reverse proxy, remove following two lines
root_url = http://{{ ip_admin }}:{{ grafana.http_port | default(3000) }}/grafana
serve_from_sub_path = true
################################## VITAM END ###################################
Log web requests
;router_logging = false

the path relative working path
;static_root_path = public

enable gzip
;enable_gzip = false

https certs & key file
;cert_file =
;cert_key =

(suite sur la page suivante)

108 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Unix socket path
;socket =

#################################### Database ##################################
[database]
You can configure the database connection by specifying type, host, name, user and
→˓password
as separate properties or as on string using the url properties.

Either "mysql", "postgres" or "sqlite3", it's your choice
;type = sqlite3
;host = 127.0.0.1:3306
;name = grafana
;user = root
If the password contains # or ; you have to wrap it with triple quotes. Ex """
→˓#password;"""
;password =

Use either URL or the previous fields to configure the database
Example: mysql://user:secret@host:port/database
;url =

For "postgres" only, either "disable", "require" or "verify-full"
;ssl_mode = disable

;ca_cert_path =
;client_key_path =
;client_cert_path =
;server_cert_name =

For "sqlite3" only, path relative to data_path setting
;path = grafana.db

Max idle conn setting default is 2
;max_idle_conn = 2

Max conn setting default is 0 (mean not set)
;max_open_conn =

Connection Max Lifetime default is 14400 (means 14400 seconds or 4 hours)
;conn_max_lifetime = 14400

Set to true to log the sql calls and execution times.
;log_queries =

For "sqlite3" only. cache mode setting used for connecting to the database.
→˓(private, shared)
;cache_mode = private

################################# Cache server #################################
[remote_cache]
Either "redis", "memcached" or "database" default is "database"
;type = database

cache connectionstring options
database: will use Grafana primary database.
redis: config like redis server e.g. ‘addr=127.0.0.1:6379,pool_size=100,db=0,
→˓ssl=false‘. Only addr is required. ssl may be 'true', 'false', or 'insecure'.(suite sur la page suivante)

7.2. COTS 109

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

memcache: 127.0.0.1:11211
;connstr =

################################## Data proxy ##################################
[dataproxy]

This enables data proxy logging, default is false
;logging = false

How long the data proxy should wait before timing out default is 30 (seconds)
;timeout = 30

If enabled and user is not anonymous, data proxy will add X-Grafana-User header
→˓with username into the request, default is false.
;send_user_header = false

################################### Analytics ##################################
[analytics]
Server reporting, sends usage counters to stats.grafana.org every 24 hours.
No ip addresses are being tracked, only simple counters to track
running instances, dashboard and error counts. It is very helpful to us.
Change this option to false to disable reporting.
reporting_enabled = false

Set to false to disable all checks to https://grafana.net
for new vesions (grafana itself and plugins), check is used
in some UI views to notify that grafana or plugin update exists
This option does not cause any auto updates, nor send any information
only a GET request to http://grafana.com to get latest versions
check_for_updates = false

Google Analytics universal tracking code, only enabled if you specify an id here
;google_analytics_ua_id =

Google Tag Manager ID, only enabled if you specify an id here
;google_tag_manager_id =

################################### Security ###################################
[security]
disable creation of admin user on first start of grafana
;disable_initial_admin_creation = false

default admin user, created on startup
admin_user = {{ grafana.admin_user }}

default admin password, can be changed before first start of grafana, or in profile
→˓settings
admin_password = {{ grafana.admin_password }}

used for signing
;secret_key = SW2YcwTIb9zpOOhoPsMm

disable gravatar profile images
;disable_gravatar = false

data source proxy whitelist (ip_or_domain:port separated by spaces)
;data_source_proxy_whitelist =

(suite sur la page suivante)

110 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

disable protection against brute force login attempts
;disable_brute_force_login_protection = false

set to true if you host Grafana behind HTTPS. default is false.
;cookie_secure = false

set cookie SameSite attribute. defaults to ‘lax‘. can be set to "lax", "strict",
→˓"none" and "disabled"
;cookie_samesite = lax

set to true if you want to allow browsers to render Grafana in a <frame>, <iframe>,
→˓<embed> or <object>. default is false.
;allow_embedding = false

Set to true if you want to enable http strict transport security (HSTS) response
→˓header.
This is only sent when HTTPS is enabled in this configuration.
HSTS tells browsers that the site should only be accessed using HTTPS.
The default version will change to true in the next minor release, 6.3.
;strict_transport_security = false

Sets how long a browser should cache HSTS. Only applied if strict_transport_
→˓security is enabled.
;strict_transport_security_max_age_seconds = 86400

Set to true if to enable HSTS preloading option. Only applied if strict_transport_
→˓security is enabled.
;strict_transport_security_preload = false

Set to true if to enable the HSTS includeSubDomains option. Only applied if strict_
→˓transport_security is enabled.
;strict_transport_security_subdomains = false

Set to true to enable the X-Content-Type-Options response header.
The X-Content-Type-Options response HTTP header is a marker used by the server to
→˓indicate that the MIME types advertised
in the Content-Type headers should not be changed and be followed. The default will
→˓change to true in the next minor release, 6.3.
;x_content_type_options = false

Set to true to enable the X-XSS-Protection header, which tells browsers to stop
→˓pages from loading
when they detect reflected cross-site scripting (XSS) attacks. The default will
→˓change to true in the next minor release, 6.3.
;x_xss_protection = false

#################################### Snapshots #################################
[snapshots]
snapshot sharing options
;external_enabled = true
;external_snapshot_url = https://snapshots-origin.raintank.io
;external_snapshot_name = Publish to snapshot.raintank.io

Set to true to enable this Grafana instance act as an external snapshot server and
→˓allow unauthenticated requests for
creating and deleting snapshots.

(suite sur la page suivante)

7.2. COTS 111

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

;public_mode = false

remove expired snapshot
;snapshot_remove_expired = true

############################## Dashboards History ##############################
[dashboards]
Number dashboard versions to keep (per dashboard). Default: 20, Minimum: 1
;versions_to_keep = 20

Minimum dashboard refresh interval. When set, this will restrict users to set the
→˓refresh interval of a dashboard lower than given interval. Per default this is 5
→˓seconds.
The interval string is a possibly signed sequence of decimal numbers, followed by a
→˓unit suffix (ms, s, m, h, d), e.g. 30s or 1m.
;min_refresh_interval = 5s

#################################### Users #####################################
[users]
disable user signup / registration
;allow_sign_up = true

Allow non admin users to create organizations
;allow_org_create = true

Set to true to automatically assign new users to the default organization (id 1)
;auto_assign_org = true

Set this value to automatically add new users to the provided organization (if auto_
→˓assign_org above is set to true)
;auto_assign_org_id = 1

Default role new users will be automatically assigned (if disabled above is set to
→˓true)
;auto_assign_org_role = Viewer

Require email validation before sign up completes
;verify_email_enabled = false

Background text for the user field on the login page
;login_hint = email or username
;password_hint = password

Default UI theme ("dark" or "light")
;default_theme = dark

External user management, these options affect the organization users view
;external_manage_link_url =
;external_manage_link_name =
;external_manage_info =

Viewers can edit/inspect dashboard settings in the browser. But not save the
→˓dashboard.
;viewers_can_edit = false

Editors can administrate dashboard, folders and teams they create
;editors_can_admin = false

(suite sur la page suivante)

112 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

[auth]
Login cookie name
;login_cookie_name = grafana_session

The lifetime (days) an authenticated user can be inactive before being required to
→˓login at next visit. Default is 7 days,
;login_maximum_inactive_lifetime_days = 7

The maximum lifetime (days) an authenticated user can be logged in since login time
→˓before being required to login. Default is 30 days.
;login_maximum_lifetime_days = 30

How often should auth tokens be rotated for authenticated users when being active.
→˓The default is each 10 minutes.
;token_rotation_interval_minutes = 10

Set to true to disable (hide) the login form, useful if you use OAuth, defaults to
→˓false
;disable_login_form = false

Set to true to disable the signout link in the side menu. useful if you use auth.
→˓proxy, defaults to false
;disable_signout_menu = false

URL to redirect the user to after sign out
;signout_redirect_url =

Set to true to attempt login with OAuth automatically, skipping the login screen.
This setting is ignored if multiple OAuth providers are configured.
;oauth_auto_login = false

OAuth state max age cookie duration. Defaults to 60 seconds.
;oauth_state_cookie_max_age = 60

limit of api_key seconds to live before expiration
;api_key_max_seconds_to_live = -1

################################## Anonymous Auth ##############################
[auth.anonymous]
enable anonymous access
;enabled = false

specify organization name that should be used for unauthenticated users
;org_name = Main Org.

specify role for unauthenticated users
;org_role = Viewer

#################################### Github Auth ###############################
[auth.github]
;enabled = false
;allow_sign_up = true
;client_id = some_id
;client_secret = some_secret
;scopes = user:email,read:org
;auth_url = https://github.com/login/oauth/authorize

(suite sur la page suivante)

7.2. COTS 113

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

;token_url = https://github.com/login/oauth/access_token
;api_url = https://api.github.com/user
;allowed_domains =
;team_ids =
;allowed_organizations =

#################################### GitLab Auth ###############################
[auth.gitlab]
;enabled = false
;allow_sign_up = true
;client_id = some_id
;client_secret = some_secret
;scopes = api
;auth_url = https://gitlab.com/oauth/authorize
;token_url = https://gitlab.com/oauth/token
;api_url = https://gitlab.com/api/v4
;allowed_domains =
;allowed_groups =

#################################### Google Auth ###############################
[auth.google]
;enabled = false
;allow_sign_up = true
;client_id = some_client_id
;client_secret = some_client_secret
;scopes = https://www.googleapis.com/auth/userinfo.profile https://www.googleapis.com/
→˓auth/userinfo.email
;auth_url = https://accounts.google.com/o/oauth2/auth
;token_url = https://accounts.google.com/o/oauth2/token
;api_url = https://www.googleapis.com/oauth2/v1/userinfo
;allowed_domains =
;hosted_domain =

#################################### Grafana.com Auth ##########################
[auth.grafana_com]
;enabled = false
;allow_sign_up = true
;client_id = some_id
;client_secret = some_secret
;scopes = user:email
;allowed_organizations =

#################################### Azure AD OAuth ############################
[auth.azuread]
;name = Azure AD
;enabled = false
;allow_sign_up = true
;client_id = some_client_id
;client_secret = some_client_secret
;scopes = openid email profile
;auth_url = https://login.microsoftonline.com/<tenant-id>/oauth2/v2.0/authorize
;token_url = https://login.microsoftonline.com/<tenant-id>/oauth2/v2.0/token
;allowed_domains =
;allowed_groups =

#################################### Okta OAuth ################################
[auth.okta]

(suite sur la page suivante)

114 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

;name = Okta
;enabled = false
;allow_sign_up = true
;client_id = some_id
;client_secret = some_secret
;scopes = openid profile email groups
;auth_url = https://<tenant-id>.okta.com/oauth2/v1/authorize
;token_url = https://<tenant-id>.okta.com/oauth2/v1/token
;api_url = https://<tenant-id>.okta.com/oauth2/v1/userinfo
;allowed_domains =
;allowed_groups =
;role_attribute_path =

#################################### Generic OAuth #############################
[auth.generic_oauth]
;enabled = false
;name = OAuth
;allow_sign_up = true
;client_id = some_id
;client_secret = some_secret
;scopes = user:email,read:org
;email_attribute_name = email:primary
;email_attribute_path =
;auth_url = https://foo.bar/login/oauth/authorize
;token_url = https://foo.bar/login/oauth/access_token
;api_url = https://foo.bar/user
;allowed_domains =
;team_ids =
;allowed_organizations =
;role_attribute_path =
;tls_skip_verify_insecure = false
;tls_client_cert =
;tls_client_key =
;tls_client_ca =

#################################### Basic Auth ################################
[auth.basic]
enabled = false

#################################### Auth Proxy ################################
[auth.proxy]
;enabled = false
;header_name = X-WEBAUTH-USER
;header_property = username
;auto_sign_up = true
;sync_ttl = 60
;whitelist = 192.168.1.1, 192.168.2.1
;headers = Email:X-User-Email, Name:X-User-Name
Read the auth proxy docs for details on what the setting below enables
;enable_login_token = false

################################## Auth LDAP ###################################
[auth.ldap]
;enabled = false
;config_file = /etc/grafana/ldap.toml
;allow_sign_up = true

(suite sur la page suivante)

7.2. COTS 115

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

LDAP backround sync (Enterprise only)
At 1 am every day
;sync_cron = "0 0 1 * * *"
;active_sync_enabled = true

################################## SMTP / Emailing #############################
[smtp]
;enabled = false
;host = localhost:25
;user =
If the password contains # or ; you have to wrap it with triple quotes. Ex """
→˓#password;"""
;password =
;cert_file =
;key_file =
;skip_verify = false
;from_address = admin@grafana.localhost
;from_name = Grafana
EHLO identity in SMTP dialog (defaults to instance_name)
;ehlo_identity = dashboard.example.com

[emails]
;welcome_email_on_sign_up = false
;templates_pattern = emails/*.html

#################################### Logging ###################################
[log]
Either "console", "file", "syslog". Default is console and file
Use space to separate multiple modes, e.g. "console file"
;mode = console file

Either "debug", "info", "warn", "error", "critical", default is "info"
level = {{ grafana.log_level | default('warn') }}

optional settings to set different levels for specific loggers. Ex filters =
→˓sqlstore:debug
;filters =

For "console" mode only
[log.console]
;level =

log line format, valid options are text, console and json
;format = console

For "file" mode only
[log.file]
;level =

log line format, valid options are text, console and json
;format = text

This enables automated log rotate(switch of following options), default is true
;log_rotate = true

Max line number of single file, default is 1000000
;max_lines = 1000000

(suite sur la page suivante)

116 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Max size shift of single file, default is 28 means 1 << 28, 256MB
;max_size_shift = 28

Segment log daily, default is true
;daily_rotate = true

Expired days of log file(delete after max days), default is 7
;max_days = 7

[log.syslog]
;level =

log line format, valid options are text, console and json
;format = text

Syslog network type and address. This can be udp, tcp, or unix. If left blank, the
→˓default unix endpoints will be used.
;network =
;address =

Syslog facility. user, daemon and local0 through local7 are valid.
;facility =

Syslog tag. By default, the process' argv[0] is used.
;tag =

#################################### Usage Quotas ##############################
[quota]
; enabled = false

set quotas to -1 to make unlimited.
limit number of users per Org.
; org_user = 10

limit number of dashboards per Org.
; org_dashboard = 100

limit number of data_sources per Org.
; org_data_source = 10

limit number of api_keys per Org.
; org_api_key = 10

limit number of orgs a user can create.
; user_org = 10

Global limit of users.
; global_user = -1

global limit of orgs.
; global_org = -1

global limit of dashboards
; global_dashboard = -1

global limit of api_keys
(suite sur la page suivante)

7.2. COTS 117

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

; global_api_key = -1

global limit on number of logged in users.
; global_session = -1

#################################### Alerting ##################################
[alerting]
Disable alerting engine & UI features
;enabled = true
Makes it possible to turn off alert rule execution but alerting UI is visible
;execute_alerts = true

Default setting for new alert rules. Defaults to categorize error and timeouts as
→˓alerting. (alerting, keep_state)
;error_or_timeout = alerting

Default setting for how Grafana handles nodata or null values in alerting.
→˓(alerting, no_data, keep_state, ok)
;nodata_or_nullvalues = no_data

Alert notifications can include images, but rendering many images at the same time
→˓can overload the server
This limit will protect the server from render overloading and make sure
→˓notifications are sent out quickly
;concurrent_render_limit = 5

Default setting for alert calculation timeout. Default value is 30
;evaluation_timeout_seconds = 30

Default setting for alert notification timeout. Default value is 30
;notification_timeout_seconds = 30

Default setting for max attempts to sending alert notifications. Default value is 3
;max_attempts = 3

Makes it possible to enforce a minimal interval between evaluations, to reduce load
→˓on the backend
;min_interval_seconds = 1

#################################### Explore ###################################
[explore]
Enable the Explore section
;enabled = true

############################ Internal Grafana Metrics ##########################
Metrics available at HTTP API Url /metrics
[metrics]
Disable / Enable internal metrics
;enabled = true
Graphite Publish interval
;interval_seconds = 10
Disable total stats (stat_totals_*) metrics to be generated
;disable_total_stats = false

#If both are set, basic auth will be required for the metrics endpoint.
; basic_auth_username =

(suite sur la page suivante)

118 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

; basic_auth_password =

Send internal metrics to Graphite
[metrics.graphite]
Enable by setting the address setting (ex localhost:2003)
;address =
;prefix = prod.grafana.%(instance_name)s.

############################# Grafana.com integration ##########################
Url used to import dashboards directly from Grafana.com
[grafana_com]
;url = https://grafana.com

############################## Distributed tracing #############################
[tracing.jaeger]
Enable by setting the address sending traces to jaeger (ex localhost:6831)
;address = localhost:6831
Tag that will always be included in when creating new spans. ex (tag1:value1,
→˓tag2:value2)
;always_included_tag = tag1:value1
Type specifies the type of the sampler: const, probabilistic, rateLimiting, or
→˓remote
;sampler_type = const
jaeger samplerconfig param
for "const" sampler, 0 or 1 for always false/true respectively
for "probabilistic" sampler, a probability between 0 and 1
for "rateLimiting" sampler, the number of spans per second
for "remote" sampler, param is the same as for "probabilistic"
and indicates the initial sampling rate before the actual one
is received from the mothership
;sampler_param = 1
Whether or not to use Zipkin propagation (x-b3- HTTP headers).
;zipkin_propagation = false
Setting this to true disables shared RPC spans.
Not disabling is the most common setting when using Zipkin elsewhere in your
→˓infrastructure.
;disable_shared_zipkin_spans = false

############################## External image storage ##########################
[external_image_storage]
Used for uploading images to public servers so they can be included in slack/email
→˓messages.
you can choose between (s3, webdav, gcs, azure_blob, local)
;provider =

[external_image_storage.s3]
;endpoint =
;path_style_access =
;bucket =
;region =
;path =
;access_key =
;secret_key =

[external_image_storage.webdav]
;url =
;public_url =

(suite sur la page suivante)

7.2. COTS 119

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

;username =
;password =

[external_image_storage.gcs]
;key_file =
;bucket =
;path =

[external_image_storage.azure_blob]
;account_name =
;account_key =
;container_name =

[external_image_storage.local]
does not require any configuration

[rendering]
Options to configure a remote HTTP image rendering service, e.g. using https://
→˓github.com/grafana/grafana-image-renderer.
URL to a remote HTTP image renderer service, e.g. http://localhost:8081/render,
→˓will enable Grafana to render panels and dashboards to PNG-images using HTTP
→˓requests to an external service.
;server_url =
If the remote HTTP image renderer service runs on a different server than the
→˓Grafana server you may have to configure this to a URL where Grafana is reachable,
→˓e.g. http://grafana.domain/.
;callback_url =
Concurrent render request limit affects when the /render HTTP endpoint is used.
→˓Rendering many images at the same time can overload the server,
which this setting can help protect against by only allowing a certain amount of
→˓concurrent requests.
;concurrent_render_request_limit = 30

[panels]
If set to true Grafana will allow script tags in text panels. Not recommended as it
→˓enable XSS vulnerabilities.
;disable_sanitize_html = false

[plugins]
;enable_alpha = false
;app_tls_skip_verify_insecure = false
Enter a comma-separated list of plugin identifiers to identify plugins that are
→˓allowed to be loaded even if they lack a valid signature.
;allow_loading_unsigned_plugins =

######################## Grafana Image Renderer Plugin #########################
[plugin.grafana-image-renderer]
Instruct headless browser instance to use a default timezone when not provided by
→˓Grafana, e.g. when rendering panel image of alert.
See ICU’s metaZones.txt (https://cs.chromium.org/chromium/src/third_party/icu/
→˓source/data/misc/metaZones.txt) for a list of supported
timezone IDs. Fallbacks to TZ environment variable if not set.
;rendering_timezone =

Instruct headless browser instance to use a default language when not provided by
→˓Grafana, e.g. when rendering panel image of alert.
Please refer to the HTTP header Accept-Language to understand how to format this
→˓value, e.g. 'fr-CH, fr;q=0.9, en;q=0.8, de;q=0.7, *;q=0.5'. (suite sur la page suivante)

120 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

;rendering_language =

Instruct headless browser instance to use a default device scale factor when not
→˓provided by Grafana, e.g. when rendering panel image of alert.
Default is 1. Using a higher value will produce more detailed images (higher DPI),
→˓but will require more disk space to store an image.
;rendering_viewport_device_scale_factor =

Instruct headless browser instance whether to ignore HTTPS errors during navigation.
→˓ Per default HTTPS errors are not ignored. Due to
the security risk it's not recommended to ignore HTTPS errors.
;rendering_ignore_https_errors =

Instruct headless browser instance whether to capture and log verbose information
→˓when rendering an image. Default is false and will
only capture and log error messages. When enabled, debug messages are captured and
→˓logged as well.
For the verbose information to be included in the Grafana server log you have to
→˓adjust the rendering log level to debug, configure
[log].filter = rendering:debug.
;rendering_verbose_logging =

Instruct headless browser instance whether to output its debug and error messages
→˓into running process of remote rendering service.
Default is false. This can be useful to enable (true) when troubleshooting.
;rendering_dumpio =

Additional arguments to pass to the headless browser instance. Default is --no-
→˓sandbox. The list of Chromium flags can be found
here (https://peter.sh/experiments/chromium-command-line-switches/). Multiple
→˓arguments is separated with comma-character.
;rendering_args =

You can configure the plugin to use a different browser binary instead of the pre-
→˓packaged version of Chromium.
Please note that this is not recommended, since you may encounter problems if the
→˓installed version of Chrome/Chromium is not
compatible with the plugin.
;rendering_chrome_bin =

Instruct how headless browser instances are created. Default is 'default' and will
→˓create a new browser instance on each request.
Mode 'clustered' will make sure that only a maximum of browsers/incognito pages can
→˓execute concurrently.
Mode 'reusable' will have one browser instance and will create a new incognito page
→˓on each request.
;rendering_mode =

When rendering_mode = clustered you can instruct how many browsers or incognito
→˓pages can execute concurrently. Default is 'browser'
and will cluster using browser instances.
Mode 'context' will cluster using incognito pages.
;rendering_clustering_mode =
When rendering_mode = clustered you can define maximum number of browser instances/
→˓incognito pages that can execute concurrently..
;rendering_clustering_max_concurrency =

(suite sur la page suivante)

7.2. COTS 121

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Limit the maxiumum viewport width, height and device scale factor that can be
→˓requested.
;rendering_viewport_max_width =
;rendering_viewport_max_height =
;rendering_viewport_max_device_scale_factor =

Change the listening host and port of the gRPC server. Default host is 127.0.0.1
→˓and default port is 0 and will automatically assign
a port not in use.
;grpc_host =
;grpc_port =

[enterprise]
Path to a valid Grafana Enterprise license.jwt file
;license_path =

[feature_toggles]
enable features, separated by spaces
;enable =

7.2.6.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start grafana-server

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop grafana-server

∙ Consultation des logs :

En tant qu’utilisateur root :

journalctl -u grafana-server

∙ Supervision du service

Grafana possède une IHM accessible via la « patte » d’administration.

Le port d’écoute (default : 3000) est modifiable via la variable grafana.http_port dans le fichier
environments/group_vars/all/cots_var.yml.

Vérifier l'API
http(s)://<adresse>:<grafana.http_port>/
Vérifier le port d'écoute. Ce commande devrait afficher le port en écoute: <grafana.
→˓http_port>
sudo ss -anp | grep grafana | grep LISTEN

∙ Exports

122 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Il est possible d’exporter les dashboards créés.

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

7.2.7 Kibana

7.2.7.1 Présentation

Kibana est l’outil permettant de représenter de façon agrégée des données stockées dans ElasticSearch.

Afin de forcer la bonne version de Kibana, VITAM déploie un installeur-chapeau vitam-kibana.

Prudence : le composant kibana ne peut se connecter qu’à un cluster ElasticSearch ; pour superviser les clusters
Elasticsearch de données et de log, il convient de définir des machines différentes (pour chaque kibana) durant
l’installation.

VITAM injecte des dashboards durant l’installation.

7.2.7.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Le playbook d’installation effectue des actions de modification du fichier de configuration standard /etc/kibana/
kibana.yml.

7.2.7.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start kibana

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop kibana

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Logs

Les logs applicatifs sont envoyés par rsyslog à la solution de centralisation des logs ; il est néanmoins possible d’en
versionner une représentation par la commande :

journalctl --unit kibana

∙ Supervision du service

Kibana possède une IHM accessible via la « patte » d’administration :

http(s) ://<adresse> :5601/

∙ Exports

7.2. COTS 123

VITAM - Documentation d’exploitation, Version 7.1.5

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

7.2.8 Log server

7.2.8.1 Présentation

Ce composant représente en réalité l’ensemble des 3 composants suivants :

∙ Kibana, pour la présentation des dashboards de logs et de métriques ;

∙ Logstash, pour l’analyse et la centralisation des logs ;

∙ Curator, pour la maintenance des index elasticsearch de log.

Le présent chapitre ne s’intéressera qu’à logstash.

7.2.8.2 Configuration / fichiers utiles

L’ansiblerie se charge du paramétrage de ces composants.

7.2.8.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root :

Pré-requis : le cluster elasticsearch associé est déjà démarré.

systemctl start logstash

∙ Arrêt du service

En tant qu’utilisateur root :

systemctl stop logstash

Post-requis : le cluster elasticsearch-log associé est arrêté.

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

N/A

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

124 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

batch Curator, actuellement purgeant les données de plus de XX jours (selon ce qui a été défini dans l’inventaire de
ansible) dans Elasticsearch de logs.

∙ cas des batches

Curator

7.2.9 MongoDB

Les composants vitam-mongos, vitam-mongoc et vitam-mongod sont des instances de la base de données
MongoDB et constituent les briques distribuées d’un cluster MongoDB. La base de données est utilisée pour stocker
les informations relatives aux archives hébergées dans Vitam.

Sous forme de cluster, elle est déployée en différentes instances :

∙ un cluster, nommé mongodb-data, stocke les métadonnées archivistiques (Unit, GOT) et les logbooks (LFC
Unit, LFC GOT, Opérations), ainsi que les données de sécurité, de référence et les rapports (identity, masterdata
et report).

∙ un cluster, par offre de stockage, nommé mongodb-offer, stocke les ordres d’écritures opérées sur les offres.
Pour l’offre froide, cette base contient aussi les données d’emplacement de stockage dans l’offre (bandes ma-
gnétiques).

Les requêtes émises par les composants Vitam sont réceptionnées par le composant mongos, qui communique avec le
composant mongoc afin de faire exécuter ces requêtes sur les composants mongod. La configuration et l’exploitation
de ces 3 composants est détaillée ci-après.

Un paragraphe détaille les différentes topologies de déploiement ainsi que les recommendations pour augmenter la
tolérance aux pannes du système. Un paragraphe détaille l’exploitation du cluster et notamment l’ajout de nouveaux
shards.

7.2.9.1 Service vitam-mongos

7.2.9.1.1 Présentation

Le composant vitam-mongos est le point d’accès frontal à une base de données MongoDB de Vitam. Il exécute les
requêtes envoyées par les composants Vitam, en communiquant avec le config server, représenté par l’ensemble
des services vitam-mongoc, afin de déterminer les Shards (concept détaillé ci-après) sur lesquels exécuter la
requête.

Pour assurer une haute disponibilité du service et répartir la charge des traitements du service mongos (majoritai-
rement induite par une étape de regroupement des données (SHARD_MERGE)), il est recommandé de déployer ce
service sur plusieurs machines. Les requêtes émises par les composants Vitam n’etant pas complexe et ne faisant pas
intervenir une forte volumétrie, la charge estimée sur ce composant est faible. Aussi, les ressources machines allouées
à ce service peuvent être réduites (par exemple 2 vCPU / 4Go RAM).

Note : les tests de performance du système ont montrés que la colocalisation des services vitam-mongos et vitam-
mongoc sur la même machine n’a pas d’impact.

7.2.9.1.2 Configuration / fichiers utiles

Les fichiers de configuration du composant vitam-mongos sont accessibles dans le répertoire /vitam/conf/
mongos.

7.2. COTS 125

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.9.1.2.1 Fichier mongos.conf

mongos.conf

for documentation of all options, see:
http://docs.mongodb.org/manual/reference/configuration-options/

where to write logging data.
systemLog:

destination: file
syslogFacility: local0
verbosity: {{ mongodb.verbosity | default(0) }}
traceAllExceptions: {{ mongodb.trace_all_exceptions | default('false') }}
logAppend: true
logRotate: reopen
path: {{ mongo_folder_log }}/mongos.log

network interfaces
net:

port: {{ mongodb.mongos_port }}
bindIp: {{ ip_service }}{% if groups['hosts_dev_tools'] | length > 0 and ip_service

→˓!= ip_admin %},{{ ip_admin }}{% endif %}

unixDomainSocket:
enabled: true
pathPrefix: {{ mongo_tmp_path }}
filePermissions: 0700

sharding:
configDB: configsvr/{% for item in mongoc_list %}{{ hostvars[item]['ip_service'] }}:

→˓{{ mongodb.mongoc_port }}{% if not loop.last %},{% endif %}{% endfor %}

During (re)initialization, authentication is temporarily disabled to ensure replica-
→˓set & user creation/update.
Authentication will be (re)enabled during mongo_configure role execution

7.2.9.1.2.2 Fichier keyfile

{{ mongodb[mongo_cluster_name].passphrase }}

7.2.9.1.2.3 Fichier de données

Ce composant n’utilise pas de fichiers de données.

7.2.9.1.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-mongos

126 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-mongos

∙ Consultation des logs du service :

En tant qu’utilisateur root :

journalctl -u vitam-mongos

∙ Accès au service pour réaliser un acte d’exploitation :

Depuis une machine ou l’utilitaire mongo est installé et pour laquelle le flux réseau vers le service
est ouvert. Le cas échéant, se connecter en ssh sur la machine pour utiliser l’utilitaire mongo en
spécifiant le hostname de la machine (pas localhost) :

mongo --host <hostname> --port 27017 --username vitamdb-admin --password <password> --
→˓authenticationDatabase admin

7.2.9.2 Service vitam-mongoc

7.2.9.2.1 Présentation

Le composant vitam-mongoc représente le service de configuration du cluster MongoDB déployé. Techniquement,
il s’agit d’une instance du serveur de la base de données MongoDB (processus mongod) qui détient des bases et
collections de configuration.

Prudence : Il est fortement recommandé de ne pas modifier ces collections, excepté lorsqu’un mode opératoire
Vitam le mentionne ou à la demande explicite de l’éditeur de la base MongoDB.

Ce composant est déployé sous forme de ReplicaSet, c’est à dire un groupe de serveurs qui détiennent les mêmes
données, afin de permettre une haute disponibilité du service ainsi qu’une réplication des données gérées.

A un instant donné, un serveur est identifié comme Master tandis que les autres serveurs sont identifiés comme
Slave. Un serveur est appellé membre (d’un ReplicaSet). La réplication des données est réalisée, au travers
d’une communication Master/Slave, sur les serveurs Slave, en reprenant les opérations (OpLog) réalisées sur le
serveur Master. Le serveur Master est nommé membre Primary et les serveurs Slave sont nommés membres
Secondary. Un mécanisme de vérification du statut d’un membre permet de gérer la haute disponibilité : si le
membre Primary devient indisponible, un membre Secondary sera élu pour devenir Primary. Ces concepts
sont utilisés dans la configuration du cluster.

Toutes les requêtes d’écriture sont réalisées uniquement sur le membre Primary, alors que les requêtes de lecture
peuvent aussi être réalisées sur les membres Secondary. Pour gérer la consistance de la donnée entre les membres
(concept eventual consistency), un mécanisme permet d’acquitter une écriture lorsque le membre Primary
a pris en compte l’écriture (écris dans les logs d’opérations), et éventuellement lorsque l’écriture a été répliquée sur
un, des ou l’ensemble des membres Secondary. Les requêtes Vitam sont executées avec ce mécanisme, configuré
pour qu’une majorité de membre retourne un acquittement (voir Write Concern valué à Majority). Le même
mécanisme existe pour les lectures, à savoir, qu’une lecture peut éventuellement être vérifiée sur plusieurs membres
afin d’assurer la consistance de la lecture. La encore, les requêtes Vitam sont executées avec ce mécasnime, configuré
pour qu’une majorité de membres confirme disposer de la même donnée (voir Read Concern valué à Majority).
Les paramètres Write Concern et Read Concern positionnés à Majority permettent de configurer le niveau

7.2. COTS 127

VITAM - Documentation d’exploitation, Version 7.1.5

de consistance d’un ReplicaSet en jouant uniquement sur le nombre de membres déployés dans un ReplicaSet.
Ces paramètres ne sont donc pas modifiables vis à vis des fichiers de paramétrage Vitam.

Le déploiement standard d’un ReplicaSet en production, est composé de 3 membres. Cet exemple de déploie-
ment est nommé PSS, pour illustrer la composition du ReplicaSet avec des membres Primary Secondary
Secondary. Avec cette topologie, les mécanismes pour garantir la consistance de la donnée (configurés avec la
valeur Majority) permettent de s’assurer que la donnée est pris en compte par 2 membres (sur les 3).

Note : cette configuration permet une tolérance aux pannes satisfaisante. Toutefois, il est possible d’améliorer cette
tolérance en ajoutant des membres. Consulter la documentation officielle pour plus de détail : https://docs.
mongodb.com/manual/core/replica-set-architectures/.

La charge estimée du service mongoc est faible, aussi les ressources machines allouées peuvent être réduites (par
exemple, 2 vCPU / 4 Go RAM).

Note : les tests de performance du système ont montrés que la colocalisation des services vitam-mongos et vitam-
mongoc sur la même machine n’a pas d’impact.

7.2.9.2.2 Configuration / fichiers utiles

Les fichiers de configuration du composant vitam-mongoc sont accessibles dans le répertoire /vitam/conf/
mongoc.

7.2.9.2.2.1 Fichier mongoc.conf

mongoc.conf

for documentation of all options, see:
http://docs.mongodb.org/manual/reference/configuration-options/

where to write logging data.
systemLog:

destination: file
syslogFacility: local0
verbosity: {{ mongodb.verbosity | default(0) }}
traceAllExceptions: {{ mongodb.trace_all_exceptions | default('false') }}
logAppend: true
logRotate: reopen
path: {{ mongo_folder_log }}/mongoc.log

Where and how to store data.
storage:

dbPath: {{ mongo_db_path }}
directoryPerDB: true

network interfaces
net:

port: {{ mongodb.mongoc_port }}
bindIp: {{ ip_service }}{% if groups['hosts_dev_tools'] | length > 0 and ip_service

→˓!= ip_admin %},{{ ip_admin }}{% endif %}

(suite sur la page suivante)

128 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

unixDomainSocket:
enabled: true
pathPrefix: {{ mongo_tmp_path }}
filePermissions: 0700

operationProfiling:
replication:

replSetName: configsvr # name of the replica set
enableMajorityReadConcern: true

sharding:
clusterRole: configsvr # role du shard

During (re)initialization, authentication is temporarily disabled to ensure replica-
→˓set & user creation/update.
Authentication will be (re)enabled during mongo_configure role execution

7.2.9.2.2.2 Fichier keyfile

{{ mongodb[mongo_cluster_name].passphrase }}

7.2.9.2.2.3 Fichier de données

Ce service utilise des fichiers de données localisés dans le répertoire /vitam/data/mongoc/db

7.2.9.2.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-mongoc

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-mongoc

∙ Consultation des logs :

En tant qu’utilisateur root :

journalctl -u vitam-mongoc

∙ Accès au service pour réaliser un acte d’exploitation :

Depuis une machine ou l’utilitaire mongo est installé et pour laquelle le flux réseau vers le service
est ouvert. Le cas échéant, se connecter en ssh sur la machine pour utiliser l’utilitaire mongo en
spécifiant le hostname de la machine (pas localhost) :

7.2. COTS 129

VITAM - Documentation d’exploitation, Version 7.1.5

mongo --host <hostname> --port 27018 --username vitamdb-localadmin --password
→˓<password> --authenticationDatabase admin

7.2.9.3 Service vitam-mongod

7.2.9.3.1 Présentation

Le composant vitam-mongod représente le service de données du cluster MongoDB déployé. Techniquement,
il s’agit d’une instance du serveur de la base de données MongoDB (processus mongod) qui détient les bases et
collections Vitam. Des bases et collections de configuration sont aussi présentes pour le fonctionnement de la solution
MongoDB.

Prudence : Il est fortement recommandé de ne pas modifier ces collections, excepté lorsqu’un mode opératoire
Vitam le mentionne ou à la demande explicite de l’éditeur de la base MongoDB.

Ce service est déployé, comme le service vitam-mongoc, sous forme de ReplicaSet (voir le paragraphe précé-
dent pour plus d’explication).

Pour gérer de grosses volumétries, les services mongod sont déployés de manière à pouvoir gérer un sous ensemble
de données, afin de répartir la charge d’utilisation. Ce concept est nommé Sharding et le ReplicaSet représente
alors un sous-ensemble des données gérées par le cluster (pour les collections dites shardées). Ce sous-ensemble est
nommé Shard et ce concept est utilisé dans la configuration du cluster. Une collection non shardée sera disponible
sur un unique Shard.

Dans Vitam, les collections des bases metadata et logbook de mongodb-data (exceptée la collection Operation) sont
shardées, car la dimension de leur volume est estimée importante (plusieurs millions ou milliards). Les collections
des bases identity, masterdata et report ne sont pas shardées.

Dans le cadre d’une offre « froide », la collection TapeAccessRequestReferential de la base offer de mongodb-offer
est également shardée. Les autres collections ne sont pas shardées.

Dans le cas de mongodb-data, les ressources machines allouées à ce service doivent être relativement importantes en
fonction de :

∙ la volumétrie et du débit des versements d’archives dans le système :
Plus le système est sollicité, notamment dans le cas du versement, plus les clusters MongoDB, et donc
les services vitam-mongod, sont sollicités. Les composants Vitam qui éméttent les requêtes vers le clus-
ter mongodb-data sont metadata, logbook et functional-administration. Vers le cluster
mongodb-offer, seul le composant offer émet les requêtes.
Le nombre de requêtes émises vers un cluster est dépendant du nombre de composant vitam-worker déployé
dans le système ainsi que du paramètre qui spécifie le nombre de worker exécutant une tâche Vitam au sein d’un
composant (Thread dans la jvm).
En fonction de la distribution des tâches, opérée dans le composant vitam-processing, du nombre de
versement en parallèle et du nombre d’unité archivistique par SIP, un certain nombre de worker vont émettre
des requêtes en parallèle.
Différentes optimisations ont été réalisées dans les tâches Vitam, pour notamment, diminuer le nombre de re-
quêtes vers les clusters MongoDB, en privilégiant une requête en mode bulk. Aussi, avec ces optimisations, les
services vitam-mongod sont bien plus sollicités. Toutefois, si le nombre d’unité archivistique positionnées
dans les SIP est trop faible, le nombre de requête par bulk est réduit. Les recommendations des paramètres et de
l’utilisation du système de manière efficiente sont détaillées dans un autre document.
Le nombre de vCPU disponible pour le service vitam-mongod influe sur les performances d’exécution en
parallèle des requêtes MongoDB. Dans le cas des versements, la sollicitation des clusters MongoDB est essen-
tiellement liée à des requêtes d’écriture. Dans ce mode, l’utilisation des index MongoDB ainsi que la lecture

130 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

des documents en base sont limitées. Et donc dans ce contexte, la quantité de RAM disponible pour les index et
pour les caches de document (workingSet MongoDB) ne doit pas être nécessairement importante.

∙ des fonctionnalités Vitam utilisées :
Le versement d’archive est une fonctionnalité importante du système pour laquelle la sollicitation des clusters
MongoDB est majoritairement liée à des requêtes d’écriture. D’autres fonctionnalités Vitam, comme la consul-
tation d’archives ou la réalisation de DIP, la sécurisation des opérations et données ingérées par le système,
ou tout autre traitement en masse qui nécessite un accès aux documents, sollicitent le cluster mongodb-data
avec des requêtes de lecture.
Dans Vitam, un paradigme d’architecture est posé et est respecté par l’ensemble des composants (sauf exceptions
cités ci-après) : toute requête sur les données qui nécessite un filtre sur les métadonnées, est executée dans
le moteur de recherche ElasticSearch, afin de récuperer une liste d’identifiants de documents à requêter dans
MongoDB. Ce pattern permet en outre de limiter le nombre d’index à créer dans MongoDB.
Aussi, dans le cas des accès aux documents, les performances seront réduites lorsque les identifiants des docu-
ments requêtés ne seront plus indexés en RAM (cas ou la quantité de RAM nécessaire pour contenir l’ensemble
des index en mémoire est insuffisante) et surtout lorsque le document ne sera plus disponible dans le cache. Si
les données ne sont plus disponibles en mémoire, le moteur MongoDB doit procéder à des lectures sur disque
en remplaçant les données les plus anciennes par les nouvellement lues. Ce mécasnime (evictions page)
est utilisé pour les index et les documents.
Le cas particulier des sécurisations, sollicitent les clusters MongoDB en lecture, sans passer par le moteur de
recherche (pour des raisons de sécurité et d’intégrité de la donnée). Elles utilisent un index supplémentaire
directement dans MongoDB. Aussi, dans ce contexte, pour assurer de bonnes performances à ces opérations,
il faut veiller à dimensionner le cache des documents suffisament important pour conserver les documents, et
index liés aux documents, qui ont été ingérés par le système et qui n’ont pas encore été sécurisés.
Par défaut, les sécurisations des cycles de vie des métadonnées archivistiques et des opérations Vitam sont
executées toutes les 2 ou 3 heures. Durant cette période, un versement d’un million d’AU nécessitera l’utilisation
d’un million de clé (identifiant Mongo et identifiant de sharding) dans les index, soit une centaine de Mo, et
nécessitera l’utilisation d’un million de documents dans le cache, soit 5,7 Go.
La quantité de RAM disponible pour le service vitam-mongod influe sur les performances d’exécution des
requêtes MongoDB. Dans le contexte des fonctionnalités citées, la quantité de RAM doit être importante. La
recommendation Vitam est d’allouer la quantité de RAM nécessaire pour traiter au minimum les sécurisations
des documents versées dans les dernières heures, afin de ne pas ralentir le système avec ces opérations. Par
exemple, pour des versements à 450.000 AU/h, les sécurisations LFC AU et GOT, et Opérations, nécessiteront
environ 12 Go de RAM (quantité répartie sur l’ensemble des Shards).

Dans le cas de mongodb-offer, les ressources machines allouées à ce service sont modérément élevés, excepté le cas
des offres froides où l’utilisation des ressources peut être plus conséquente, en fonction des traitements en cours.

Note : Par défaut, 50% de la RAM disponible est allouée au processus mongod pour gérer les index et caches de
document, de manière à laisser disponible en cache OS les données lues sur disque (blocs des fichiers de données
MongoDB).

Avertissement : Les performances du cluster MongoDB, en écriture ou lecture, restent dépendantes de la perfor-
mance des disques. Il est recommandé de privilégier une infrastructure avec des disques physiques attachés aux
machines qui déploient les services mongod. A défaut d’une telle configuration, il est recommandé d’octroyer la
meilleure qualité de service de l’offre disque utilisée (débit ou priorité d’accès).

7.2.9.3.2 Configuration / fichiers utiles

Les fichiers de configuration du composant vitam-mongod sont accessibles dans le répertoire /vitam/conf/
mongod.

7.2. COTS 131

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.9.3.2.1 Fichier mongod.conf

mongod.conf

for documentation of all options, see:
http://docs.mongodb.org/manual/reference/configuration-options/

where to write logging data.
systemLog:

destination: file
syslogFacility: local0
verbosity: {{ mongodb.verbosity | default(0) }}
traceAllExceptions: {{ mongodb.trace_all_exceptions | default('false') }}
logAppend: true
logRotate: reopen
path: {{ mongo_folder_log }}/mongod.log

Where and how to store data.
storage:

dbPath: {{ mongo_db_path }}
directoryPerDB: true

{% if mongod_memory is defined and mongod_memory != '' %}
wiredTiger:
engineConfig:

cacheSizeGB: {{ mongod_memory }}
{% endif %}

network interfaces
net:

port: {{ mongodb.mongod_port }}
bindIp: {{ ip_service }}{% if groups['hosts_dev_tools'] | length > 0 and ip_service

→˓!= ip_admin %},{{ ip_admin }}{% endif %}

unixDomainSocket:
enabled: true
pathPrefix: {{ mongo_tmp_path }}
filePermissions: 0700

operationProfiling:
replication:

replSetName: shard{{ mongo_shard_id }} # name of the replica set
enableMajorityReadConcern: true

sharding:
clusterRole: shardsvr # role du shard

During (re)initialization, authentication is temporarily disabled to ensure replica-
→˓set & user creation/update.
Authentication will be (re)enabled during mongo_configure role execution

7.2.9.3.2.2 Fichier keyfile

{{ mongodb[mongo_cluster_name].passphrase }}

132 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.9.3.2.3 Fichier de données

Ce service utilise des fichiers de données localisés dans le répertoire /vitam/data/mongod/db

7.2.9.3.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-mongod

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-mongod

∙ Consultation des logs :

En tant qu’utilisateur root :

journalctl -u vitam-mongod

∙ Accès au service pour réaliser un acte d’exploitation :

Depuis une machine ou l’utilitaire mongo est installé et pour laquelle le flux réseau vers le service
est ouvert. Le cas échéant, se connecter en ssh sur la machine pour utiliser l’utilitaire mongo en
spécifiant le hostname de la machine (pas localhost) :

mongo --host <hostname> --port 27019 --username vitamdb-localadmin --password
→˓<password> --authenticationDatabase admin

7.2.9.4 Topologies de déploiement et tolérance aux pannes

7.2.9.4.1 Présentation

Les clusters MongoDB déployés dans la solution Vitam sont par défaut, et obligatoirement, configurés pour sup-
porter le sharding des bases de données metadata, logbook et offer. Aussi, les composants vitam-mongos,
vitam-mongoc et vitam-mongod sont configurés pour fonctionner ensemble. Le déploiement automatique d’une
mono-instance MongoDB (un seul et unique serveur mongod) n’est pas supporté.

Les topologies de déploiement des services mongos, ainsi que des ReplicaSet des services mongoc et mongod,
restent à la main de l’administrateur technique Vitam. Les choix sont réalisés lors de l’installation de la solution Vitam,
mais peuvent être modifiés à posteriori (avec potentiellement des temps de migration de données à prévoir).

Le nombre de composants vitam-mongos peut varier au cours de l’utilisation du système sans contrainte particu-
lière. Le nombre de Shards déployés, lui par contre, s’il varie, impliquera des migrations de données, réalisées en
tâche de fond. Les choix opérés par les concepteurs de la base de données MongoDB ne peuvent pas être modifiés
mais permettent une migration sans altérer les performances du système. Un paragraphe entier détaille ce scénario
ainsi que les contraintes et temps nécessaires à la réalisation complète de l’opération.

Le nombre de composants par ReplicaSet des services mongoc et mongod reste aussi un choix à la main de
l’administrateur technique et peut aussi varier dans le temps. Il est aussi assujetti à une opération plus ou moins longue

7.2. COTS 133

VITAM - Documentation d’exploitation, Version 7.1.5

de synchronisation des données. Il est important de respecter la contrainte MongoDB concernant le choix du nombre
de membres d’un ReplicaSet. Pour des raisons liées à l’algorithme de l’élection d’un membre primaire, parmis les
membres d’un ReplicaSet (cf. documentation officielle 17), ce nombre doit être impair.

La tolérance aux pannes est directement liée au choix du nombre de membres déployés par ReplicaSet et particu-
lièrement à la redondance physique des composants et équipements réseaux qui assurent la communication entre eux.
Aussi, le coût de déploiement, en ressources matérielles, est extrêmement lié au niveau de tolérance selectionné. Étant
donné, la consommation importante de ressources matérielles par les services MongoDB (notamment en RAM), une
option est laissée à la main de l’administrateur technique, pour configurer un ReplicaSet dans un mode particulier,
nommé PSSmin, sans modifier le niveau de tolérance aux pannes. Ce point est détaillé ci-après.

Dans Vitam, la gestion du risque de la perte de données est centralisée au niveau des offres. Si un incident intervient
sur le cluster mongodb-data provoquant une perte totale du service, un processus de reconstruction est prévu. Tou-
tefois, il est important de noter que ce processus nécessite un temps relativement important, fonction de la volumétrie
des données dans le système. Un autre processus de reconstruction du cluster mongodb-offer est prévu mais uni-
quement pour les offres chaudes. Dans le cas d’une offre froide, la reconstruction du cluster est réalisée par l’opération
de restoration de la dernière sauvegarde réalisée sur le cluster.

7.2.9.4.2 Déploiement d’un cluster de développement

En environnement de développement, la tolérance aux pannes, ainsi que la performance du système testé, ne sont pas
attendues. Il est donc possible de déployer un cluster minimaliste, constitué d’un composant par type et associé à des
ressources machines minimales. La configuration minimum pour un service mongoDB est de 1 vCPU et 512 Mo de
RAM. Il est possible de colocaliser les trois services vitam-mongos, vitam-mongoc et vitam-mongod sur la
même machine en prévoyant 1 vCPU et 2 Go de RAM.

Pour réaliser le déploiement du cluster mongodb-data sur une seule machine, l’inventaire ansible doit
référencer la même machine pour chacun des groupes hosts-mongos-data, hosts-mongoc-data et
hosts-mongod-data. Bien qu’il n’y ait qu’un seul Shard et qu’un membre par ReplicaSet, le paramètres
mongo_rs_bootstrap et mongo_shard_id sont attendus. Ces paramètres sont détaillés dans le paragraphe qui
suit.

Exemple

[hosts-mongodb-data:children]
hosts-mongos-data
hosts-mongoc-data
hosts-mongod-data

[hosts-mongos-data]
host1.vm mongo_cluster_name=mongodb-data

[hosts-mongoc-data]
host1.vm mongo_cluster_name=mongodb-data mongo_rs_bootstrap=true

[hosts-mongod-data]
host1.vm mongo_cluster_name=mongodb-data mongo_shard_id=0 mongo_rs_bootstrap=true

Le déploiement d’un cluster mongodb-offer suit les mêmes règles que l’exemple illustré ci-dessus (les groupes
ansible ne sont pas les mêmes).

17. https://docs.mongodb.com/manual/core/replica-set-elections/

134 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

https://docs.mongodb.com/manual/core/replica-set-elections/

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.9.4.3 Déploiement d’un cluster de production

En environnement de production, la tolérance aux pannes doit être prévue. Avec trois membres par ReplicaSet,
le niveau de tolérance aux pannes est satisfaisant : si le noeud primaire n’est plus disponible, le système provoque
une élection au sein du ReplicaSet, permettant alors à un noeud secondaire de devenir noeud primaire. Dans
cette situation, si le nouveau noeud primaire devient indisponible, il ne restera plus qu’un seul noeud disponible pour
disposer d’un noeud primaire et la situation devient alors critique (par rapport à la disponibilité de la donnée). Pour
autant, dans le cas ou un noeud primaire et un seul noeud secondaire sont disponibles, la consistance de la donnée
n’est potentiellement plus assurée, puisque les mécanismes configurés avec la valeur Majority ne permettent plus
une vérification de la réplication : la majorité correspond à un membre, et donc uniquement le membre Primary
acquitera l’écriture. Aussi, dans ce cas, si le membre primaire devient indisponible après une écriture et avant la
réplication, lorsque le dernier membre disponible devient primaire, l’écriture n’a pas été répliquée. Dans le cas nominal
ou les deux membres secondaires étaient disponibles, c’est le membre qui a réalisé l’acquitement de la replication qui
devient primaire (dans les faits, le membre secondaire le plus à jour vis à vis de la réplication) et alors l’écriture a bien
été prise en compte.

Une tolérance aux pannes plus importante peut être mise en place en déployant un quatrième membre. Et afin de res-
pecter un nombre impair de membres déployés, il est possible de déployer un cinquième membre qui ne consomme pas
autant de ressources matérielles qu’un membre actif et dont la responsabilité n’est d’intervenir que dans l’élection d’un
noeud primaire. Ce type de membre est nommé membre Arbiter. La topologie de déploiement du ReplicaSet
est alors nommée PSSSA, pour illustrer le déploiement d’un membre Primary, de 3 membres Secondary et d’un
membre Arbiter.

L’indisponibilité d’un noeud peut être liée à différentes causes : un problème matériel provoquant un crash du pro-
cessus, mais pour lequel le service sera redémarré automatiquement suite à l’incident (faute de mémoire, faute d’accès
disque durant l’écriture, . . .) ; ou un problème matériel important provoquant la perte de la machine physique et pour
lequel le service ne pourra pas redémarrer (provisionning virtuel, coupure éléctrique, . . .). Aussi, il est important de
déployer les membres d’un replicaSet dans des zones matérielles différentes. Dans le cas, d’un environnement vir-
tuel opéré physiquement par différentes machines, il est opportun de spécifier un provisionning physique afin d’assurer
une répartition physique des machines.

Pour augmenter véritablement la tolérance aux pannes, en plus d’augmenter le nombre de membre d’un ReplicaSet
correctement réparti physiquement, il est recommandé de déployer un environnement de production constitué de deux
salles physiquement indépendantes (alimentation éléctrique, droits d’accès, . . .) et pour lesquelles les communications
réseaux sont autorisées et resteront performantes. Il s’agit bien la, de discerner le cas du site secondaire prévu dans
le système Vitam, notamment pour gérer la criticité de la perte d’une offre de stockage. Dans ce scénario, il est
recommandé que ce second site soit géographiquement distant du premier, de plusieurs dizaines de kilomètres. Aussi,
les performances réseaux entre les deux sites pourraient être insuffisante au regard des performances attendues dans le
cluster MongoDB.

Pour réaliser le déploiement du cluster mongodb-data, en mode PSS, composé de 3 machines hebergeant les ser-
vices vitam-mongos et vitam-mongoc et de 6 machines hebergeant le service vitam-mongod (pour disposer
de 2 Shards), l’inventaire ansible doit référencer les 3 premières machines pour les groupes hosts-mongos-data
et hosts-mongoc-data et les 6 autres machines pour le groupe hosts-mongod-data. Le paramètre
mongo_shard_id spécifie le regroupement des machines dans le même ReplicaSet et identifie un numéro
de Shard. Le paramètre mongo_rs_bootstrap spécifie la machine sur laquelle l’initialisation du ReplicaSet
sera réalisée (voir command rs.initiate()). Les autres machines du ReplicaSet y seront alors ajoutées (voir com-
mande rs.add()).

Exemple

[hosts-mongodb-data:children]
hosts-mongos-data
hosts-mongoc-data
hosts-mongod-data

(suite sur la page suivante)

7.2. COTS 135

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

[hosts-mongos-data]
host1.vm mongo_cluster_name=mongodb-data
host2.vm mongo_cluster_name=mongodb-data
host3.vm mongo_cluster_name=mongodb-data mongo_rs_bootstrap=true

[hosts-mongoc-data]
host1.vm mongo_cluster_name=mongodb-data
host2.vm mongo_cluster_name=mongodb-data
host3.vm mongo_cluster_name=mongodb-data mongo_rs_bootstrap=true

[hosts-mongod-data]
host4.vm mongo_cluster_name=mongodb-data mongo_shard_id=0
host5.vm mongo_cluster_name=mongodb-data mongo_shard_id=0
host6.vm mongo_cluster_name=mongodb-data mongo_shard_id=0 mongo_rs_bootstrap=true
host7.vm mongo_cluster_name=mongodb-data mongo_shard_id=1
host8.vm mongo_cluster_name=mongodb-data mongo_shard_id=1
host9.vm mongo_cluster_name=mongodb-data mongo_shard_id=1 mongo_rs_bootstrap=true

Le déploiement d’un cluster mongodb-offer en mode PSS suit les mêmes règles que l’exemple illustré ci-dessus
(les groupes ansible ne sont pas les mêmes).

7.2.9.4.4 Déploiement d’un cluster de production avec réduction de la RAM

Le déploiement d’un cluster mongoDB, pour gérer de forte volumétrie avec les performances initiales estimées et une
tolérance aux pannes satisfaisante, va s’avérer gourmand en ressource matérielle.

Par exemple, pour gérer un milliard d’AU dans le système, avec une performance de versement estimée à 450.000
AU par heure, et une tolérance aux pannes fondée sur l’utilisation de 3 membres par ReplicaSet, il est estimé le
besoin de 960 Go de RAM (donnée extrapolée à partir d’un environnement chargé à 200 millions d’AU avec 4 Shards
constitués de machines 4 vCPU / 16 Go RAM).

Si le coût d’une telle infrastructure ne peut pas être supportée, il est possible de diminuer l’allocation RAM sur un
membre par ReplicaSet. Le principe étant de conserver une haute disponibilité (et une consistance des données),
à performance constante, avec deux membres dont les ressources physiques le permettent. Le troisième membre, dont
les ressources ont été abaissées au minimum, est configuré pour ne pas être prioritaire à l’élection d’un noeud primaire.
Dans le cas d’une indisponibilité des deux premiers membres, le service reste assuré (avec niveau de tolérance aux
pannes toujours équivalent à 3 membres) mais dont les performances initiales ne sont plus assurées.

Pour réaliser le déploiement du cluster mongodb-data, en mode PSSmin, composé de 3 machines
hebergeant les services vitam-mongos et vitam-mongoc et de 6 machines hebergeant le service
vitam-mongod (pour disposer de 2 Shards), l’inventaire ansible doit référencer les 3 premières machines
pour les groupes hosts-mongos-data et hosts-mongoc-data et les 6 autres machines pour le groupe
hosts-mongod-data. Parmis les 3 machines de chaque replicaSet, la machine qui est déployée avec les
ressources matérielles minimum, doit être suivi du paramètre is_small=true.

Exemple

[hosts-mongodb-data:children]
hosts-mongos-data
hosts-mongoc-data
hosts-mongod-data

[hosts-mongos-data]
host1.vm mongo_cluster_name=mongodb-data
host2.vm mongo_cluster_name=mongodb-data

(suite sur la page suivante)

136 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

host3.vm mongo_cluster_name=mongodb-data mongo_
→˓rs_bootstrap=true

[hosts-mongoc-data]
host1.vm mongo_cluster_name=mongodb-data
host2.vm mongo_cluster_name=mongodb-data
host3.vm mongo_cluster_name=mongodb-data mongo_
→˓rs_bootstrap=true

[hosts-mongod-data]
host4.vm mongo_cluster_name=mongodb-data mongo_shard_id=0
host5.vm mongo_cluster_name=mongodb-data mongo_shard_id=0 is_small=true
host6.vm mongo_cluster_name=mongodb-data mongo_shard_id=0 mongo_
→˓rs_bootstrap=true
host7.vm mongo_cluster_name=mongodb-data mongo_shard_id=1
host8.vm mongo_cluster_name=mongodb-data mongo_shard_id=1 is_small=true
host9.vm mongo_cluster_name=mongodb-data mongo_shard_id=1 mongo_
→˓rs_bootstrap=true

Le déploiement d’un cluster mongodb-offer en mode PSSmin suit les mêmes règles que l’exemple illustré ci-
dessus (les groupes ansible ne sont pas les mêmes).

7.2.9.5 Exploitation d’un cluster MongoDB

7.2.9.5.1 Extension du cluster : ajouter un ou n Shards

Lorsque la volumétrie des données gérées par un seul Shard devient trop importante, il faut ajouter de nouveaux
Shards dans le cluster. Des lors que les nouveaux Shards sont opérationnels, une opération de migration des
données (voir balancing) est réalisée en tâche de fond afin d’équilibrer l’ensemble des Shards.

Les éléments déplacés entre Shard sont des regroupements de données par collection. Ce regroupement est nommé
Chunk et le composant MongoDB qui réalise ce déplacement est nommé balancer.

Le mécanisme interne du balancer n’est pas paramétrable. Une opération de transfert de Chunk est réalisée exclu-
sivement entre un Shard et un autre Shard. Si le cluster contient 4 Shards, 2 opérations, au maximum, pourront
être réalisées en parallèle à un instant donné.

Note : il est recommandé de favoriser un grand nombre de Shards (avec un nombre pair), déployés sur des “petites”
machines, afin de favoriser le re-équilibrages des Shards.

Note : Dans Vitam, les clés de Sharding implémentées permettent une répartition uniforme des données. En régime
de croisière, les Shards n’ont donc pas besoin d’être équilibrés et l’opération de balancing ne devrait pas logué
une activité.

Pour ajouter un nouveau Shard au cluster, il faut exécuter les opérations suivantes :

∙ Créer les machines qui seront utilisées comme membre des nouveaux shards.

∙ Ajouter ces machines dans le fichier d’inventaire ansible.

∙ se connecter à un service vitam-mongos :
Depuis une machine ou l’utilitaire mongo est installé et pour laquelle le flux réseau vers le service est ouvert.
Le cas échéant, se connecter en ssh sur la machine pour utiliser l’utilitaire mongo en spécifiant le hostname de
la machine (pas localhost) :

7.2. COTS 137

VITAM - Documentation d’exploitation, Version 7.1.5

mongo --host <hostname> --port 27017 --username vitamdb-admin --password <password> --
→˓authenticationDatabase admin

∙ Vérifier l’état du sharding dans le cluster en tappant la commande suivante :

sh.status()

La commande retourne un ensemble d’informations dont 2 sont importantes pour cette opération d’ex-
ploitation. La première détaille la composition des shards opérationnels, dont voici un exemple :

shards:
{ "_id" : "shard0", "host" : "shard0/<ipMember1>:27019,<ipMember2>:27019,

→˓<ipMember3>:27019", "state" : 1 }
{ "_id" : "shard1", "host" : "shard1/<ipMember1>:27019,<ipMember2>:27019,

→˓<ipMember3>:27019", "state" : 1 }

La seconde détaille les activités de balancing des Chunks, dont voici un exemple :

balancer:
Currently enabled: yes
Currently running: no
Failed balancer rounds in last 5 attempts: 0
Last reported error:
Time of Reported error: Tue Jul 30 2019 09:05:45 GMT+0000 (UTC)
Migration Results for the last 24 hours:

No recent migrations

Dans ces informations, on constate que le service de balancing est actif et qu’aucune migration n’est
en cours. De plus, aucune migration n’a été réalisée au cours des dernières 24 heures.

∙ Ajouter les shards en récupérant les adresses Ip de chacun des membres, en conservant le regroupement qui a
été configuré dans l’ansiblerie Vitam, et en executant la commande suivante pour chaque shard :

sh.addShard("shard2/<ipMember1>:27019,<ipMember2>:27019,<ipMember3>:27019")

∙ Vérifier que le balancing a démarré en récupérant l’état du sharding via la commande :

sh.status()

Voici un exemple d’information que l’on peut récupérer :

balancer:
Currently enabled: yes
Currently running: yes
Collections with active migrations:

logbook.LogbookLifeCycleObjectGroup started at Wed Jul 31 2019 12:43:19
→˓GMT+0000 (UTC)

Failed balancer rounds in last 5 attempts: 0
Migration Results for the last 24 hours:

22 : Success

138 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Note : cette opération a été testée dans l’environnement de performance Vitam, qui contenait environ 200 millions
d’AU. Le temps de migration des Chunks depuis les 2 Shards existants vers les 2 nouveaux Shards a été d’une
trentaine de jours.

7.2.10 Prometheus

Les composants ci-dessous sont des services de la solution de supervision Prometheus.

∙ Le composant vitam-prometheus dispose d’une base de donnée dans laquelle les métriques à collecter
seront stockées.

∙ Le compodant vitam-alertmanager gère tout ce qui est alerting.

∙ Le composant vitam-node-exporter permet d’exposer des métriques liées au matériel et au noyau du
système.

∙ Le composant vitam-elasticsearch-exporter permet d’exposer des métriques liées à Elasticsearch.

Les composants vitam-prometheus et vitam-alertmanager sont optionnels. Une entitée utilisant la solution
VITAM et disposant déjà de sa propre solution de supervision peut récupérer les métriques en utilisant les API exposées
par VITAM.

Pour se faire, un playbook est proposé pour générer la configuration Prometheus depuis l’environnement de la solution
VITAM.

Un paragraphe dans la documentation du composant Prometheus détaille comment générer cette configuration, l’enri-
chir des règles d’alerte et l’intégrer dans un serveur Prometheus déjà existant.

7.2.10.1 Prometheus

7.2.10.1.1 Présentation

Important : L’utilisation d’une solution de monitoring (Prometheus ou autre) est critique pour le suivi du bon fonc-
tionnement de Vitam dans un environnement de production.

Note : Dans le cas d’utilisation d’une offre froide, le déploiement de Prometheus (+ Grafana) est fortement recom-
mandé pour le monitoring des métriques de l’offre froide. Un dashboard dédié est disponible sur Grafana.

Le composant optionnel vitam-prometheus permet de stocker et visualiser les métriques techniques et métier
collectées depuis les différents composants de la solution VITAM. Il permet aussi d’explorer les données en appliquant
différentes fonctions statistiques.

La solution VITAM, par défaut, déploie une seule instance de ce service. Veuillez vous référer à la documentation
officielle prometheus pour pouvoir scaler le déploiement de cet outil.

7.2.10.1.2 Configuration / fichiers utiles

7.2.10.1.2.1 Fichier de configuration

prometheus.yml

7.2. COTS 139

VITAM - Documentation d’exploitation, Version 7.1.5

my global config
global:

scrape_interval: {{ prometheus.server.scrape_interval | default(15) }}s # Set
→˓the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: {{ prometheus.server.evaluation_interval | default(15) }}s #

→˓Evaluate rules every 15 seconds. The default is every 1 minute.
scrape_timeout is set to the global default (10s).

Alertmanager configuration
alerting:

alertmanagers:
- static_configs:
- alertmanager:9093

{% for host in groups['hosts_alertmanager'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.alertmanager.api_port |
→˓default(9093) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}

Load rules once and periodically evaluate them according to the global 'evaluation_
→˓interval'.
rule_files:

- rule.yml
{% for item in rules_files.files %}

- {{ item.path }}
{% endfor %}

scrape_configs:
{% if prometheus.node_exporter.enabled | default(true) | bool == true %}

- job_name: vitam-node-exporter
metrics_path: {{ prometheus.node_exporter.metrics_path | default('/metrics') }}
static_configs:

{% for host in groups['vitam'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.node_exporter.port |
→˓default(9101) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% if host in groups['hosts_elasticsearch_data'] %}
elastic_cluster_name: "{{ elasticsearch.data.cluster_name }}"

{% elif host in groups['hosts_elasticsearch_log'] %}
elastic_cluster_name: "{{ elasticsearch.log.cluster_name }}"

{% endif %}
{% endfor %}
{% endif %}

{% if prometheus.consul_exporter.enabled | default(true) | bool == true %}
- job_name: vitam-consul-exporter
metrics_path: {{ prometheus.consul_exporter.metrics_path | default('/metrics') }}
static_configs:

{% for host in groups['vitam'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.consul_exporter.port |
→˓default(9107) }}

labels:

(suite sur la page suivante)

140 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

hostname: "{{ host.split(".")[0] }}"
{% endfor %}
{% endif %}

{% if prometheus.elasticsearch_exporter.enabled | default(true) | bool == true %}
- job_name: vitam-elasticsearch-exporter
metrics_path: {{ prometheus.elasticsearch_exporter.metrics_path | default('/

→˓metrics') }}
static_configs:

{% for host in groups['elasticsearch'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.elasticsearch_exporter.port |
→˓default(9114) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_access_internal']|length >0) %}
- job_name: vitam-access-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_access_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.accessinternal.port_admin |
→˓default(28101) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_access_external']|length >0) %}
- job_name: vitam-access-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_access_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.accessexternal.port_admin |
→˓default(28102) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ingest_internal']|length >0) %}
- job_name: vitam-ingest-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ingest_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ingestinternal.port_admin |
→˓default(28100) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

(suite sur la page suivante)

7.2. COTS 141

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% if (groups['hosts_ingest_external']|length >0) %}
- job_name: vitam-ingest-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ingest_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ingestexternal.port_admin |
→˓default(28001) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_metadata']|length >0) %}
- job_name: vitam-metadata
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_metadata'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.metadata.port_admin |
→˓default(28200) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ihm_demo']|length >0) %}
- job_name: vitam-ihm-demo
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ihm_demo'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ihm_demo.port_admin |
→˓default(28002) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ihm_recette']|length >0) %}
- job_name: vitam-ihm-recette
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ihm_recette'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ihm_recette.port_admin |
→˓default(28204) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_logbook']|length >0) %}
- job_name: vitam-logbook
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_logbook'] %}
(suite sur la page suivante)

142 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- targets:
- {{ hostvars[host]['ip_admin'] }}:{{ vitam.logbook.port_admin | default(29002)

→˓}}
labels:

hostname: "{{ host.split(".")[0] }}"
{% endfor %}
{% endif %}

{% if (groups['hosts_workspace']|length >0) %}
- job_name: vitam-workspace
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_workspace'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.workspace.port_admin |
→˓default(28201) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_processing']|length >0) %}
- job_name: vitam-processing
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_processing'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.processing.port_admin |
→˓default(28203) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_worker']|length >0) %}
- job_name: vitam-worker
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_worker'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.worker.port_admin | default(29104) }
→˓}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_storage_engine']|length >0) %}
- job_name: vitam-storage-engine
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_storage_engine'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.storageengine.port_admin |
→˓default(29102) }}

labels:
hostname: "{{ host.split(".")[0] }}"

(suite sur la page suivante)

7.2. COTS 143

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% endfor %}
{% endif %}

{% if (groups['hosts_storage_offer_default']|length >0) %}
{% set offerInstances = [] %}
{% for host in groups['hosts_storage_offer_default'] %}
{{ offerInstances.append({"offerId": hostvars[host]['offer_conf'], "host": host }) }}
{% endfor %}

- job_name: vitam-storage-offer-default
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for offerId, hosts in offerInstances | groupby('offerId') %}
{% for host in hosts %}

- targets:
- {{ hostvars[host.host]['ip_admin'] }}:{{ vitam.storageofferdefault.port_admin

→˓| default(29900) }}
labels:

offerId: {{ offerId }}
hostname: "{{ host.host }}"

{% endfor %}
{% endfor %}
{% endif %}

{% if (groups['hosts_functional_administration']|length >0) %}
- job_name: vitam-functional-administration
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_functional_administration'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.functional_administration.port_
→˓admin | default(18004) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_metadata_collect']|length >0) %}
- job_name: vitam-metadata-collect
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_metadata_collect'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.metadata_collect.port_admin |
→˓default(28290) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_workspace_collect']|length >0) %}
- job_name: vitam-workspace-collect
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_workspace_collect'] %}
(suite sur la page suivante)

144 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- targets:
- {{ hostvars[host]['ip_admin'] }}:{{ vitam.workspace_collect.port_admin |

→˓default(28291) }}
labels:

hostname: "{{ host.split(".")[0] }}"
{% endfor %}
{% endif %}

{% if (groups['hosts_collect_internal']|length >0) %}
- job_name: vitam-collect-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_collect_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.collect_internal.port_admin |
→˓default(28038) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_collect_external']|length >0) %}
- job_name: vitam-collect-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_collect_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.collect_external.port_admin |
→˓default(28030) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_scheduler']|length >0) %}
- job_name: vitam-scheduler
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_scheduler'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.scheduler.port_admin |
→˓default(28799) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if prometheus.blackbox_exporter.enabled | bool %}
- job_name: vitam-blackbox
metrics_path: /probe
params:

module:
- http_2xx

relabel_configs:
- source_labels:

- __address__
(suite sur la page suivante)

7.2. COTS 145

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

regex: ([^,]*),(.*)
replacement: $1
target_label: __param_target

- source_labels:
- __address__
target_label: instance

- source_labels:
- __address__
regex: ([^,]*),(.*)
replacement: $2
target_label: instance

- source_labels:
- __address__
regex: ([^,]*),(.*)
replacement: $1
target_label: addresse

- target_label: __address__
replacement: localhost:9115

static_configs:
- targets:

{% for target in prometheus.blackbox_exporter.targets %}
- {{ target }}

{% endfor %}
{% endif %}

{% if prometheus.mongodb_exporter.enabled | default(true) | bool %}
{% if (groups['hosts_mongoc_data']|length >0) %}

- job_name: vitam-mongoc-data
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongoc_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongoc |
→˓default(9216) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongoc-data
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

{% if (groups['hosts_mongod_data']|length >0) %}
- job_name: vitam-mongod-data
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongod_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongod |
→˓default(9217) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongod-data
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

{% if (groups['hosts_mongoc_offer']|length >0) %}
(suite sur la page suivante)

146 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- job_name: vitam-mongoc-offer
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongoc_offer'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongoc |
→˓default(9216) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongoc-offer
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

{% if (groups['hosts_mongod_offer']|length >0) %}
- job_name: vitam-mongod-offer
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongod_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongod |
→˓default(9217) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongod-offer
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}
{% endif %}

7.2.10.1.2.2 Génération du fichier de configuration

Dans le cas où un serveur Prometheus est déjà en place, il est possible de générer le fichier de configuration
prometheus.yml depuis l’inventaire de l’environnement de la solution VITAM.

Pour se faire, depuis la machine Ansible, se placer dans le répertoire path_to/vitam/deploiement/ et exécuter
la ligne de commande suivante :

Spécifier le répertoire de sortie dans le fichier cots_var.yml {{ prometheus.
→˓prometheus_config_file_target_directory: path_dir_output }}
ansible-playbook ansible-vitam-extra/prometheus.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass --tags gen_prometheus_config

Le fichier de configuration est alors généré dans le répertoire de sortie avec le nom prometheus.yml. Il suffit de
récupérer les parties nécessaires, comme par exemple scrape_configs, et de les intégrer à la configuration du
serveur Prometheus déjà existant.

Avertissement : Les flux réseau entre le serveur Prometheus existant et les différents machines hébergeant le
solution VITAM doivent être ouverts sur la patte d’administration.

7.2. COTS 147

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.10.1.2.3 Fichier de variable d’environnement

my global config
global:

scrape_interval: {{ prometheus.server.scrape_interval | default(15) }}s # Set
→˓the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: {{ prometheus.server.evaluation_interval | default(15) }}s #

→˓Evaluate rules every 15 seconds. The default is every 1 minute.
scrape_timeout is set to the global default (10s).

Alertmanager configuration
alerting:

alertmanagers:
- static_configs:
- alertmanager:9093

{% for host in groups['hosts_alertmanager'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.alertmanager.api_port |
→˓default(9093) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}

Load rules once and periodically evaluate them according to the global 'evaluation_
→˓interval'.
rule_files:

- rule.yml
{% for item in rules_files.files %}

- {{ item.path }}
{% endfor %}

scrape_configs:
{% if prometheus.node_exporter.enabled | default(true) | bool == true %}

- job_name: vitam-node-exporter
metrics_path: {{ prometheus.node_exporter.metrics_path | default('/metrics') }}
static_configs:

{% for host in groups['vitam'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.node_exporter.port |
→˓default(9101) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% if host in groups['hosts_elasticsearch_data'] %}
elastic_cluster_name: "{{ elasticsearch.data.cluster_name }}"

{% elif host in groups['hosts_elasticsearch_log'] %}
elastic_cluster_name: "{{ elasticsearch.log.cluster_name }}"

{% endif %}
{% endfor %}
{% endif %}

{% if prometheus.consul_exporter.enabled | default(true) | bool == true %}
- job_name: vitam-consul-exporter
metrics_path: {{ prometheus.consul_exporter.metrics_path | default('/metrics') }}
static_configs:

{% for host in groups['vitam'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.consul_exporter.port |
→˓default(9107) }} (suite sur la page suivante)

148 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if prometheus.elasticsearch_exporter.enabled | default(true) | bool == true %}
- job_name: vitam-elasticsearch-exporter
metrics_path: {{ prometheus.elasticsearch_exporter.metrics_path | default('/

→˓metrics') }}
static_configs:

{% for host in groups['elasticsearch'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.elasticsearch_exporter.port |
→˓default(9114) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_access_internal']|length >0) %}
- job_name: vitam-access-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_access_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.accessinternal.port_admin |
→˓default(28101) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_access_external']|length >0) %}
- job_name: vitam-access-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_access_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.accessexternal.port_admin |
→˓default(28102) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ingest_internal']|length >0) %}
- job_name: vitam-ingest-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ingest_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ingestinternal.port_admin |
→˓default(28100) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

(suite sur la page suivante)

7.2. COTS 149

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% if (groups['hosts_ingest_external']|length >0) %}
- job_name: vitam-ingest-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ingest_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ingestexternal.port_admin |
→˓default(28001) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_metadata']|length >0) %}
- job_name: vitam-metadata
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_metadata'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.metadata.port_admin |
→˓default(28200) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ihm_demo']|length >0) %}
- job_name: vitam-ihm-demo
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ihm_demo'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ihm_demo.port_admin |
→˓default(28002) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_ihm_recette']|length >0) %}
- job_name: vitam-ihm-recette
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_ihm_recette'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.ihm_recette.port_admin |
→˓default(28204) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_logbook']|length >0) %}
- job_name: vitam-logbook
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

(suite sur la page suivante)

150 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% for host in groups['hosts_logbook'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.logbook.port_admin | default(29002)
→˓}}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_workspace']|length >0) %}
- job_name: vitam-workspace
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_workspace'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.workspace.port_admin |
→˓default(28201) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_processing']|length >0) %}
- job_name: vitam-processing
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_processing'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.processing.port_admin |
→˓default(28203) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_worker']|length >0) %}
- job_name: vitam-worker
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_worker'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.worker.port_admin | default(29104) }
→˓}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_storage_engine']|length >0) %}
- job_name: vitam-storage-engine
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_storage_engine'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.storageengine.port_admin |
→˓default(29102) }}

labels:
(suite sur la page suivante)

7.2. COTS 151

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

hostname: "{{ host.split(".")[0] }}"
{% endfor %}
{% endif %}

{% if (groups['hosts_storage_offer_default']|length >0) %}
{% set offerInstances = [] %}
{% for host in groups['hosts_storage_offer_default'] %}
{{ offerInstances.append({"offerId": hostvars[host]['offer_conf'], "host": host }) }}
{% endfor %}

- job_name: vitam-storage-offer-default
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for offerId, hosts in offerInstances | groupby('offerId') %}
{% for host in hosts %}

- targets:
- {{ hostvars[host.host]['ip_admin'] }}:{{ vitam.storageofferdefault.port_admin

→˓| default(29900) }}
labels:

offerId: {{ offerId }}
hostname: "{{ host.host }}"

{% endfor %}
{% endfor %}
{% endif %}

{% if (groups['hosts_functional_administration']|length >0) %}
- job_name: vitam-functional-administration
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_functional_administration'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.functional_administration.port_
→˓admin | default(18004) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_metadata_collect']|length >0) %}
- job_name: vitam-metadata-collect
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_metadata_collect'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.metadata_collect.port_admin |
→˓default(28290) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_workspace_collect']|length >0) %}
- job_name: vitam-workspace-collect
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

(suite sur la page suivante)

152 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% for host in groups['hosts_workspace_collect'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.workspace_collect.port_admin |
→˓default(28291) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_collect_internal']|length >0) %}
- job_name: vitam-collect-internal
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_collect_internal'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.collect_internal.port_admin |
→˓default(28038) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_collect_external']|length >0) %}
- job_name: vitam-collect-external
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_collect_external'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.collect_external.port_admin |
→˓default(28030) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if (groups['hosts_scheduler']|length >0) %}
- job_name: vitam-scheduler
metrics_path: {{ prometheus.metrics_path | default('/admin/v1/metrics') }}
static_configs:

{% for host in groups['hosts_scheduler'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ vitam.scheduler.port_admin |
→˓default(28799) }}

labels:
hostname: "{{ host.split(".")[0] }}"

{% endfor %}
{% endif %}

{% if prometheus.blackbox_exporter.enabled | bool %}
- job_name: vitam-blackbox
metrics_path: /probe
params:

module:
- http_2xx

relabel_configs:
- source_labels:

(suite sur la page suivante)

7.2. COTS 153

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- __address__
regex: ([^,]*),(.*)
replacement: $1
target_label: __param_target

- source_labels:
- __address__
target_label: instance

- source_labels:
- __address__
regex: ([^,]*),(.*)
replacement: $2
target_label: instance

- source_labels:
- __address__
regex: ([^,]*),(.*)
replacement: $1
target_label: addresse

- target_label: __address__
replacement: localhost:9115

static_configs:
- targets:

{% for target in prometheus.blackbox_exporter.targets %}
- {{ target }}

{% endfor %}
{% endif %}

{% if prometheus.mongodb_exporter.enabled | default(true) | bool %}
{% if (groups['hosts_mongoc_data']|length >0) %}

- job_name: vitam-mongoc-data
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongoc_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongoc |
→˓default(9216) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongoc-data
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

{% if (groups['hosts_mongod_data']|length >0) %}
- job_name: vitam-mongod-data
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongod_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongod |
→˓default(9217) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongod-data
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

(suite sur la page suivante)

154 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% if (groups['hosts_mongoc_offer']|length >0) %}
- job_name: vitam-mongoc-offer
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongoc_offer'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongoc |
→˓default(9216) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongoc-offer
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}

{% if (groups['hosts_mongod_offer']|length >0) %}
- job_name: vitam-mongod-offer
metrics_path: /metrics
static_configs:

{% for host in groups['hosts_mongod_data'] %}
- targets:

- {{ hostvars[host]['ip_admin'] }}:{{ prometheus.mongodb_exporter.port_mongod |
→˓default(9217) }}

labels:
hostname: "{{ host.split(".")[0] }}"
service_name: vitam-mongod-offer
cluster: {{ hostvars[host]['mongo_cluster_name'] }}

{% endfor %}
{% endif %}
{% endif %}

7.2.10.1.2.4 Fichiers de données

Ce service utilise des fichiers de données localisés dans le répertoire /vitam/data/prometheus/

7.2.10.1.2.5 Règles livrées avec la solution VITAM

7.2.10.1.2.6 Etat de la machine

∙ Remonte une alerte critique si une machine n’est pas joignable depuis plus d’une minute

groups:
- name: state
rules:

- alert: InstanceDown
expr: up == 0
for: 1m
labels:
severity: critical

annotations:
summary: "Instance {{ $labels.hostname }} down"
description: "Instance {{ $labels.hostname }} has been down for more than 1

→˓minute"

7.2. COTS 155

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.10.1.2.7 Processeur

∙ Remonte une alerte d’avertissement si la consommation globale du processeur d’une machine est à plus de 75%
depuis 10 minutes

∙ Remonte une alerte critique si la consommation globale du processeur d’une machine est à plus de 90% depuis
10 minutes

groups:
- name: cpu
rules:

- alert: HighCPUUsage
expr: (100 - (avg by (instance) (rate(node_cpu_seconds_total{job="vitam-node-

→˓exporter",mode="idle"}[1m])) * 100)) > 75
for: 10m
labels:
severity: warning

annotations:
summary: "Instance {{ $labels.hostname }} has high CPU usage"
description: "Instance {{ $labels.hostname }} has been using at least 75%

→˓of its CPU for more than 10 minutes"
- alert: HighCPUUsage

expr: (100 - (avg by (instance) (rate(node_cpu_seconds_total{job="vitam-node-
→˓exporter",mode="idle"}[1m])) * 100)) > 90

for: 10m
labels:
severity: critical

annotations:
summary: "Instance {{ $labels.hostname }} has critically high CPU usage"
description: "Instance {{ $labels.hostname }} has been using at least 90%

→˓of its CPU for more than 10 minutes"

7.2.10.1.2.8 Mémoire

∙ Remonte une alerte d’avertissement si la consommation de la mémoire d’une machine est à plus de 75% depuis
10 minutes

∙ Remonte une alerte critique si la consommation de la mémoire d’une machine est à plus de 90% depuis 10
minutes

groups:
- name: memory
rules:

- alert: HighMemoryUsage
expr: (100 - ((node_memory_MemAvailable_bytes * 100) / node_memory_MemTotal_

→˓bytes)) > 75
for: 10m
labels:
severity: warning

annotations:
summary: "Instance {{ $labels.hostname }} has high memory usage"
description: "Instance {{ $labels.hostname }} has been using at least 75%

→˓of its RAM for more than 10 minutes"
- alert: HighMemoryUsage

expr: (100 - ((node_memory_MemAvailable_bytes * 100) / node_memory_MemTotal_
→˓bytes)) > 90

(suite sur la page suivante)

156 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

for: 10m
labels:
severity: critical

annotations:
summary: "Instance {{ $labels.hostname }} has critically high memory usage"
description: "Instance {{ $labels.hostname }} has been using at least 90%

→˓of its RAM for more than 10 minutes"

7.2.10.1.2.9 Disque

∙ Remonte une alerte d’avertissement si la consommation de l’espace disque de la partition root d’une machine
est à plus de 75% depuis 10 minutes

∙ Remonte une alerte d’avertissement si la consommation de l’espace disque de la partition Vitam d’une machine
est à plus de 75% depuis 10 minutes

∙ Remonte une alerte critique si la consommation de l’espace disque de la partition root d’une machine est à plus
de 90% depuis 10 minutes

∙ Remonte une alerte critique si la consommation de l’espace disque de la partition Vitam d’une machine est à
plus de 90% depuis 10 minutes

groups:
- name: disk_root
rules:

- alert: OutOfDiskSpace
expr: (100 - ((node_filesystem_avail_bytes{mountpoint="/",fstype!="rootfs"} *

→˓100) / node_filesystem_size_bytes{mountpoint="/",fstype!="rootfs"})) > 75
for: 10m
labels:
severity: warning

annotations:
summary: "Instance {{ $labels.hostname }} is running out of disk space"
description: "Instance {{ $labels.hostname }} has its root partition 75%

→˓full since 10 minutes"
- alert: OutOfDiskSpace

expr: (100 - ((node_filesystem_avail_bytes{mountpoint="/",fstype!="rootfs"} *
→˓100) / node_filesystem_size_bytes{mountpoint="/",fstype!="rootfs"})) > 90

for: 10m
labels:
severity: critical

annotations:
summary: "Instance {{ $labels.hostname }} is critically running out of disk

→˓space"
description: "Instance {{ $labels.hostname }} has its root partition 90%

→˓full since 10 minutes"
- name: disk_vitam
rules:

- alert: OutOfDiskSpace
expr: (100 - ((node_filesystem_avail_bytes{mountpoint="/vitam"} * 100) / node_

→˓filesystem_size_bytes{mountpoint="/vitam"})) > 75
for: 10m
labels:
severity: warning

annotations:
summary: "Instance {{ $labels.hostname }} is running out of disk space"

(suite sur la page suivante)

7.2. COTS 157

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

description: "Instance {{ $labels.hostname }} has its Vitam partition 75%
→˓full since 10 minutes"

- alert: OutOfDiskSpace
expr: (100 - ((node_filesystem_avail_bytes{mountpoint="/vitam"} * 100) / node_

→˓filesystem_size_bytes{mountpoint="/vitam"})) > 90
for: 10m
labels:
severity: critical

annotations:
summary: "Instance {{ $labels.hostname }} is critically running out of disk

→˓space"
description: "Instance {{ $labels.hostname }} has its Vitam partition 90%

→˓full since 10 minutes"

7.2.10.1.2.10 Ajout de nouvelles règles

Afin d’ajouter de nouvelles règles, il suffit de déposer les nouveaux fichiers de règles dans le répértoire suivant :
deployment/ansible-vitam-extra/roles/prometheus-server/rules/

Puis d’exécuter la commande suivante :

ansible-playbook ansible-vitam-extra/prometheus.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass

7.2.10.1.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-prometheus

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-prometheus

∙ Consultation des logs du service :

En tant qu’utilisateur root :

journalctl -u vitam-prometheus

∙ Superviser le service :

Ce composant expose un ports en écoute :

La commande ci-dessous doit afficher les numéros du port en écoute : <prometheus.
→˓server.port>
sudo ss -anp | grep prometheus | grep LISTEN

158 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.10.2 Alertmanager

7.2.10.2.1 Présentation

Le composant optionnel vitam-alertmanager permet de configurer les canaux via lesquels les alertes sont en-
voyées (mail, Slack, pager, etc.).

La solution VITAM, par defaut, déploie une seule instance de ce service. Veuillez vous référer à la documentation
officielle Prometheus Alertmanager pour pouvoir déployer un cluster Alertmanager.

7.2.10.2.2 Configuration / fichiers utiles

7.2.10.2.2.1 Fichier de configuration

La configuration fournie par la solution VITAM permet notamment de regrouper les notifications par alerte et d’inhiber
les alertes d’avertissement dans le cas où des mêmes alertes critiques sont déclenchées.

alertmanager.yml

global:
{% if http_proxy_environnement is defined and http_proxy_environnement|length > 0 %}

http_config:
proxy_url: '{{ http_proxy_environnement }}'

{% endif %}
resolve_timeout: 5m

route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h

{% if prometheus.alertmanager.receivers is defined and prometheus.alertmanager.
→˓receivers|length > 0 %}
receiver: {{ prometheus.alertmanager.receivers.0.name }}

receivers:
{{ prometheus.alertmanager.receivers | to_nice_yaml(width=80, indent=2) }}
{% else %}

receiver: 'null'
receivers:
- name: 'null'
{% endif %}
inhibit_rules:

- source_match:
severity: 'critical'

target_match:
severity: 'warning'

equal: ['alertname', 'dev', 'instance']

7.2.10.2.2.2 Configuration de Prometheus

Ansible permet de générer automatiquement la configuration Alertmanager dans le fichier prometheus.yml.

Il suffit d’ajouter les machines dédiées à Alertmanager dans le groupe [hosts_alertmanager] de votre fichier
d’inventaire.

7.2. COTS 159

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.10.2.2.3 Fichier de variable d’environnement

global:
{% if http_proxy_environnement is defined and http_proxy_environnement|length > 0 %}

http_config:
proxy_url: '{{ http_proxy_environnement }}'

{% endif %}
resolve_timeout: 5m

route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h

{% if prometheus.alertmanager.receivers is defined and prometheus.alertmanager.
→˓receivers|length > 0 %}
receiver: {{ prometheus.alertmanager.receivers.0.name }}

receivers:
{{ prometheus.alertmanager.receivers | to_nice_yaml(width=80, indent=2) }}
{% else %}

receiver: 'null'
receivers:
- name: 'null'
{% endif %}
inhibit_rules:

- source_match:
severity: 'critical'

target_match:
severity: 'warning'

equal: ['alertname', 'dev', 'instance']

7.2.10.2.2.4 Fichiers de données

Ce service utilise des fichiers de données localisés dans le répertoire /vitam/data/alertmanager/

7.2.10.2.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-alertmanager

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-alertmanager

∙ Consultation des logs :

En tant qu’utilisateur root :

160 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

journalctl -u vitam-alertmanager

∙ Superviser le service :

Ce composant expose deux ports en écoute, un port d’API et un autre pour le cluster :

La commande ci-dessous doit afficher les numéros de ports en écoute : <prometheus.
→˓alertmanager.api_port> et <prometheus.alertmanager.cluster_port>
sudo ss -anp | grep alertmanager | grep LISTEN

7.2.10.3 Node Exporter

7.2.10.3.1 Présentation

Le composant vitam-node-exporter permet d’exposer via une API un ensemble de métriques liées au matériel
et au noyau du système.

Ce service est déployé avec le nom vitam-node-exporter. Il doit être installé sur toutes les machines à supervi-
ser.

7.2.10.3.2 Configuration / fichiers utiles

Prometheus Node Exporter est activé par défaut. Cependant il est possible de désactiver son installation de-
puis la configuration en éditant la variable prometheus.node_exporter.enabled: false dans le fichier
environments/group_vars/all/cots_var.yml.

7.2.10.3.2.1 Fichier de variable d’environnement

NODE_EXPORTER_OPTS='--web.listen-address={{ ip_admin }}:{{ prometheus.node_exporter.
→˓port | default(9101) }} --web.telemetry-path={{ prometheus.node_exporter.metrics_
→˓path | default('/metrics') }} --collector.textfile.directory /vitam/data/node_
→˓exporter/textfile_collector --log.level={{ prometheus.node_exporter.log_level |
→˓default('warn') }}'

7.2.10.3.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-node-exporter

∙ Arrêt du service :

En tant qu’utilisateur root :

systemctl stop vitam-node-exporter

∙ Consultation des logs :

En tant qu’utilisateur root :

7.2. COTS 161

VITAM - Documentation d’exploitation, Version 7.1.5

journalctl -u vitam-node-exporter

∙ Accès au service pour réaliser un acte d’exploitation :

Depuis une machine pour laquelle le flux réseau vers le service est ouvert, il suffit de faire un CURL
sur l’API exposée par ce service :

curl <adresse>:<prometheus.node_exporter.port>/metrics

7.2.10.4 Elasticsearch Exporter

7.2.10.4.1 Présentation

Le composant vitam-elasticsearch-exporter permet d’exposer via une API un ensemble de métriques
liées à Elasticsearch.

Ce service est déployé avec le nom vitam-elasticsearch-exporter. Il doit être installé sur toutes les ma-
chines hébergeant des services Elasticsearch à superviser.

7.2.10.4.2 Configuration / fichiers utiles

Prometheus Elasticsearch Exporter est activé par défaut. Cependant il est possible de désactiver son installation depuis
la configuration en éditant la variable prometheus.elasticsearch_exporter.enabled: false dans le
fichier environments/group_vars/all/cots_var.yml.

7.2.10.4.2.1 Fichier de variable d’environnement

{% if inventory_hostname in groups['hosts_elasticsearch_data'] %}
ELASTICSEARCH_EXPORTER_OPTS='--es.uri=http://{{ ip_service }}:{{ elasticsearch.data.
→˓port_http }} --web.listen-address=:{{ prometheus.elasticsearch_exporter.port |
→˓default(9114) }} --web.telemetry-path={{ prometheus.elasticsearch_exporter.metrics_
→˓path | default('/metrics') }} --log.level={{ prometheus.elasticsearch_exporter.log_
→˓level | default('warn') }}'
{% elif inventory_hostname in groups['hosts_elasticsearch_log'] %}
ELASTICSEARCH_EXPORTER_OPTS='--es.uri=http://{{ ip_admin }}:{{ elasticsearch.log.port_
→˓http }} --web.listen-address=:{{ prometheus.elasticsearch_exporter.port |
→˓default(9114) }} --web.telemetry-path={{ prometheus.elasticsearch_exporter.metrics_
→˓path | default('/metrics') }} --log.level={{ prometheus.elasticsearch_exporter.log_
→˓level | default('warn') }}'
{% endif %}

7.2.10.4.3 Opérations

∙ Démarrage du service :

En tant qu’utilisateur root :

systemctl start vitam-elasticsearch-exporter

∙ Arrêt du service :

162 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

En tant qu’utilisateur root :

systemctl stop vitam-elasticsearch-exporter

∙ Consultation des logs :
En tant qu’utilisateur root :

journalctl -u vitam-elasticsearch-exporter

∙ Accès au service pour réaliser un acte d’exploitation :
Depuis une machine pour laquelle le flux réseau vers le service est ouvert, il suffit de faire un CURL
sur l’API exposée par ce service :

curl <adresse>:<prometheus.elasticsearch_exporter.port>/metrics

7.2.11 Restic

7.2.11.1 Présentation

Restic est un outil opensource de sauvegarde fourni en tant qu’extra (beta) dans la suite logicielle Vitam. Son installa-
tion est optionnelle.

Il a pour but de simplifier la mise en oeuvre des sauvegardes des bases mongo sur les offres de stockages.

Ces sauvegardes sont utiles dans la reprise d’activité en cas de perte des bases de données (à minima les bases mongo-
offer par défaut).

restic est déployé sur les machines du groupe [hosts_storage_offer_default] qui ont le paramètre restic_enabled=true
de défini.

Note : Seuls les providers d’offres suivants sont supportés : filesystem, filesystem-hash, openstack-swift-v3 et amazon-
s3-v1.

7.2.11.1.1 Comment fonctionne Restic?

L’outil Restic prend en charge les objets présents (fichiers et/ou sous arborescence) dans le répertoire qui lui est indiqué
en ligne de commande. Dans notre cas, les dumps sont effectués sous /vitam/tmp/restic/backup/.

7.2.11.1.1.1 La notion d’«Incremental For Ever»

Techniquement, les sauvegardes Restic fonctionnent dans le mode suivant :

∙ Lors de la première sauvegarde, l’intégralité des données contenues dans le dossier à sécuriser sera recopiée et
stockée dans ce repository.

∙ lors des sauvegardes suivantes, seuls les objets ajoutés ou modifiés seront sauvegardés.

La notion de sauvegarde totale ne s’applique donc que pour la toute première sauvegarde, les suivantes étant exclusi-
vement incrémentales ; c’est le mode communément appelé « Incremental for ever ». Ce mécanisme permet de limiter
drastiquement la volumétrie du flux de sauvegarde.

Les sauvegardes réalisées sont stockées sous forme de « snapshots » dans un repository hébergé sur l’offre de stockage.

7.2. COTS 163

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.11.1.1.2 La notion de snapshot

Dans le jargon Restic chaque sauvegarde est stockée sous la forme d’un snapshot et se voit attribuer un ID unique.

Le déclenchement des sauvegardes est réalisé via une crontab qui lance l’exécution du script /vitam/script/
restic/restic_backup.

La sauvegarde peut être effectuée manuellement en ligne de commande par l’exécution de ce même script.

Par défaut, la purge des anciens snapshots est automatisé lors de l’exécution de ce même script. La configuration du
nombre de snapshots à conserver est personnalisable.

7.2.11.2 Configuration / fichiers utiles

La configuration de restic est centralisée sous /vitam/conf/restic/

7.2.11.2.1 Fichier restic.conf

Contient les paramètres de configuration de restic tel que le mot de passe des containers de sauvegarde ainsi que les
paramètres d’accès au stockage associée.

7.2.11.2.2 Fichier conf.d/{{ restic.backup.name }}.conf

Contient les paramètres de configuration et d’accès de la base à sauvegarder.

7.2.11.3 Opérations

7.2.11.3.1 restic_backup

Le script est lancé automatiquement à partir d’une crontab associée à l’utilisateur vitam.

Pour éditer cette crontab manuellement, il est possible d’utiliser la commande suivante en tant qu’utilisateur root :

crontab -e -u vitam

Pour effectuer manuellement un backup ; exécutez la commande suivante en tant qu’utilisateur root :

/vitam/script/restic/restic_backup

Le répertoire temporaire pour le backup est /vitam/tmp/restic/backup/.

7.2.11.3.2 restic_restore

Pour restaurer un snapshot, il est possible d’exécuter la commande suivante en tant qu’utilisateur root :

/vitam/script/restic/restic_restore

Il sera demandé de sélectionner le {{ restic.backup.name }} à restaurer, puis le snapshot_ID souhaité.

La restauration est faite sous /vitam/tmp/restic/restore/.

164 Chapitre 7. Exploitation des COTS de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

7.2.11.3.3 Consultation des logs

En tant qu’utilisateur root :

vim /vitam/log/restic/restic-{{ restic.backup.name }}.log

7.2.12 Siegfried

7.2.12.1 Présentation

Siegfried est un outil permettant la détection de format d’un fichier.

7.2.12.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

7.2.12.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-siegfried

∙ Arrêt du service
En tant qu’utilisateur root : systemctl stop vitam-siegfried

Avertissement : ne pas oublier que cela peut perturber le comportement de certains composants Vitam (ingest-
external et worker).

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.
∙ Logs

Les logs applicatifs sont envoyés par rsyslog à la solution de centralisation des logs ; il est néanmoins possible d’en
visionner une représentation par la commande :

journalctl --unit vitam-siegfried

∙ Supervision du service
N/A

∙ Exports
N/A

∙ gestion de la capacité
N/A

∙ actions récurrentes

∙ cas des batches

N/A
∙ Montée de version du fichier de signatures

Se reporter à Montée de version du fichier de signature de Siegfried (page 34)

7.2. COTS 165

CHAPITRE 8

Exploitation des composants de la solution logicielle VITAM

Les sections qui suivent donnent une description plus fine pour l’exploitation des services VITAM.

8.1 Généralités

Les composants de la solution logicielle VITAM sont déployés par un playbook ansible qui :

1. déploie, selon l’inventaire employé, les packages nécessaires

2. applique la configuration de chaque composant selon son contexte défini dans l’inventaire

Les composants VITAM sont décrits ci-après.

Avertissement : En cas de modification de la configuration, redémarrer le service associé.

8.2 Composants

8.2.1 Fichiers communs

Les composants de la solution logicielle VITAM utilisent un socle de fichiers communs.

8.2.1.1 Fichier /vitam/conf/<composant>/sysconfig/java_opts

Ce fichier définit les JVMARGS.

1 #***
2 # Copyright French Prime minister Office/SGMAP/DINSIC/Vitam Program (2015-2022)
3 #
4 # contact.vitam@culture.gouv.fr

(suite sur la page suivante)

166

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

5 #
6 # This software is a computer program whose purpose is to implement a digital

→˓archiving back-office system managing
7 # high volumetry securely and efficiently.
8 #
9 # This software is governed by the CeCILL 2.1 license under French law and abiding by

→˓the rules of distribution of free
10 # software. You can use, modify and/ or redistribute the software under the terms of

→˓the CeCILL 2.1 license as
11 # circulated by CEA, CNRS and INRIA at the following URL "https://cecill.info".
12 #
13 # As a counterpart to the access to the source code and rights to copy, modify and

→˓redistribute granted by the license,
14 # users are provided only with a limited warranty and the software's author, the

→˓holder of the economic rights, and the
15 # successive licensors have only limited liability.
16 #
17 # In this respect, the user's attention is drawn to the risks associated with loading,

→˓ using, modifying and/or
18 # developing or reproducing the software by the user in light of its specific status

→˓of free software, that may mean
19 # that it is complicated to manipulate, and that also therefore means that it is

→˓reserved for developers and
20 # experienced professionals having in-depth computer knowledge. Users are therefore

→˓encouraged to load and test the
21 # software's suitability as regards their requirements in conditions enabling the

→˓security of their systems and/or data
22 # to be ensured and, more generally, to use and operate it in the same conditions as

→˓regards security.
23 #
24 # The fact that you are presently reading this means that you have had knowledge of

→˓the CeCILL 2.1 license and that you
25 # accept its terms.
26 #***
27 JAVA_OPTS="{{ vitam_struct.jvm_opts.gc | default(gc_opts) }} {{ vitam_struct.jvm_opts.

→˓memory | default(memory_opts) }} {{ vitam_struct.jvm_opts.java | default(java_opts)
→˓}} -Dorg.owasp.esapi.resources={{ vitam_folder_conf }} -Dlogback.configurationFile={
→˓{ vitam_folder_conf }}/logback.xml -Dvitam.config.folder={{ vitam_folder_conf }} -
→˓Dvitam.data.folder={{ vitam_folder_data }} -Dvitam.tmp.folder={{ vitam_folder_tmp }}
→˓ -Dvitam.log.folder={{ vitam_folder_log }} -Djava.security.properties={{ vitam_
→˓folder_conf }}/java.security -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath={{
→˓vitam_folder_log }}{% if jvm_log %} -XX:+UnlockDiagnosticVMOptions -XX:+LogVMOutput
→˓-XX:LogFile={{ vitam_folder_log }}/jvm.log{% endif %} -XX:+UseG1GC {{ vitam_struct.
→˓jmx_exporter | default(jmx_exporter_opts) }} -XX:+ExitOnOutOfMemoryError"

28 JAVA_ARGS="{{ vitam_folder_conf }}/{{ vitam_struct.vitam_component }}.conf"

8.2.1.2 Fichier /vitam/conf/<composant>/logback-access.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <configuration>
3 {% if logback_rolling_policy|lower == "true" %}
4 <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
5 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
6 <fileNamePattern>{{ vitam_folder_log }}/accesslog-{{ vitam_struct.vitam_

→˓component }}.%d{yyyy-MM-dd}.log.gz</fileNamePattern>
(suite sur la page suivante)

8.2. Composants 167

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

7 <maxHistory>{{ vitam_struct.access_retention_days | default(access_retention_
→˓days) }}</maxHistory>

8 <totalSizeCap>{{ vitam_struct.access_total_size_cap | default(access_total_size_
→˓cap) }}</totalSizeCap>

9 </rollingPolicy>
10 {% else %}
11 <appender name="FILE" class="ch.qos.logback.core.FileAppender">
12 <file>{{ vitam_folder_log }}/accesslog-{{ vitam_struct.vitam_component }}.log</

→˓file>
13 <append>true</append>
14 {% endif %}
15 <encoder>
16 <pattern>%h %l %u %t{ISO8601} "%r" %s %b "%i{Referer}" "%i{User-agent}" %D %i{X-

→˓Request-Id} %i{X-Tenant-Id} %i{X-Application-Id}</pattern>
17 </encoder>
18 </appender>
19 <appender-ref ref="FILE" />
20 </configuration>

8.2.1.3 Fichier /vitam/conf/<composant>/logback.xml

1 #jinja2: lstrip_blocks: True
2 <?xml version="1.0" encoding="UTF-8"?>
3 <configuration>
4

5 <!-- Send debug messages to System.out -->
6 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
7 <!-- By default, encoders are assigned the type ch.qos.logback.classic.encoder.

→˓PatternLayoutEncoder -->
8 <encoder>
9 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n</
→˓pattern>

10 </encoder>
11 </appender>
12

13 {% if logback_rolling_policy|lower == "true" %}
14 <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
15 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
16 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}.%d

→˓{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
17 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_

→˓size) }}</maxFileSize>
18 <maxHistory>{{ vitam_struct.logback_total_size_cap.file.history_days |

→˓default(logback_total_size_cap.file.history_days) }}</maxHistory>
19 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.file.totalsize |

→˓default(logback_total_size_cap.file.totalsize) }}</totalSizeCap>
20 </rollingPolicy>
21 {% else %}
22 <appender name="FILE" class="ch.qos.logback.core.FileAppender">
23 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}.log</file>
24 <append>true</append>
25 {% endif %}
26 <encoder>
27 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
→˓</pattern>

(suite sur la page suivante)

168 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

28 </encoder>
29 </appender>
30

31 {% if logback_rolling_policy|lower == "true" %}
32 <appender name="SECURITY" class="ch.qos.logback.core.rolling.RollingFileAppender">
33 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
34 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_

→˓security.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
35 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_

→˓size) }}</maxFileSize>
36 <maxHistory>{{ vitam_struct.logback_total_size_cap.security.history_days |

→˓default(logback_total_size_cap.security.history_days) }}</maxHistory>
37 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.security.totalsize |

→˓default(logback_total_size_cap.security.totalsize) }}</totalSizeCap>
38 </rollingPolicy>
39 {% else %}
40 <appender name="SECURITY" class="ch.qos.logback.core.FileAppender">
41 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_security.log</

→˓file>
42 <append>true</append>
43 {% endif %}
44 <encoder>
45 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
46 </pattern>
47 </encoder>
48 </appender>
49

50 {% if vitam_struct.vitam_component == 'storage' %}
51 {% if logback_rolling_policy|lower == "true" %}
52 <appender name="OFFERSYNC" class="ch.qos.logback.core.rolling.RollingFileAppender">
53 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
54 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_

→˓offer_sync.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
55 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_

→˓size) }}</maxFileSize>
56 <maxHistory>{{ vitam_struct.logback_total_size_cap.offersync.history_days }}</

→˓maxHistory>
57 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.offersync.totalsize }}</

→˓totalSizeCap>
58 </rollingPolicy>
59 {% else %}
60 <appender name="OFFERSYNC" class="ch.qos.logback.core.FileAppender">
61 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_offer_sync.log</

→˓file>
62 <append>true</append>
63 {% endif %}
64 <encoder>
65 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
66 </pattern>
67 </encoder>
68 </appender>
69

70 {% if logback_rolling_policy|lower == "true" %}
71 <appender name="OFFERDIFF" class="ch.qos.logback.core.rolling.RollingFileAppender">
72 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">

(suite sur la page suivante)

8.2. Composants 169

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

73 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_
→˓offer_diff.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>

74 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_
→˓size) }}</maxFileSize>

75 <maxHistory>{{ vitam_struct.logback_total_size_cap.offerdiff.history_days }}</
→˓maxHistory>

76 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.offerdiff.totalsize }}</
→˓totalSizeCap>

77 </rollingPolicy>
78 {% else %}
79 <appender name="OFFERDIFF" class="ch.qos.logback.core.FileAppender">
80 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_offer_diff.log</

→˓file>
81 <append>true</append>
82 {% endif %}
83 <encoder>
84 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
85 </pattern>
86 </encoder>
87 </appender>
88 {% endif %}
89

90 {% if vitam_struct.vitam_component == 'offer' and vitam_offers[offer_conf]["provider
→˓"] == 'tape-library' %}

91 {% if logback_rolling_policy|lower == "true" %}
92 <appender name="OFFER_TAPE" class="ch.qos.logback.core.rolling.RollingFileAppender">
93 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
94 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_

→˓offer_tape.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
95 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_

→˓size) }}</maxFileSize>
96 <maxHistory>{{ vitam_struct.logback_total_size_cap.offer_tape.history_days }}</

→˓maxHistory>
97 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.offer_tape.totalsize }}</

→˓totalSizeCap>
98 </rollingPolicy>
99 {% else %}

100 <appender name="OFFER_TAPE" class="ch.qos.logback.core.FileAppender">
101 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_offer_tape.log</

→˓file>
102 <append>true</append>
103 {% endif %}
104 <encoder>
105 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
106 </pattern>
107 </encoder>
108 </appender>
109

110 {% if logback_rolling_policy|lower == "true" %}
111 <appender name="OFFER_TAPE_BACKUP" class="ch.qos.logback.core.rolling.

→˓RollingFileAppender">
112 <rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
113 <fileNamePattern>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_tape_

→˓backup.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
114 <maxFileSize>{{ vitam_struct.logback_max_file_size | default(logback_max_file_

→˓size) }}</maxFileSize> (suite sur la page suivante)

170 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

115 <maxHistory>{{ vitam_struct.logback_total_size_cap.offer_tape_backup.history_
→˓days }}</maxHistory>

116 <totalSizeCap>{{ vitam_struct.logback_total_size_cap.offer_tape_backup.
→˓totalsize }}</totalSizeCap>

117 </rollingPolicy>
118 {% else %}
119 <appender name="OFFER_TAPE_BACKUP" class="ch.qos.logback.core.FileAppender">
120 <file>{{ vitam_folder_log }}/{{ vitam_struct.vitam_component }}_tape_backup.log</

→˓file>
121 <append>true</append>
122 {% endif %}
123 <encoder>
124 <pattern>%d{ISO8601} [[%thread]] [%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level

→˓%logger - %replace(%caller{1..2}){'Caller\+1 at |\n',''} : %msg %rootException%n
125 </pattern>
126 </encoder>
127 </appender>
128 {% endif %}
129

130 <appender name="SYSLOG" class="ch.qos.logback.classic.net.SyslogAppender">
131 <syslogHost>localhost</syslogHost>
132 <facility>{{ vitam_defaults.syslog_facility | default('local0') }}</facility>
133 <suffixPattern>vitam-{{ vitam_struct.vitam_component }}: %d{ISO8601} [[%thread]] [

→˓%X{X-Request-Id}] [%X{X-Tenant-Id}] %-5level %logger - %replace(%caller{1..2}){
→˓'Caller\+1 at |\n',''} : %msg %rootException%n</suffixPattern>

134 </appender>
135 <!-- By default, the level of the root level is set to TRACE -->
136 <root level="{{ vitam_struct.log_level | default(vitam_defaults.services.log_level)

→˓}}">
137 <!-- <appender-ref ref="STDOUT" /> -->
138 <appender-ref ref="FILE" />
139 <appender-ref ref="SYSLOG" />
140 </root>
141

142 <logger name="org.eclipse.jetty" level="WARN"/>
143 <logger name="fr.gouv.vitam.storage.engine.server.logbook.StorageLogbookMock" level=

→˓"INFO"/>
144 <logger name="fr.gouv.vitam.metadata.core.graph.StoreGraphService" level="INFO"/>
145 <logger name="fr.gouv.vitam.metadata.core.graph.GraphComputeServiceImpl" level="INFO

→˓"/>
146 <logger name="fr.gouv.vitam.common" level="WARN" />
147 {% if vitam_defaults.reconstruction.log_level is defined or reconstruction.log_level

→˓is defined %}
148 <logger name="fr.gouv.vitam.metadata.core.reconstruction.service.

→˓MetadataReconstructionService" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/>

149 <logger name="fr.gouv.vitam.metadata.core.reconstruction.service.
→˓RestoreBackupService" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/>

150 <logger name="fr.gouv.vitam.logbook.common.server.reconstruction.
→˓ReconstructionService" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/>

151 <logger name="fr.gouv.vitam.logbook.common.server.reconstruction.
→˓RestoreBackupService" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/>

152 <logger name="fr.gouv.vitam.functional.administration.common.impl.
→˓ReconstructionServiceImpl" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/> (suite sur la page suivante)

8.2. Composants 171

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

153 <logger name="fr.gouv.vitam.functional.administration.common.impl.
→˓RestoreBackupServiceImpl" level="{{ vitam_struct.reconstruction.log_level |
→˓default(reconstruction.log_level) }}"/>

154 {% endif %}
155

156 {% if performance_logger|lower == "true" %}
157 <logger name="fr.gouv.vitam.common.performance.PerformanceLogger" level="DEBUG"

→˓additivity="false" >
158 <appender-ref ref="SYSLOG" />
159 </logger>
160 {% endif %}
161

162 <logger name="fr.gouv.vitam.common.alert.AlertServiceImpl" level="INFO">
163 <appender-ref ref="SECURITY" />
164 </logger>
165

166 {% if vitam_struct.vitam_component == 'storage' %}
167 <logger name="fr.gouv.vitam.storage.engine.server.offersynchronization" level="INFO

→˓">
168 <appender-ref ref="OFFERSYNC" />
169 </logger>
170 <logger name="fr.gouv.vitam.storage.engine.server.offerdiff" level="INFO">
171 <appender-ref ref="OFFERDIFF" />
172 </logger>
173 {% endif %}
174

175 {% if vitam_struct.vitam_component == 'offer' %}
176 <logger name="fr.gouv.vitam.storage.offers.tape.process.ProcessExecutor" level="INFO

→˓" additivity="false" >
177 <appender-ref ref="OFFER_TAPE" />
178 </logger>
179

180 <logger name="fr.gouv.vitam.storage.offers.tape.utils.BackupLogInformation" level=
→˓"INFO" additivity="false" >

181 <appender-ref ref="OFFER_TAPE_BACKUP" />
182 </logger>
183 {% endif %}
184

185 {% if vitam_struct.vitam_component == 'metadata' %}
186 <logger name="fr.gouv.vitam.metadata.core.migration" level="INFO"/>
187 {% endif %}
188

189 {% if vitam_struct.vitam_component == 'scheduler' %}
190 <logger name="org.quartz" level="INFO"/>
191 <logger name="fr.gouv.vitam.scheduler" level="INFO"/>
192 {% endif %}
193

194 </configuration>

8.2.1.4 Fichier /vitam/conf/<composant>/jetty-config.xml

1 <?xml version="1.0"?>
2 <!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.eclipse.org/jetty/

→˓configure_9_0.dtd">
3

(suite sur la page suivante)

172 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

4 <!-- === -->
5 <!-- Documentation of this file format can be found at: -->
6 <!-- http://wiki.eclipse.org/Jetty/Reference/jetty.xml_syntax -->
7 <!-- -->
8 <!-- Additional configuration files are available in $JETTY_HOME/etc -->
9 <!-- and can be mixed in. See start.ini file for the default -->

10 <!-- configuration files. -->
11 <!-- -->
12 <!-- For a description of the configuration mechanism, see the -->
13 <!-- output of: -->
14 <!-- java -jar start.jar -? -->
15 <!-- === -->
16

17 <!-- === -->
18 <!-- Configure a Jetty Server instance with an ID "Server" -->
19 <!-- Other configuration files may also configure the "Server" -->
20 <!-- ID, in which case they are adding configuration to the same -->
21 <!-- instance. If other configuration have a different ID, they -->
22 <!-- will create and configure another instance of Jetty. -->
23 <!-- Consult the javadoc of o.e.j.server.Server for all -->
24 <!-- configuration that may be set here. -->
25 <!-- === -->
26 <Configure id="Server" class="org.eclipse.jetty.server.Server">
27

28

29 <!-- === -->
30 <!-- Add shared Scheduler instance -->
31 <!-- === -->
32 <Call name="addBean">
33 <Arg>
34 <New class="org.eclipse.jetty.util.thread.ScheduledExecutorScheduler"/>
35 </Arg>
36 </Call>
37

38 <!-- === -->
39 <!-- Http Configuration. -->
40 <!-- This is a common configuration instance used by all -->
41 <!-- connectors that can carry HTTP semantics (HTTP, HTTPS, SPDY)-->
42 <!-- It configures the non wire protocol aspects of the HTTP -->
43 <!-- semantic. -->
44 <!-- -->
45 <!-- This configuration is only defined here and is used by -->
46 <!-- reference from the jetty-http.xml, jetty-https.xml and -->
47 <!-- jetty-spdy.xml configuration files which instantiate the -->
48 <!-- connectors. -->
49 <!-- -->
50 <!-- Consult the javadoc of o.e.j.server.HttpConfiguration -->
51 <!-- for all configuration that may be set here. -->
52 <!-- === -->
53 <New id="httpConfig" class="org.eclipse.jetty.server.HttpConfiguration">
54 <Set name="secureScheme">http</Set>
55 <Set name="securePort">8443</Set>
56 <Set name="outputBufferSize">32768</Set>
57 <Set name="requestHeaderSize">8192</Set>
58 <Set name="responseHeaderSize">8192</Set>
59 <Set name="sendServerVersion">false</Set>
60 <Set name="sendDateHeader">false</Set>

(suite sur la page suivante)

8.2. Composants 173

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

61 <Set name="headerCacheSize">512</Set>
62

63 <!-- Uncomment to enable handling of X-Forwarded- style headers -->
64 <!-- <Call name="addCustomizer">
65 <Arg><New class="org.eclipse.jetty.server.ForwardedRequestCustomizer"/></

→˓Arg>
66 </Call> -->
67

68 </New>
69

70 <!-- ======================= Original Connector ======================= -->
71 <!-- <Call name="addConnector">
72 <Arg>
73 <New class="org.eclipse.jetty.server.ServerConnector">
74 <Arg name="server"><Ref refid="Server" /></Arg>
75 <Arg name="factories">
76 <Array type="org.eclipse.jetty.server.ConnectionFactory">
77 <Item>
78 <New class="org.eclipse.jetty.server.HttpConnectionFactory

→˓">
79 <Arg name="config"><Ref refid="httpConfig" /></Arg>
80 </New>
81 </Item>
82 </Array>
83 </Arg>
84 <Set name="port">{{ vitam_struct.port_service }}</Set>
85 <Set name="idleTimeout">
86 <Property name="http.timeout" default="{{ vitam_defaults.services.

→˓port_service_timeout }}"/>
87 </Set>
88 </New>
89 </Arg>
90 </Call> -->
91

92 <!-- === -->
93 <!-- Set the default handler structure for the Server -->
94 <!-- A handler collection is used to pass received requests to -->
95 <!-- both the ContextHandlerCollection, which selects the next -->
96 <!-- handler by context path and virtual host, and the -->
97 <!-- DefaultHandler, which handles any requests not handled by -->
98 <!-- the context handlers. -->
99 <!-- Other handlers may be added to the "Handlers" collection, -->

100 <!-- for example the jetty-requestlog.xml file adds the -->
101 <!-- RequestLogHandler after the default handler -->
102 <!-- === -->
103 <Set name="handler">
104 <New id="Handlers" class="org.eclipse.jetty.server.handler.HandlerCollection">
105 <Set name="handlers">
106 <Array type="org.eclipse.jetty.server.Handler">
107 <Item>
108 <New id="Contexts" class="org.eclipse.jetty.server.handler.

→˓ContextHandlerCollection"/>
109 </Item>
110 <Item>
111 <New id="DefaultHandler" class="org.eclipse.jetty.server.

→˓handler.DefaultHandler"/>
112 </Item>

(suite sur la page suivante)

174 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

113 </Array>
114 </Set>
115 </New>
116 </Set>
117

118 <Set name="RequestLog">
119 <New id="RequestLogImpl" class="ch.qos.logback.access.jetty.

→˓VitamRequestLogImpl">
120 <Set name="fileName">{{ vitam_folder_conf }}/logback-access.xml</Set>
121 </New>
122 </Set>
123 <Ref refid="RequestLogImpl">
124 <Call name="start"/>
125 </Ref>
126

127 <!-- === -->
128 <!-- extra server options -->
129 <!-- === -->
130 <Set name="stopAtShutdown">true</Set>
131 <Set name="stopTimeout">5000</Set>
132 <Set name="dumpAfterStart">false</Set>
133 <Set name="dumpBeforeStop">false</Set>
134

135 {% if vitam_struct.https_enabled | bool == true %}
136 <New id="httpsConfig" class="org.eclipse.jetty.server.HttpConfiguration">
137 <Set name="sendServerVersion">false</Set>
138 <Set name="sendDateHeader">false</Set>
139 <Call name="addCustomizer">
140 <Arg>
141 <New class="org.eclipse.jetty.server.SecureRequestCustomizer">
142 <Arg name="sniHostCheck" type="boolean">
143 <Property name="jetty.ssl.sniHostCheck" default="false" />
144 </Arg>
145 </New>
146 </Arg>
147 </Call>
148 </New>
149 <New id="sslContextFactory" class="org.eclipse.jetty.util.ssl.

→˓SslContextFactory$Server">
150 <Set name="KeyStorePath">{{ vitam_folder_conf }}/keystore_{{ vitam_struct.

→˓vitam_component }}.jks</Set>
151 <Set name="KeyStorePassword">{{ password_keystore }}</Set>
152 <Set name="KeyManagerPassword">{{ password_manager_keystore }}</Set>
153 <Set name="TrustStorePath">{{ vitam_folder_conf }}/truststore_{{ vitam_struct.

→˓vitam_component }}.jks</Set>
154 <Set name="TrustStorePassword">{{ password_truststore }}</Set>
155 <Set name="TrustStoreType">JKS</Set>
156 {% if (vitam_struct.vitam_component in [vitam.ingestexternal.vitam_component, vitam.

→˓accessexternal.vitam_component, vitam.collect_external.vitam_component]) %}
157 <Set name="NeedClientAuth">{{ (not(vitam_defaults.trust_client_certificate_

→˓header | default(false) | bool)) | lower }}</Set>
158 {% else %}
159 <Set name="NeedClientAuth">false</Set>
160 {% endif %}
161 <Set name="WantClientAuth">true</Set>
162 <Set name="IncludeCipherSuites">
163 <Array type="String">

(suite sur la page suivante)

8.2. Composants 175

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

164 <Item>TLS_ECDHE.*</Item>
165 <Item>TLS_DHE_RSA.*</Item>
166 </Array>
167 </Set>
168 <Set name="IncludeProtocols">
169 <Array type="String">
170 <Item>TLSv1.2</Item>
171 </Array>
172 </Set>
173 <Set name="ExcludeCipherSuites">
174 <Array type="String">
175 <Item>.*NULL.*</Item>
176 <Item>.*RC4.*</Item>
177 <Item>.*MD5.*</Item>
178 <Item>.*DES.*</Item>
179 <Item>.*DSS.</Item>
180 <Item>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</Item>
181 <Item>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA</Item>
182 <Item>TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA</Item>
183 <Item>TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA</Item>
184 <Item>TLS_DHE_RSA_WITH_AES_256_CBC_SHA</Item>
185 <Item>TLS_DHE_RSA_WITH_AES_128_CBC_SHA</Item>
186 </Array>
187 </Set>
188 <Set name="UseCipherSuitesOrder">true</Set>
189 <Set name="RenegotiationAllowed">true</Set>
190 </New>
191 <New id="sslConnectionFactory" class="org.eclipse.jetty.server.

→˓SslConnectionFactory">
192 <Arg name="sslContextFactory">
193 <Ref refid="sslContextFactory" />
194 </Arg>
195 <Arg name="next">http/1.1</Arg>
196 </New>
197 <New id="businessConnector" class="org.eclipse.jetty.server.ServerConnector">
198 <Arg name="server">
199 <Ref refid="Server" />
200 </Arg>
201 <Arg name="factories">
202 <Array type="org.eclipse.jetty.server.ConnectionFactory">
203 <Item>
204 <Ref refid="sslConnectionFactory" />
205 </Item>
206 <Item>
207 <New class="org.eclipse.jetty.server.HttpConnectionFactory">
208 <Arg name="config">
209 <Ref refid="httpsConfig" />
210 </Arg>
211 </New>
212 </Item>
213 </Array>
214 </Arg>
215 <Set name="host">{{ ip_service }}</Set>
216 <Set name="port">
217 <SystemProperty name="jetty.port" default="{{ vitam_struct.port_service }}

→˓"/>
218 </Set>

(suite sur la page suivante)

176 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

219 <Set name="name">business</Set>
220 </New>
221

222 {% else %}
223

224 <!-- === -->
225 <!-- Connector for API business -->
226 <!-- Attach all ContextHanlder except Admin -->
227 <!-- === -->
228

229 <New id="businessConnector" class="org.eclipse.jetty.server.ServerConnector">
230 <Arg name="server"><Ref refid="Server" /></Arg>
231 <Arg name="factories">
232 <Array type="org.eclipse.jetty.server.ConnectionFactory">
233 <Item>
234 <New class="org.eclipse.jetty.server.HttpConnectionFactory">
235 <Arg name="config"><Ref refid="httpConfig" /></Arg>
236 </New>
237 </Item>
238 </Array>
239 </Arg>
240 <Set name="host">{{ ip_service }}</Set>
241 <Set name="port">{{ vitam_struct.port_service }}</Set>
242 <Set name="name">business</Set>
243 <Set name="idleTimeout">
244 <Property name="http.timeout" default="{{ vitam_defaults.services.port_

→˓service_timeout }}"/>
245 </Set>
246 </New>
247

248 {% endif %}
249

250 <!-- === -->
251 <!-- Connector for API Admin -->
252 <!-- Attach all ContextHanlder -->
253 <!-- === -->
254

255 <New id="adminConnector" class="org.eclipse.jetty.server.ServerConnector">
256 <Arg name="server"><Ref refid="Server" /></Arg>
257 <Arg name="factories">
258 <Array type="org.eclipse.jetty.server.ConnectionFactory">
259 <Item>
260 <New class="org.eclipse.jetty.server.HttpConnectionFactory">
261 <Arg name="config"><Ref refid="httpConfig" /></Arg>
262 </New>
263 </Item>
264 </Array>
265 </Arg>
266 <Set name="host">{{ ip_admin }}</Set>
267 <Set name="port">{{ vitam_struct.port_admin }}</Set>
268 <Set name="name">admin</Set>
269 <Set name="idleTimeout">
270 <Property name="http.timeout" default="{{ vitam_defaults.services.port_

→˓service_timeout }}"/>
271 </Set>
272 </New>
273

(suite sur la page suivante)

8.2. Composants 177

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

274 <Call name="setConnectors">
275 <Arg>
276 <Array type="org.eclipse.jetty.server.ServerConnector">
277 <Item>
278 <Ref refid="businessConnector" />
279 </Item>
280 <Item>
281 <Ref refid="adminConnector" />
282 </Item>
283 </Array>
284 </Arg>
285 </Call>
286

287 </Configure>

8.2.1.5 Fichier /vitam/conf/<composant>/logbook-client.conf

Ce fichier permet de configurer l’appel au composant logbook.

1 serverHost: {{ vitam.logbook.host }}
2 serverPort: {{ vitam.logbook.port_service }}

8.2.1.6 Fichier /vitam/conf/<composant>/server-identity.conf

1 identityName: {{ ansible_nodename }}
2 identityRole: {{ vitam_struct.vitam_component }}
3 identitySiteId: {{ vitam_site_id }}

8.2.1.7 Fichier /vitam/conf/<composant>/antisamy-esapi.xml

8.2.1.8 Fichier /vitam/conf/<composant>/vitam.conf

1 secret : {{ plateforme_secret }}
2 filterActivation : {{ vitam_struct.secret_platform }}
3 {% if vitam_struct.vitam_component == vitam.processing.vitam_component %}
4 distributeurBatchSize: 800
5 workerBulkSize: 16
6 {% endif %}
7 {% if vitam_struct.vitam_component == vitam.metadata.vitam_component %}
8 storeGraphElementsPerFile: 10000
9 storeGraphOverlapDelay: 300

10 expireCacheEntriesDelay: 300
11 deleteIncompleteReconstructedUnitDelay: 2592000
12 migrationBulkSize: 10000
13 workspaceFreespaceThreshold: {{ vitam.metadata.workspaceFreespaceThreshold |

→˓default(25) }}
14 {% endif %}
15 distributionThreshold : 100000
16 eliminationAnalysisThreshold : 100000
17 eliminationActionThreshold : 10000
18 computedInheritedRulesThreshold : 100000000

(suite sur la page suivante)

178 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

19 intervalDelayCheckIdle : 5000
20 maxDelayUnusedConnection : 5000
21 delayValidationAfterInactivity : 2500
22 tenants: ["{{ vitam_tenant_ids | join('", "') }}"]
23 adminTenant : {{ vitam_tenant_admin | default(1) }}
24 forceChunkModeInputStream : {{ vitam_defaults.vitam_force_chunk_mode | default(false)

→˓}}
25

26 {% if vitam_struct.vitam_component == vitam.worker.vitam_component %}
27 reclassificationMaxBulkThreshold: 1000
28 reclassificationMaxUnitsThreshold: 10000
29 reclassificationMaxGuildListSizeInLogbookOperation: 1000
30 queriesThreshold: {{ vitam.worker.queriesThreshold | default(100000) }}
31 bulkAtomicUpdateBatchSize: {{ vitam.worker.bulkAtomicUpdateBatchSize | default(100) }}
32 bulkAtomicUpdateThreadPoolSize: {{ vitam.worker.bulkAtomicUpdateThreadPoolSize |

→˓default(8) }}
33 bulkAtomicUpdateThreadPoolQueueSize: {{ vitam.worker.

→˓bulkAtomicUpdateThreadPoolQueueSize | default(16) }}
34

35 binarySizePlatformThreshold: # 1 Go
36 limit: {{ vitam.worker.binarySizePlatformThreshold | default(1) }}
37 sizeUnit: {{ vitam.worker.binarySizePlatformThresholdSizeUnit | default('GIGABYTE') }

→˓}
38

39 binarySizeTenantThreshold: # exemple for tenant 0 max dip/transfer size is 20 Mo,
→˓true means can exceed tenant threshold.

40 # - tenant: 0
41 # limit: 20
42 # sizeUnit: MEGABYTE
43 # authorize: true
44

45 eliminationReportExtraFields:
46 {% for tenant_id in vitam_tenant_ids %}
47 - tenant: {{ tenant_id }}
48 metadataFields: {{ extendedConfiguration.custom[tenant_id].

→˓eliminationReportExtraFields | default(default_eliminationReportExtraFields) | to_
→˓json }}

49 {% endfor %}
50 {% endif %}
51

52 keywordMaxLength: {{ vitam_defaults.keywordMaxLength | default(32766) }}
53 textMaxLength: {{ vitam_defaults.textMaxLength | default(32766) }}
54

55 classificationLevel :
56 allowList : [{% for classification in classificationList %}{{ classification }}{%

→˓if not loop.last %},{% endif %}{% endfor %}]
57 authorizeNotDefined: {{ classificationLevelOptional }}
58

59 indexInheritedRulesWithAPIV2OutputByTenant: ["{{ vitam.worker.api_output_index_
→˓tenants | join('", "') }}"]

60 indexInheritedRulesWithRulesIdByTenant: ["{{ vitam.worker.rules_index_tenants | join(
→˓'", "') }}"]

61

62 environmentName: {{ vitam_prefix_offer|default(vitam_site_name) }}
63

64 acceptableRequestTime: {{ acceptableRequestTime|default(10) }}
65 criticalRequestTime: {{ criticalRequestTime|default(60) }}

(suite sur la page suivante)

8.2. Composants 179

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

66 requestTimeAlertThrottlingDelay: {{ requestTimeAlertThrottlingDelay|default(60) }}
67

68 # Ontology cache settings (max entries in cache & retention timeout in seconds)
69 ontologyCacheMaxEntries: {{ vitam_defaults.ontologyCacheMaxEntries | default(100) }}
70 ontologyCacheTimeoutInSeconds: {{ vitam_defaults.ontologyCacheTimeoutInSeconds |

→˓default(300) }}
71

72 # Elasticsearch scroll timeout settings
73 elasticSearchScrollTimeoutInMilliseconds: {{ vitam_defaults.

→˓elasticSearchScrollTimeoutInMilliseconds | default(300000) }}
74

75 {% if vitam_struct.vitam_component == vitam.processing.vitam_component %}
76 processEngineWaitForStepTimeout: 172800
77 {% endif %}
78

79 restoreBulkSize: {{ restoreBulkSize | default(10000) }}

Ce fichier permet de définir les variables d’environnement vitam.

∙ binarySizePlatformThreshold est le seuil de plate-forme du poids binaire max autorisé pour un DIP.
elle comporte deux clés : limit : le seuil sizeUnit : l’unité de taille (GIGABYTE / MEGABYTE / KILO-

BYTE / BYTE)

par défaut le seuil est 1 Go. exemple :

binarySizePlatformThreshold:
limit: 1
sizeUnit: GIGABYTE / MEGABYTE / KILOBYTE / BYTE

∙ binarySizeTenantThreshold est une liste qui constitue l’ensemble des seuils du poids binaire max autorisé pour un DIP par tenant.

Cette liste comporte 4 clés : tenant : le tenant limit : le seuil sizeUnit : l’unité de taille (GIGABYTE /
MEGABYTE / KILOBYTE / BYTE) authorise : true si l’utilisateur peut excéder le seuil prédéfini.

exemple :

binarySizeTenantThreshold:
- tenant: 0

limit: 20
sizeUnit: MEGABYTE
authorize: false

- tenant: 1
limit: 100
sizeUnit: MEGABYTE
authorize: true

8.2.1.9 Fichier /vitam/conf/<composant>/java.security

1 # Use Bouncy Castle Provider when it is available
2 security.provider.9=org.bouncycastle.jce.provider.BouncyCastleProvider
3

4 # Override the default list of Centos 7 that disable Elliptic Curved Based Algorithms
5 jdk.tls.disabledAlgorithms="SSLv3, TLSv1, TLSv1.1, RC4, MD5withRSA, DH keySize < 768,

→˓RSA keySize < 2048"

180 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.2 Access

8.2.2.1 access external

8.2.2.1.1 Présentation

Access-external est le composant d’interface entre VITAM et un SIA client, permettant de réaliser des recherches sur les
objets archivés et les journaux. Il permet également quelques fonctions d’administration, en particulier les chargements
des référentiels.

Rôle :

∙ Exposer les API publiques du système

∙ Sécuriser l’accès aux API de VITAM

8.2.2.1.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/access-external.

8.2.2.1.2.1 Fichier access-external.conf

authentication: false
jettyConfig: jetty-config.xml
tenantFilter : true
authorizeTrackTotalHits : {{ vitam.accessexternal.authorizeTrackTotalHits |
→˓default(false) }}

objectGroupBlackListedFieldsForVisualizationByTenant:
{% for tenant_id in vitam_tenant_ids %}

{{ tenant_id }}: {{ extendedConfiguration.custom[tenant_id].
→˓objectGroupBlackListedFields | default(default_objectGroupBlackListedFields) | to_
→˓json }}
{% endfor %}

allowSslClientHeader: {{ vitam_defaults.trust_client_certificate_header |
→˓default(false) | bool }}

8.2.2.1.2.2 Fichier access-internal-client.conf

serverHost: {{ vitam.accessinternal.host }}
serverPort: {{ vitam.accessinternal.port_service }}

8.2.2.1.2.3 Fichier functional-administration-client.conf

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2. Composants 181

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.2.1.2.4 Fichier ingest-internal-client.conf

serverHost: {{ vitam.ingestinternal.host }}
serverPort: {{ vitam.ingestinternal.port_service }}

8.2.2.1.2.5 Fichier internal-security-client.conf

serverHost: {{ vitam.security_internal.host }}
serverPort: {{ vitam.security_internal.port_service }}
secure: false

8.2.2.1.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-access-external

∙ Arrêt du service
En tant qu’utilisateur root : systemctl stop vitam-access-external

∙ Sauvegarde du service
Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service
Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
access-external/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports
N/A

∙ gestion de la capacité
N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.2.2 access-internal

8.2.2.2.1 Présentation du composant

Access-internal est le composant VITAM, permettant de réaliser des recherches et consultations sur les objets archivés
et les journaux. Il permet également de modifier les informations d’un ArchiveUnit.

Rôle :
∙ Permettre l’accès aux données du système VITAM

Fonction :
∙ Exposition des fonctions de recherche d’archives offertes par metadata ;
∙ Exposition des fonctions de parcours de journaux offertes par logbook.

182 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.2.2.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/access.

8.2.2.2.2.1 Fichier access-internal.conf

Ce fichier permet de définir l’URL d’accès au metadata server.

urlMetaData: {{vitam.metadata | client_url}}
urlWorkspace: {{vitam.workspace | client_url}}
urlProcessing: {{vitam.processing | client_url}}
jettyConfig: jetty-config.xml

8.2.2.2.2.2 Fichier storage-client.conf

Ce fichier permet de définir l’accès au storage-engine.

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.2.2.2.3 Fichier metadata-client.conf

serverHost: {{ vitam.metadata.host }}
serverPort: {{ vitam.metadata.port_service }}

8.2.2.2.2.4 Fichier functional-administration-client.conf

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2.2.2.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-access-internal

∙ Arrêt du service
En tant qu’utilisateur root : systemctl stop vitam-access-internal

∙ Sauvegarde du service
Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service
Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
access/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

8.2. Composants 183

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.3 Batch-Report

8.2.3.1 Présentation

Le composant batch-report permet de stocker des données de traitements de masse (en particulier, élimination) pour
les aggréger sous forme de rapports.

Ce module utilise une base de données MongoDB « report », dans laquelle sont stockées, sous différentes collections
(entre autres, EliminationActionObjectGroup et EliminationActionUnit), les données.

Ce module est appelé par le composant « worker » pour collecter les données durant les workflows d’élimination, entre
autres.

Ce module est ensuite appelé par le composant « worker » pour restituer les données aggrégées sous forme de rapports.

8.2.3.2 Configuration

Ce document spécifie la configuration (fichiers de config) pour lancer le services de batch-report.

Tous ces fichiers de configuration sont placés dans le répertoire /vitam/conf/batch-report.

8.2.3.2.1 Fichier batch-report.conf

Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
dbName: report
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data'].report.user }}
dbPassword: {{ mongodb['mongo-data'].report.password }}
jettyConfig: jetty-config.xml

workspaceUrl: {{ vitam.workspace | client_url }}

8.2.3.3 Client batch-report

Pour la création d’un client batch-report, nous avons besoin aussi du fichier de configuration
batch-report-client.conf qui précise le serveur host et la porte du serveur où le client se connecte
pour les requêtes.

184 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.3.4 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-batch-report

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-batch-report

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.4 Collect

8.2.4.1 Présentation

Rôle :

∙ Permettre de gérer l’archivage sur VITAM (A faire)

Fonctions :

∙ Intialiser des transacrions.

∙ Ajouter des Unités d’archives à la transaction.

∙ Ajouter un object group a une unité d’archive.

∙ Ajouter un binaire a un object group.

∙ Fermer la transaction.

∙ Produire un SIP et l’envoyer a Vitam (Ingest).

8.2.4.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/collect.

8.2.4.2.1 Fichier collect.conf

Ce fichier précise les URLs pour le service « Workspace », configuration base de données, et la configuration du
serveur jetty.

8.2. Composants 185

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.4.2.2 Fichier functional-administration-client.conf

8.2.4.2.3 Fichier internal-security-client.conf

8.2.4.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-collect

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-collect

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
collect/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.5 common-plugin

8.2.5.1 Présentation du composant

common-plugin est le composant permettant de réaliser des plugins sans appel à des package privé.

Rôle :

∙ l’objet de ce common-plugin n’est pas que de fournir des interfaces à implémenter mais aussi les classes d’im-
plémentations imposées par Vitam pour réaliser des plugins.

Fonction :

∙ Exposition des interfaces à implémenter et les classes d’implémentations pour réaliser des plugins .

8.2.5.2 Classes utiles

L’Objectif de Plugin Common est d’inclure tous les classes utiles afin de créer un plugin à partir de ce package .

Les classes de model sont définis sous /vitam/common/model.

186 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.5.2.1 Classe Item Status

Ce classe permet de retourner le statut d’un Item.

8.2.5.2.2 Classe VitamAutoCloseable

Le mot clé try-with-resources garantit que chaque ressource sera fermée lorsqu’elle n’est plus utilisée. Une ressource et
un objet qui implémente l’interface VitamAutoCloseable. Il est donc possible d’utiliser une instance de ces interfaces
avec le mot clé try-with-resources.

Les classes de common parameter sont définis sous /vitam/common/parameter.

8.2.5.2.3 Classe ParameterHelper

Ce classe permet de faire un check sur les paramètres et avoir le tenant parameter de session vitam .

8.2.5.2.4 Classe VitamParameter

Cet interface permet d’aider à créer des nouveaux paramètres liés au classes .

Les classes de common exception sont définis sous /vitam/processing/common/exception.

8.2.5.2.5 Classe ProcessingException

Ce classe est le classe père de tous les Vitam Processing Exception .

Les classes de model common processing sont définis sous /vitam/processing/common/model.

8.2.5.2.6 Classe IOParameter

Ce class permet de définir les paramètres Input et Output pour une action et une step .

8.2.5.2.7 Classe ProcessingUri

Ce classe permet de formatter le processing URI .

8.2.5.2.8 Classe UriPrefix

C’est le Handler IO

Les classes des paramètres common sont définis sous /vitam/processing/common/parameter.

8.2.5.2.9 Classe AbstractWorkerParameters

C’est une implémentation abstraite de tous les paramètres de workers .

8.2. Composants 187

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.5.2.10 Classe DefaultWorkerParameters

Ce classe permet de définir les paramètres par défaut d’un worker.

8.2.5.2.11 Classe WorkerParameterName

Ce classe inclut une énumération avec tous les noms des paramètres d’un worker .

8.2.5.2.12 Classe WorkerParameters

Ce classe permet de définir les paramètres de worker.

8.2.5.2.13 Classe WorkerParametersDeserializer

Ce classe permet de définir les paramètres d’un worker deserializer.

8.2.5.2.14 Classe WorkerParametersFactory

Ce classe permet de définir les paramètres d’un worker Factory.

8.2.5.2.15 Classe WorkerParametersSerializer

Ce classe permet de définir les paramètres de Worker Serializer.

Les classes de model sont définis sous /vitam/worker/common.

8.2.5.2.16 Interface HandlerIO

Cet interface permet de définir les paramètres in et out de tous les Handlers.

Les classes de l’api sont définis sous /vitam/worker/core/api.

8.2.5.2.17 Classe WorkerAction

C’est l’interface contrat de tous les actions Handler event. Un action Handler doit implémenter cette interface .

Les classes de l’implémentation sont définis sous /vitam/worker/core/impl.

8.2.5.2.18 Classe HandlerIOImpl

Ce classe définit les paramètres in et out d’un Handler

How to use : Pour créer un Plugin :

∙ extends Abstract Class Action Handler

∙ implementer l’interface VitamAutoCloseable pour garantir qu’une ressource sera fermée lorsqu’elle n’est plus
utilisée.

188 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Un constructeur par défaut

∙ redéfinir la méthode execute de l’Action Handler :
∙ Paramètre WorkerParameters et Handler IO

∙ type de retour Item Status

∙ throws Processing Exception

∙ faire l’override de méthode CheckMandatoryIOParameter
∙ Paramètre Handler IO

∙ throws Processing Exception

8.2.6 Common

8.2.6.1 Présentation

8.2.6.2 Format Identifiers

Les services d’identification de formats peuvent être déployés sur tous les serveurs applicatifs vitam.

8.2.6.2.1 Configuration des services d’identification des formats

Dans /vitam/conf du serveur applicatif où sont déployés les services d’identification de formats, il faut un fichier
format-identifiers.conf. C’est un fichier YAML de configuration des services d’identification de format. Il possède
les configurations des services que l’on souhaite déployer sur le serveur.

Le code suivant contient un exemple de toutes les configurations possibles :

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: 55800
rootPath: /root/path
versionPath: /root/path/version/folder
createVersionPath: false
mock:

type: MOCK

∙ Le service Mock :
∙ identifié par mock

∙ type : le type de service déployé : MOCK

∙ Le service Siegfried :
∙ identifié par siegfried-local

∙ type : le type de service déployé : SIEGFRIED

∙ client : type de client (pour le moment seul http existe).

∙ host : le host du serveur siegfried déployé (devrait être le host du serveur courant)

∙ port : le port du serveur siegfried déployé

∙ rootPath : la racine sur laquelle le service Siegfried doit résoudre les fichiers à tester (ex : « /data »)

∙ versionPath : le chemin vers un dossier vide pour renvoyer la version (Doit posséder des droits en
lecture)

8.2. Composants 189

VITAM - Documentation d’exploitation, Version 7.1.5

∙ createVersionPath : Si false le dossier doit pré-existant sur le server sur lequel tourne Siegfried. Sinon,
le client siegfried tente de créer automatiquement le dossier en local.

NOTE : Chaque serveur est en charge de décrire la configuration nécessaire

8.2.7 Functional administration

8.2.7.1 Présentation

8.2.7.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/functional-administration.

8.2.7.2.1 Fichier functional-administration.conf

ce fichier permet de définir l’URL d’accès au access server.

#jinja2: lstrip_blocks: True
Configuration MongoDB
mongoDbNodes:
{% for host in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[host]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
dbName: masterdata
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data'].functionalAdmin.user }}
dbPassword: {{ mongodb['mongo-data'].functionalAdmin.password }}

#Basic Authentication
adminBasicAuth:
- userName: {{ admin_basic_auth_user }}

password: {{ admin_basic_auth_password }}

jettyConfig: jetty-config.xml
workspaceUrl: {{vitam.workspace | client_url}}
processingUrl: {{vitam.processing | client_url}}

ElasticSearch
clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for host in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[host]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}

ElasticSearch tenant indexation
elasticsearchTenantIndexation:

default_config:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_replicas | default('2') }} (suite sur la page suivante)

190 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% for collection in ["accesscontract", "accessionregisterdetail",
→˓"accessionregistersummary", "accessionregistersymbolic", "agencies",
→˓"archiveunitprofile", "context", "fileformat", "filerules", "griffin",
→˓"ingestcontract", "managementcontract", "ontology", "preservationscenario", "profile
→˓", "securityprofile","schema"] %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection] is defined %}
{{ collection }}:
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓shards is defined %}
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.masterdata[collection].

→˓number_of_shards }}
{% endif %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓replicas is defined %}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.

→˓masterdata[collection].number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

ExternalId configuration
listEnableExternalIdentifiers:
{% if vitam_tenants_usage_external is iterable %}

{% for tenant in vitam_tenants_usage_external %}
{% if tenant.identifiers is defined %}

{{ tenant.name }}:
{% for external in tenant.identifiers %}

- {{ external }}
{% endfor %}

{% endif %}
{% endfor %}

{% endif %}

listMinimumRuleDuration:
{% if vitam_tenant_rule_duration is iterable %}

{% for tenant in vitam_tenant_rule_duration %}
{{ tenant.name }}:
{% for rule in tenant.rules %}

{% for key, value in rule.items() %}
{{ key }}: {{ value }}

{% endfor %}
{% endfor %}

{% endfor %}
{% endif %}

accessionRegisterSymbolicThreadPoolSize: {{ vitam.functional_administration.
→˓accessionRegisterSymbolicThreadPoolSize | default(16) }}
ruleAuditThreadPoolSize: {{ vitam.functional_administration.ruleAuditThreadPoolSize |
→˓default(16) }}

{% if primary_site | lower != "true" %}
Reconstruction cache duration (in minutes)
reconstructionMetricsCacheDurationInMinutes: {{ vitam.functional_administration.
→˓reconstructionMetricsCacheDurationInMinutes | default(15) }}
{% endif %}

8.2. Composants 191

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.7.2.2 Passage des identifiants des référentiels en mode esclave

La génération des identifiants des référentiels est gérée par Vitam quand il fonctionne en mode maître.

Par exemple :

∙ Préfixé par PR- our les profils

∙ Préfixé par IC- pour les contrats d’entrée

∙ Préfixé par AC- pour les contrats d’accès

Si vous souhaitez gérer vous-même les identifiants sur un service référentiel, il faut qu’il soit en mode esclave.

Note : Cette modification de comportement est réalisable post-installation. Une interruption temporaire de service est
à prévoir (redémarrage du service vitam-functional-administration.

Par défaut, tous les services référentiels de VITAM fonctionnent en mode maître. Pour désactiver le mode
maître de Vitam, il faut modifier le fichier de configuration /vitam/conf/functional-administration/
functional-administration.conf.

ExternalId configuration

listEnableExternalIdentifiers:
0:
- INGEST_CONTRACT
- ACCESS_CONTRACT

1:
- INGEST_CONTRACT
- ACCESS_CONTRACT
- PROFILE
- SECURITY_PROFILE
- CONTEXT

Depuis la version 1.0.4, la configuration par défaut de Vitam autorise des identifiants externes (ceux qui sont dans le
fichier json importé).

∙ pour le tenant 0 pour les référentiels : contrat d’entrée et contrat d’accès.

∙ pour le tenant 1 pour les référentiels : contrat d’entrée, contrat d’accès, profil, profil de sécurité et contexte.

La liste des choix possibles, pour chaque tenant, est :

∙ INGEST_CONTRACT : contrats d’entrée

∙ ACCESS_CONTRACT : contrats d’accès

∙ PROFILE : profils SEDA

∙ SECURITY_PROFILE : profils de sécurité (utile seulement sur le tenant d’administration)

∙ CONTEXT : contextes applicatifs (utile seulement sur le tenant d’administration)

∙ ARCHIVE_UNIT_PROFILE : profils d’unités archivistiques

Note : se référer au métier pour ces choix.

Avertissement : Cette modification implique le redémarrage du/des composants (si mono-instance ou multi-
instances du composant).

192 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Prudence : En mode « esclave », il est fortement recommandé de faire débuter les référentiels avec d’autres
chaînes de caractères que celle définies en mode « maître ».

Prudence : Ne pas oublier de répercuter cette modification sur le site secondaire

8.2.7.2.3 Paramétrage du batch de calcul pour l’indexation des règles héritées

La paramétrage du batch de calcul pour l’indexation des règles héritées peut être réalisé dans le fichier /
group_vars/all/advanced/vitam_vars.yml.

La section suivante du fichier vitam_vars.yml permet de paramétrer la fréquence de passage du batch :

vitam_timers:
metadata:

- name: vitam-metadata-computed-inherited-rules
frequency: "*-*-* 02:30:00"

La section suivante du fichier vitam_vars.yml permet de paramétrer la liste des tenants sur lequels s’exécute le
batch :

vitam:
worker:

api_output_index_tenants : permet d'indexer les règles de gestion, les
→˓chemins des règles et les services producteurs

api_output_index_tenants: [0,1,2,3,4,5,6,7,8,9]
rules_index_tenants : permet d'indexer les règles de gestion
rules_index_tenants: [0,1,2,3,4,5,6,7,8,9]

8.2.7.2.4 Configuration du Functional administration

functional-administration.conf : Fichier Yaml de configuration du server worker. Il possède une propriété :

∙ listMinimumRuleDuration : la durée minimum de chaque type de règle par tenant

listMinimumRuleDuration:
2:
AppraisalRule : 1 year

8.2.7.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-functional-administration

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-functional-administration

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

8.2. Composants 193

VITAM - Documentation d’exploitation, Version 7.1.5

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
functional-administration/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.8 Hello World Plugin

8.2.8.1 Présentation

Le composant hello-world-plugin est un exemple qui montre comment développer un plugin custom. Il suffit donc de
prendre ce projet maven comme exemple et d’adapter le plugin à souhait.

Note : Sur le pom de ce module, seule la dépendance vers common-plugin est nécessaire.

<dependency>
<groupId>fr.gouv.vitam</groupId>
<artifactId>common-plugin</artifactId>
<version>${vitam.version}</version>

</dependency>

Vous pouvez bien sûr ajouter d’autres dépendances qui servent à votre plugin custom.

8.2.8.1.1 Comment intégrer votre plugins dans vitam?

Après avoir développé votre plugin en suivant les consignes ci-dessus, il faut faire ce qui suit :

∙ Générer votre jar

∙ Copier votre jar manuellement dans le dossier /vitam/conf/worker/plugins-workspace/, ou bien
copier le dans le dossier de déploiement ansible ~/vitam/deployment/ansible-vitam/roles/
vitam/files/worker/plugins-workspace/

∙ Modifier le fichier plugins.json qui se trouve soit dans le dossier /vitam/conf/worker/plugins.
json en production, ou bien dans le dossier de déploiement ansible qui se trouve :vitam/deployment/
ansible-vitam/roles/vitam/files/worker/plugins.json, comme suit :

"HELLO_WORLD_PLUGIN": {
"className": "fr.vitam.plugin.custom.HelloWorldPlugin",
"propertiesFile": "hello_world_plugin.properties",
"jarName": "hello-world-plugin-1.14.0-SNAPSHOT.jar"

}

194 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Avertissement : jarName doit contenir uniquement le nom du jar avec extension “.jar”

A présent sur n’importe quel workflow, vous pouvez ajouter une action ayant comme « actionKey » la clé de votre
plugin. Dans cet exemple : actionKey=HELLO_WORLD_PLUGIN

8.2.8.1.2 Créer un nouveau workflow

Tout d’abord création d’un nouveau workflow :
∙ Créer un nouveau workflow peut se résumer juste à copier un workflow existant et modifier son identifier et son

workerGroupId pour, par exemple, utiliser des machines plus puissantes pour ce workflow
∙ L’identifier d’un workflow doit être UNIQUE, sinon un workflow existant portant le même identifier sera rem-

placé par le nouveau.
∙ La valeur de typeProc n’est pas actuellement dynamique (veuillez vous référer à l’enum LogbookTypePro-

cess pour voir les différentes valeurs possibles)
∙ La valeur actionKey doit être soit le handler name d’un plugin ou handler existant, soit celui d’un nouveau

plugin.
Exemple d’un workflow :

{
"id": "SampleIngestWorkflow",
"name": "Sample Ingest Workflow",
"identifier": "SAMPLE_PROCESS_SIP_UNITARY",
"typeProc": "INGEST",
"comment": "Sample Ingest Workflow V6",
"steps": [
{

"workerGroupId": "DefaultWorker",
"stepName": "STP_INGEST_CONTROL_SIP",
"behavior": "BLOCKING",
"distribution": {

"kind": "REF"
},
"actions": [

{
"action": {

"actionKey": "HELLO_WORLD_PLUGIN",
"behavior": "BLOCKING",
"in": [
{
"name": "var_name",
"uri": "VALUE:Hello World"

}
]

}
}

]
}

]
}

Avertissement : Le fichier workflow doit être un fichier json avec comme extension (.json) sinon le fichier ne
sera pas pris en compte.

8.2. Composants 195

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.8.1.2.1 Comment ajouter un nouveau workflow dans vitam?

Il tout d’abord créer un fichier json avec un nom de votre choix et ayant la forme de l’exemple ci-dessus. Veuillez vous
référer au différents workflow existants pour avoir plus d’information.

Il faut ensuite copier ce fichier (CustomWorkflow.json) dans :

∙ En production : Manuellement dans le dossier /vitam/conf/processing/workflows/

∙ Via ansible : Dans le dossier ~/vitam/deployment/ansible-vitam/roles/vitam/files/
processing/workflows/

8.2.8.1.2.2 Comment ajouter la traduction de clés des Plugins?

On peut dans n’importe quel service vitam ajouter dans le dossier conf les deux fichiers suivants : -
vitam-logbook-messages_fr.properties - vitam-error-messages.properties

Ces deux fichiers garantissent la traduction des clés.

Pour le nouveau plugins ajouté, le fichier properties qui est à l’intérieur du jar n’est visible que par le service (worker).
Pour qu’on puisse avoir ces clés traduites,le fichier vitam-logbook-messages_fr.properties doit contenir
les traductions des clés de ce nouveau plugin. Il faut copier ce fichier dans le dossier de conf de processing s’il n’existe
pas.

HELLO_WORLD_PLUGIN=Test d''un plugin Hello World
HELLO_WORLD_PLUGIN.OK=Test d''un plugin Hello World réalisé avec succès
HELLO_WORLD_PLUGIN.KO=Échec lors du test d''un plugin Hello World
HELLO_WORLD_PLUGIN.FATAL=Erreur fatale lors du test d''un plugin Hello World
HELLO_WORLD_PLUGIN.WARNING=Avertissement lors du test d''un plugin Hello
→˓World

8.2.8.1.2.3 Comment appeler le nouveau workflow?

En utilisant l’API d”ingest et en passant les paramètres suivants :

∙ X_CONTEXT_ID : l’identifier de votre workflow (dans l’exemple ci-dessus
SAMPLE_PROCESS_SIP_UNITARY)

∙ X_ACTION : votre action (RESUME, NEXT)

Le reste se fait automatiquement par le back office.

8.2.8.1.2.4 Remarques

∙ L’ajout d’un workflow dans processing en production ne nécessite pas de redémarrage. Un thread passe chaque
heure configurale pour recharger les derniers workflow (ajoutés ou modifiés)

∙ L’ajout d’un jar dans les workers et les fichiers properties nécessitent, cependant, le redémarrage des workers et
des services concernés.

8.2.8.1.2.5 Securité

Les plugins externes sont exécutés au même niveau de sécurité que ceux interne à VITAM. L’isolation de l’exécution
des plugins externes n’est pas assurée par VITAM. C’est donc à l’exploitant de garantir la sécurité des plugins intégrés.

196 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.9 ihm-demo

8.2.9.1 Présentation

Cette IHM a été développée pour des fins de tests de VITAM.

Rôle :

∙ Permettre une utilisation basique de VITAM, notamment sans SIA

Fonctions :

∙ Représentation des arborescences et des graphes

∙ Formulaires dynamiques

∙ Suivi des opérations

∙ Gestion des référentiels

8.2.9.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/ihm-demo.

8.2.9.2.1 Fichier access-external-client.conf

Ce fichier permet de définir l’URL d’accès au service access-external.

serverHost: {{ vitam.accessexternal.host }}
serverPort: {{ vitam.accessexternal.port_service }}
secure: true
sslConfiguration :
keystore :
- keyPath: {{ vitam_folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.p12
keyPassword: {{ keystores.client_external.ihm_demo }}

truststore :
- keyPath: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client_external }}

hostnameVerification: true

8.2.9.2.2 Fichier ihm-demo.conf

serverHost: {{ ip_service }}
port: {{ vitam_struct.port_service }}

baseUrl: "{{ vitam_struct.baseurl }}"
baseUri: /{{ vitam_struct.baseuri }}
secureMode:
{% for realm in vitam_struct.authentication_realms %}
- {{ realm }}
{% endfor %}

jettyConfig: jetty-config.xml
authentication: true

(suite sur la page suivante)

8.2. Composants 197

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

enableXsrFilter: true
enableSession: true

allowedMediaTypes:
{% for mediaType in vitam_struct.allowedMediaTypes %}

- type: {{ mediaType.type }}
subtype: {{ mediaType.subtype }}

{% endfor %}

tenants : liste des tenants disponibles sur l’ihm-demo.

8.2.9.2.3 Fichier ingest-external-client.conf

serverHost: {{ vitam.ingestexternal.host }}
serverPort: {{ vitam.ingestexternal.port_service }}
secure: true
sslConfiguration :
keystore :
- keyPath: {{ vitam_folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.p12
keyPassword: {{ keystores.client_external.ihm_demo }}

truststore :
- keyPath: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client_external }}

hostnameVerification: true

8.2.9.2.4 Fichier shiro.ini

=======================
Shiro INI configuration
=======================

[main]
Objects and their properties are defined here,
Such as the securityManager, Realms and anything
else needed to build the SecurityManager

Cache Manager
builtInCacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager

Security Manager
securityManager.cacheManager = $builtInCacheManager

sessionManager = org.apache.shiro.web.session.mgt.DefaultWebSessionManager
securityManager.sessionManager = $sessionManager
securityManager.sessionMode = native
securityManager.sessionManager.globalSessionTimeout = {{ vitam_struct.session_timeout
→˓}}
securityManager.sessionManager.sessionIdUrlRewritingEnabled = false
securityManager.sessionManager.sessionIdCookie.secure = {{ vitam_struct.secure_cookie
→˓}}
securityManager.rememberMeManager.cookie.secure = {{ vitam_struct.secure_cookie }}
securityManager.rememberMeManager.cookie.httpOnly = true

(suite sur la page suivante)

198 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Notice how we didn't define the class for the FormAuthenticationFilter ('authc') -
→˓it is instantiated and available already:
authc.loginUrl = /#!/login

credentialsMatcher
sha256Matcher = org.apache.shiro.authc.credential.Sha256CredentialsMatcher

{% if "iniRealm" in vitam_struct.authentication_realms %}
iniRealm.credentialsMatcher = $sha256Matcher
{% endif %}

{% if "ldapRealm" in vitam_struct.authentication_realms %}
contextFactory = org.apache.shiro.realm.ldap.JndiLdapContextFactory
contextFactory.url = {{ ldap_authentification.ldap_protocol }}://{{ ldap_
→˓authentification.ldap_server }}:{{ ldap_authentification.ldap_port }}
{% if ldap_authentification.ldap_login is defined and ldap_authentification.ldap_pwd
→˓is defined %}
{% if ldap_authentification.ldap_login != "" and ldap_authentification.ldap_pwd != ""
→˓%}
contextFactory.systemUsername = {{ ldap_authentification.ldap_login }}
contextFactory.systemPassword = {{ ldap_authentification.ldap_pwd }}
{% endif %}
{% endif %}

ldapRealm = fr.gouv.vitam.common.auth.core.realm.LdapRealm
ldapRealm.ldapContextFactory = $contextFactory
ldapRealm.searchBase = "{{ ldap_authentification.ldap_base }}"
ldapRealm.groupRequestFilter = {{ ldap_authentification.ldap_group_request }}
ldapRealm.userDnTemplate = {{ ldap_authentification.ldap_userDn_Template }}
ldapRealm.groupRolesMap = "{{ ldap_authentification.ldap_admin_group }}":"admin", "{{
→˓ldap_authentification.ldap_user_group }}":"user", "{{ ldap_authentification.ldap_
→˓guest_group }}":"guest"
{% endif %}

x509 = fr.gouv.vitam.common.auth.web.filter.X509AuthenticationFilter

x509.useHeader = False

x509credentialsMatcher = fr.gouv.vitam.common.auth.core.authc.
→˓X509CredentialsSha256Matcher

{% if "x509Realm" in vitam_struct.authentication_realms %}
x509Realm = fr.gouv.vitam.common.auth.core.realm.X509KeystoreFileWithRoleRealm
x509Realm.grantedKeyStoreName = {{ vitam_folder_conf }}/grantedstore_ihm-demo.jks
x509Realm.grantedKeyStorePassphrase = {{ password_grantedstore }}
x509Realm.trustedKeyStoreName = {{ vitam_folder_conf }}/truststore_ihm-demo.jks
x509Realm.trustedKeyStorePassphrase = {{ password_truststore }}
x509Realm.credentialsMatcher = $x509credentialsMatcher
x509Realm.certificateDnRoleMapping = "CN=userAdmin,O=Vitam,L=Paris":"admin",
→˓"CN=userUser,O=Vitam,L=Paris,C=FR":"user"
{% endif %}

securityManager.realms = {% for realm in vitam_struct.authentication_realms %}{% if
→˓not loop.first %},{% endif %}${{ realm }}{% endfor %}

(suite sur la page suivante)

8.2. Composants 199

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% if "iniRealm" in vitam_struct.authentication_realms %}

[users]
The 'users' section is for simple deployments
when you only need a small number of statically-defined
set of User accounts.
#username = password
{% for item in vitam_users %}
{{ item.login }}={{ item.password|hash('sha256') }}, {{ item.role }}

{% endfor %}

{% endif %}

[roles]
admin = *
user = messages:*, archivesearch:*, logbook:*, ingest:*, archiveupdate:*,
→˓archiveunit:*, ingests:read, admin:formats:read, admin:rules:read, admin:accession-
→˓register:read, logbookunitlifecycles:*, logbookobjectslifecycles:*, clear:delete,
→˓check:read, traceability:content:read, accesscontracts:read, profiles:read,
→˓contracts:read, contexts:read, archiveunitprofiles:read, ontologies:read,
→˓accessionregisterssymbolic:read
guest = archivesearch:*, archiveunit:*, units:*, unit:*, admin:accession-
→˓register:read, accesscontracts:read

[urls]
make sure the end-user is authenticated. If not, redirect to the 'authc.loginUrl'
→˓above,
and after successful authentication, redirect them back to the original account
→˓page they
were trying to view:
/v1/api/login = anon
/v1/api/logout = logout
/v1/api/messages/logbook = anon
/v1/api/tenants = anon
/v1/api/securemode = anon
/v1/api/admintenant = anon
/v1/api/permissions = x509
/v1/api/** = authc, x509
/#/** = authc

8.2.9.3 Configuration de apache shiro

8.2.9.3.1 Présentation authentification via LDAP et via certificat

Afin de pouvoir authentifier des clients via une base de données LDAP il suffit de bien configurer shiro. Pour ce faire,
Vitam utilise le fichier shiro.ini qui a la forme suivante.

[main]
contextFactory = org.apache.shiro.realm.ldap.JndiLdapContextFactory
contextFactory.url = ldap://localhost:389
contextFactory.systemUsername = cn=admin,dc=example,dc=org
contextFactory.systemPassword = password

(suite sur la page suivante)

200 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

realm = fr.gouv.vitam.common.security.rest.LdapRealm
realm.ldapContextFactory = $contextFactory
realm.searchBase = "dc=example,dc=org"
realm.groupRequestFilter = (&(objectClass=groupOfNames)(member={0}))
realm.userDnTemplate = uid={0},dc=example,dc=org
realm.groupRolesMap = "cn=gadmins,dc=example,dc=org":"admin", "cn=gusers,dc=example,
→˓dc=org":"user", "cn=gadmins,dc=example,dc=org":"guest"
securityManager.realms = $realm

x509 = fr.gouv.vitam.common.auth.web.filter.X509AuthenticationFilter
x509.useHeader = false
x509credentialsMatcher = fr.gouv.vitam.common.auth.core.authc.
→˓X509CredentialsSha256Matcher
x509Realm = fr.gouv.vitam.common.auth.core.realm.X509KeystoreFileWithRoleRealm
x509Realm.grantedKeyStoreName = /vitam/conf/ihm-demo/grantedstore_ihm-demo.jks
x509Realm.grantedKeyStorePassphrase = azerty12
x509Realm.trustedKeyStoreName = /vitam/conf/ihm-demo/truststore_ihm-demo.jks
x509Realm.trustedKeyStorePassphrase = azerty10
x509Realm.credentialsMatcher = $x509credentialsMatcher
x509Realm.certificateDnRoleMapping = "CN=userAdmin,O=Vitam,L=Paris":"admin",
→˓"CN=userUser,O=Vitam,L=Paris,C=FR":"user"
securityManager.realms = $x509Realm

8.2.9.3.2 Décryptage de shiro.ini

[main] Contient la déclaration des options et mappings dans l’authentication ldap :

∙ contextFactory.url : url du serveur ldap ;

∙ contextFactory.systemUsername : identifiant de l’utilisateur ;

∙ contextFactory.systemPassword : mot de passe ;

∙ realm.searchBase : le domaine de recherche dans LDAP;

∙ realm.groupRequestFilter : chaque utilisateur est déclaré dans un groupe, cette requête sert à chercher les
groupes de l’utilisateur ;

∙ realm.userDnTemplate : le modèle pour traduire un identifiant de l’utilisateur en DN (distinguished name) dans
ldap ;

∙ realm.groupRolesMap : le mapping entre le DN des group de l’utilisateur et les rôles dans ihm;

∙ x509Realm.grantedKeyStoreName : le fichier grantedstore ;

∙ x509Realm.trustedKeyStoreName : le fichier trustedstore ;

∙ x509Realm.certificateDnRoleMapping : le mapping entre le DisplayName de certificat et les rôles dans ihm.

Note : on peut déclarer plusieurs groups qui ont la même rôle admin avec cette syntaxe :

"groupeA" : "admin", "groupeB" : "admin", "groupeC" : "admin"

8.2.9.4 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-ihm-demo

∙ Arrêt du service

8.2. Composants 201

VITAM - Documentation d’exploitation, Version 7.1.5

En tant qu’utilisateur root : systemctl stop vitam-ihm-demo

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
ihm-demo/v1/status

∙ Gestion des utilisateurs

Les utilisateurs sont actuellement gérés via le fichier shiro.ini, dans la section [users].

∙ Créer un utilisateur
Lancer la commande shell suivante pour générer le mot de passe :

echo -n <motdepasse> | sha256sum

Copier le résultat.
Ensuite, éditer le fichier /vitam/conf/ihm-demo/shiro.ini et ajouter, dans la section
[users], la ligne suivante :

<login de l'utilisateur>=<résultat de la commande de génération de mot de
→˓passe précédente>

Pour terminer, relancer le service vitam-ihm-demo par la commande :

systemctl restart vitam-ihm-demo

∙ Supprimer un utilisateur

Dans la section [users], enlever la ligne correspondant à l’utilisateur à supprimer. Pour terminer, re-
lancer le service vitam-ihm-demo par la commande :

systemctl restart vitam-ihm-demo

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.10 ihm-recette

8.2.10.1 Présentation

Cette IHM a été développée pour des fins de validation de VITAM. Elle permet de réaliser des tests de non-régression,
mais également des actions sur le contenu des bases de données.

Danger : Cette IHM ne doit PAS être déployée dans un environnement de production !

202 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.10.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/ihm-recette.

8.2.10.2.1 Fichier access-external-client.conf

Ce fichier permet de définir l’URL d’accès au service access-external.

serverHost: {{ vitam.accessexternal.host }}
serverPort: {{ vitam.accessexternal.port_service }}
secure: true
sslConfiguration :
keystore :
- keyPath: {{ vitam_folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.p12
keyPassword: {{ keystores.client_external.ihm_recette }}

truststore :
- keyPath: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client_external }}

hostnameVerification: false

8.2.10.2.2 Fichier driver-location.conf

driverLocation: {{ vitam_folder_lib }}

8.2.10.2.3 Fichier driver-mapping.conf

driverMappingPath: {{ vitam_folder_data }}/
delimiter: ;

8.2.10.2.4 Fichier functional-administration-client.conf

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2.10.2.5 Fichier ihm-recette-client.conf

serverHost: {{ vitam_struct.host }}
serverPort: {{ vitam_struct.port_service }}

8.2.10.2.6 Fichier ihm-recette.conf

8.2. Composants 203

VITAM - Documentation d’exploitation, Version 7.1.5

#jinja2: lstrip_blocks: True
serverHost: {{ ip_service }}
port: {{ vitam_struct.port_service }}

baseUrl: "/{{ vitam_struct.baseuri }}"
baseUri: "/{{ vitam_struct.baseuri }}"

jettyConfig: jetty-config.xml
authentication: true
enableXsrFilter: true
enableSession: true

secureMode:
{% for securemode in vitam_struct.secure_mode %}
- {{ securemode }}
{% endfor %}
sipDirectory: {{ vitam_folder_data }}/test-data
performanceReportDirectory: {{ vitam_folder_data }}/report/performance

testSystemSipDirectory: {{ vitam_folder_data }}/test-data/system
testSystemReportDirectory: {{ vitam_folder_data }}/report/system
ingestMaxThread: {{ ansible_processor_cores * ansible_processor_threads_per_core + 1 }
→˓}

#
workspaceUrl: {{vitam.workspace | client_url}}

Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
Actually need this field for compatibility
dbName: admin
@integ: parametrize it !
masterdataDbName: masterdata
logbookDbName: logbook
metadataDbName: metadata
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data']['admin']['user'] }}
dbPassword: {{ mongodb['mongo-data']['admin']['password'] }}

ElasticSearch
clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for server in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[server]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}

ElasticSearch External Metadata Mapping
elasticsearchExternalMetadataMappings:
- collection: Unit

mappingFile: {{ vitam.ihm_recette.elasticsearch_mapping_dir }}/unit-es-mapping.json
- collection: ObjectGroup

mappingFile: {{ vitam.ihm_recette.elasticsearch_mapping_dir }}/og-es-mapping.json

(suite sur la page suivante)

204 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

Functional Admin Configuration
functionalAdminAdmin:

functionalAdminServerHost: {{ vitam.functional_administration.host }}
functionalAdminServerPort: {{ vitam.functional_administration.port_admin }}
adminBasicAuth:

userName: {{ admin_basic_auth_user }}
password: {{ admin_basic_auth_password }}

ES index configuration
functionalAdminIndexationSettings:

default_config:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓masterdata.number_of_replicas | default('2') }}

{% for collection in ["accesscontract", "accessionregisterdetail",
→˓"accessionregistersummary", "accessionregistersymbolic", "agencies",
→˓"archiveunitprofile", "context", "fileformat", "filerules", "griffin",
→˓"ingestcontract", "managementcontract", "ontology", "preservationscenario", "profile
→˓", "securityprofile","schema"] %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection] is defined %}
{{ collection }}:
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓shards is defined %}
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.masterdata[collection].

→˓number_of_shards }}
{% endif %}
{% if vitam_elasticsearch_tenant_indexation.masterdata[collection].number_of_

→˓replicas is defined %}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.

→˓masterdata[collection].number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

metadataIndexationSettings:
default_config:
unit:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.unit.
→˓number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓unit.number_of_replicas | default('2') }}

objectgroup:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_replicas | default('2') }}

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

(suite sur la page suivante)

8.2. Composants 205

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}
number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}
- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}
number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

logbookIndexationSettings:
default_config:
logbookoperation:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_replicas | default('2') }}

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:

(suite sur la page suivante)

206 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}
- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

8.2.10.2.7 Fichier ingest-external-client.conf

serverHost: {{ vitam.ingestexternal.host }}
serverPort: {{ vitam.ingestexternal.port_service }}
secure: true
sslConfiguration :
keystore :
- keyPath: {{ vitam_folder_conf }}/keystore_{{ vitam_struct.vitam_component }}.p12
keyPassword: {{ keystores.client_external.ihm_recette }}

truststore :
- keyPath: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.jks
keyPassword: {{ truststores.client_external }}

hostnameVerification: false

8.2.10.2.8 Fichier shiro.ini

[main]

{% if vitam_struct.secure_mode == 'x509' %}
x509 = fr.gouv.vitam.common.auth.web.filter.X509AuthenticationFilter

(suite sur la page suivante)

8.2. Composants 207

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

x509.useHeader = {{ vitam_defaults.vitam_ssl_user_header | default(false) }}

x509credentialsMatcher = fr.gouv.vitam.common.auth.core.authc.
→˓X509CredentialsSha256Matcher

x509Realm = fr.gouv.vitam.common.auth.core.realm.X509KeystoreFileRealm
x509Realm.grantedKeyStoreName = {{ vitam_folder_conf }}/grantedstore_ihm-recette.jks
x509Realm.grantedKeyStorePassphrase = {{ password_grantedstore }}
x509Realm.trustedKeyStoreName = {{ vitam_folder_conf }}/truststore_ihm-recette.jks
x509Realm.trustedKeyStorePassphrase = {{ password_truststore }}
x509Realm.credentialsMatcher = $x509credentialsMatcher
securityManager.realm = $x509Realm
securityManager.subjectDAO.sessionStorageEvaluator.sessionStorageEnabled = false
[urls]
/v1/api/** = x509

{% else %}
Objects and their properties are defined here,
Such as the securityManager, Realms and anything
else needed to build the SecurityManager
credentialsMatcher
sha256Matcher = org.apache.shiro.authc.credential.Sha256CredentialsMatcher
iniRealm.credentialsMatcher = $sha256Matcher
Cache Manager
builtInCacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
Security Manager
securityManager.cacheManager = $builtInCacheManager
sessionManager = org.apache.shiro.web.session.mgt.DefaultWebSessionManager
securityManager.sessionManager = $sessionManager
securityManager.sessionMode=native
securityManager.sessionManager.globalSessionTimeout = {{ vitam_struct.session_timeout
→˓}}
securityManager.sessionManager.sessionIdUrlRewritingEnabled = false
securityManager.sessionManager.sessionIdCookie.secure = {{ vitam_struct.secure_cookie
→˓}}
securityManager.rememberMeManager.cookie.secure = {{ vitam_struct.secure_cookie }}
securityManager.rememberMeManager.cookie.httpOnly = true
Notice how we didn't define the class for the FormAuthenticationFilter ('authc') -
→˓it is instantiated and available already:
authc.loginUrl = /#!/login
[users]
The 'users' section is for simple deployments
when you only need a small number of statically-defined
set of User accounts.
#username = password
{% for item in vitam_users %}
{% if item.role == "admin" %}
{{ item.login }}={{ item.password|hash('sha256') }}
{% endif %}
{% endfor %}
[roles]
The 'roles' section is for simple deployments
when you only need a small number of statically-defined
roles.
[urls]
make sure the end-user is authenticated. If not, redirect to the 'authc.loginUrl'
→˓above, (suite sur la page suivante)

208 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

and after successful authentication, redirect them back to the original account
→˓page they
were trying to view:
/v1/api/login = anon
/v1/api/logout = logout
/v1/api/securemode = anon
/** = authc

{% endif %}

8.2.10.2.9 Fichier static-offer.json

[
{% for item in all_used_offers %}
{
{% if item.id is defined %}

"id" : "{{ item.id }}",
{% else %}

"id" : "{{ item.name }}.service.{{ item.vitam_site_name |default(vitam_site_name)
→˓}}.{{ consul_domain }}",
{% endif %}

"baseUrl" : "http{% if vitam.storageofferdefault.https_enabled | bool == true %}s{
→˓% endif %}://{{ item.name }}.service.{{ item.vitam_site_name |default(vitam_site_
→˓name) }}.{{ consul_domain }}:{{ vitam.storageofferdefault.port_service }}",

{% if item.asyncRead is defined %} "asyncRead": {{ item.asyncRead|lower }}, {%
→˓endif %}

"parameters" : {
{% if vitam.storageofferdefault.https_enabled | bool == true %}
"keyStore-keyPath": "{{ vitam_folder_conf }}/keystore_storage.p12",
"keyStore-keyPassword": "{{ keystores.client_storage.storage }}",
"trustStore-keyPath": "{{ vitam_folder_conf }}/truststore_storage.jks",
"trustStore-keyPassword": "{{ truststores.client_storage }}"
{% endif %}

}
}
{% if not loop.last %},
{% endif %}
{% endfor %}
]

8.2.10.2.10 Fichier static-strategy.json

[
{

"id" : "default",
"offers" : [

{% for item in vitam_strategy %}
{% if item.id is defined %}

{
"id" : "{{ item.id }}"{% if item.referent | default(false) | bool ==

→˓true %}, "referent" : true{% endif %}{% if item.status is defined %}, "status" : "{
→˓{ item.status | upper }}" {% endif %}{% if item.rank is defined %}, "rank" : "{{
→˓item.rank }}"{% endif %}

(suite sur la page suivante)

8.2. Composants 209

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

}{% if not loop.last %},{% endif %}
{% else %}

{
"id" : "{{ item.name }}.service.{{ item.vitam_site_name |

→˓default(vitam_site_name) }}.{{ consul_domain }}"{% if item.referent |
→˓default(false) | bool == true %}, "referent" : true{% endif %}{% if item.status is
→˓defined %}, "status" : "{{ item.status | upper }}" {% endif %}{% if item.rank is
→˓defined %}, "rank" : "{{ item.rank }}"{% endif %}

}{% if not loop.last %},{% endif %}
{% endif %}
{% endfor %}

]
}

{% if other_strategies is defined %}
{% for strategy_name, strategy_offers in other_strategies.items() %}

,
{

"id" : "{{ strategy_name }}",
"offers" : [

{% for strategy_offer in strategy_offers %}
{
"id" : "{{ strategy_offer.name }}.service.{{ strategy_offer.vitam_

→˓site_name | default(vitam_site_name) }}.{{ consul_domain }}"{% if strategy_offer.
→˓referent | default(false) | bool == true %}, "referent" : true{% endif %}{% if
→˓strategy_offer.status is defined %}, "status" : "{{ strategy_offer.status | upper }}
→˓" {% endif %}{% if strategy_offer.rank is defined %}, "rank" : "{{ strategy_offer.
→˓rank }}"{% endif %}

}{% if not loop.last %},{% endif %}
{% endfor %}

]
}

{% endfor %}
{% endif %}

]

8.2.10.2.11 Fichier storage-client.conf

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.10.2.12 Fichier storage.conf

urlWorkspace: {{ vitam.workspace | client_url }}
timeoutMsPerKB: 100
jettyConfig: jetty-config.xml
zippingDirecorty: {{ vitam_folder_data }}/storage_archives
loggingDirectory: {{ vitam_folder_log }}

210 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.10.2.13 Fichier storage-offer.conf

strategy_name=[{% for item in vitam_strategy %}"{{ item.name }}.service.{{ consul_
→˓domain }}"{% if not loop.last %},{% endif %}{% endfor %}]

8.2.10.2.14 Fichier tnr.conf

urlWorkspace: {{vitam.workspace | client_url}}
tenantsTest: ["0"]
vitamSecret: {{ plateforme_secret }}
tenants: ["{{ vitam_tenant_ids | join('", "') }}"]
adminTenant: {{ vitam_tenant_admin }}

8.2.10.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-ihm-recette

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-ihm-recette

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Gestion des utilisateurs

Les utilisateurs sont actuellement gérés via le fichier shiro.ini, dans la section [users].

∙ Créer un utilisateur
Lancer la commande shell suivante pour générer le mot de passe :

echo -n <motdepasse> | sha256sum

Copier le résultat.
Ensuite, éditer le fichier /vitam/conf/ihm-recette/shiro.ini et ajouter, dans la section
[users], la ligne suivante :

<login de l'utilisateur>=<résultat de la commande de génération de mot de
→˓passe précédente>

Pour terminer, relancer le service vitam-ihm-recette par la commande :

systemctl restart vitam-ihm-recette

∙ Supprimer un utilisateur

Dans la section [users], enlever la ligne correspondant à l’utilisateur à supprimer. Pour terminer, re-
lancer le service vitam-ihm-recette par la commande :

systemctl restart vitam-ihm-recette

8.2. Composants 211

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Exports

N/A
∙ gestion de la capacité

N/A
∙ actions récurrentes

∙ cas des batches

N/A

8.2.11 Ingest

8.2.11.1 Introduction

Ce document présente les configurations pour utiliser les différents modules de ingest.

8.2.11.2 ingest-external

8.2.11.2.1 Présentation

Ingest-external est le composant d’interface entre VITAM et un SIA client, permettant de réaliser des entrées d’archives
dans VITAM.

Rôle :
∙ Exposer les API publiques du système
∙ Sécuriser l’accès aux API de VITAM

8.2.11.2.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/ingest-external.

8.2.11.2.2.1 Fichier ingest-external.conf

path: {{ vitam_folder_data }}
jettyConfig: jetty-config.xml
authentication: false
tenantFilter : true
antiVirusScriptName: scan-{{ vitam_struct.antivirus }}.sh
ignoreAntivirusCheck: {{ vitam_struct.ignore_antivirus_check | default(false) | bool }
→˓}
timeoutScanDelay: {{ vitam_struct.scantimeout | default(1200000) }}
baseUploadPath: {{ vitam_struct.upload_dir | default('/vitam/data/ingest-external/
→˓upload') }}
successfulUploadDir: {{ vitam_struct.success_dir | default('/vitam/data/ingest-
→˓external/upload/success') }}
failedUploadDir: {{ vitam_struct.fail_dir | default('/vitam/data/ingest-external/
→˓upload/failure') }}

(suite sur la page suivante)

212 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

fileActionAfterUpload: {{ vitam_struct.upload_final_action | default('MOVE') }}
allowSslClientHeader: {{ vitam_defaults.trust_client_certificate_header |
→˓default(false) | bool }}

Ce fichier contient un appel au shell d’antivirus (par défaut, ClamAV) ; se reporter au DIN.

Il est possible, dans le cas de fichiers SIP volumineux, d’héberger des fichiers directement dans ingest-external (valeur
de la directive baseUploadPath). Ces fichiers doivent être accessibles et utilisables par le user système vitam.

Les options associées à cette fonctionnalité peuvent être paramétrées dans le fichier deploy-
ment/environment/group_vars/all/advanced/vitam_vars.yml avant installation de Vitam.

La directive fileActionAfterUpload accepte les valeurs :

∙ NONE : le fichier reste

∙ MOVE : déplace le fichiers vers les valeurs des directives successfulUploadDir (en cas de succès de
l’ingest) et failedUploadDir (en cas de non-succès de l’ingest)

∙ DELETE : le fichier est supprimé en cas de succès de l’ingest uniquement

A charge à l’exploitant de bien gérer l’espace disque de ces répertoires (il faut penser aux ingests en échecs par
exemple).

Se reporter au manuel de développement pour l’appel d’API associé.

8.2.11.2.2.2 Fichier ingest-internal-client.conf

serverHost: {{ vitam.ingestinternal.host }}
serverPort: {{ vitam.ingestinternal.port_service }}

8.2.11.2.2.3 Fichier internal-security-client.conf

serverHost: {{ vitam.security_internal.host }}
serverPort: {{ vitam.security_internal.port_service }}
secure: {{ vitam.security_internal.https_enabled | bool | lower }}

8.2.11.2.2.4 Fichier format-identifiers.conf

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: {{ siegfried.port }}
rootPath: {{ vitam_folder_data }}/
versionPath: {{ vitam_folder_data }}/version/folder

8.2.11.2.2.5 Fichier functional-administration-client.conf

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2. Composants 213

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.11.2.2.6 Fichier scan-clamav.sh

Ce script de scan appelle l’antivirus (par défaut, clamAV; ce paramètre est surchargeable à l’installation ; se référer
au :term‘DIN‘ pour plus de précisions) pour détecter les virus.

#!/bin/sh

##
Role:
Scan a single file using clamav anti-virus
##
Args:
- file to scan
##
Return:
- 0: scan OK - no virus
RET_NOTVIRUS=0
- 1: virus found and corrected
RET_VIRUS_FOUND_FIXED=1
- 2: virus found but not corrected
RET_VIRUS_FOUND_NOTFIXED=2
- 3: Fatal scan not performed
RET_FAILURE=3
stdout : names of virus found (1 per line) if virus found ;
failure description if failure
stderr : full ouput of clamav
##

Default return code : scan NOK
RET=3
OUTPUT_DIR=$(mktemp -d)
if [$# -ne 1]; then # Argument number must be one

echo "ERROR : $# parameter(s) provided, only one parameter is needed"
else # one argument, let's go

if [! -f "$1"];then # if the file wich will be scan is existing, keep going
echo "ERROR : \"$1\" doesn't exit"

else
clamdscan -z --stream "$1" 1> ${OUTPUT_DIR}/stdout 2> ${OUTPUT_DIR}/stderr #

→˓scanning the file and store the output OUTPUT
RET=$? # return code of clamscan

Always output clamscan outputs to our own stderr
(>&2 cat ${OUTPUT_DIR}/stdout ${OUTPUT_DIR}/stderr)

if [${RET} -eq ${RET_VIRUS_FOUND_FIXED}] ; then
RET=2 # if virus found clamscan return 1; the script must return 2
(>&1 cat ${OUTPUT_DIR}/stdout | grep ‘basename ${1}‘ | cut -d ' ' -f 2) #

→˓sending the list of virus to our own stdout
elif [${RET} -eq 2] ; then
RET=3 # if scan not performed clamscan return 2; the script must return 3
(>&1 cat ${OUTPUT_DIR}/stdout | grep ‘basename ${1}‘ | cut -d ' ' -f 2-) #

→˓sending the failure reason to our own stdout
fi

if [-f "${OUTPUT_DIR}/stdout"]
then

rm ${OUTPUT_DIR}/stdout

(suite sur la page suivante)

214 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

fi
if [-f "${OUTPUT_DIR}/stderr"]
then

rm ${OUTPUT_DIR}/stderr
fi

fi
fi
rmdir ${OUTPUT_DIR}
exit ${RET}

8.2.11.2.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-ingest-external

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-ingest-external

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
ingest-external/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.11.3 ingest-internal

8.2.11.3.1 Présentation

Rôle :

∙ Permettre l’entrée d’une archive SEDA dans le SAE

Fonctions :

∙ Upload HTTP de fichiers au format SEDA

∙ Sas de validation antivirus des fichiers entrants

∙ Persistance du SEDA dans workspace

∙ Lancement des workflows de traitements liés à l’entrée dans processing

8.2. Composants 215

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.11.3.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/ingest-internal.

8.2.11.3.2.1 Fichier ingest-internal.conf

workspaceUrl: {{vitam.workspace | client_url}}
processingUrl: {{vitam.processing | client_url}}
jettyConfig: jetty-config.xml

Ce fichier précise les URLs pour les services « Processing » et « Workspace », et la configuration du serveur jetty.

8.2.11.3.2.2 Fichier storage-client.conf

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.11.3.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-ingest-internal

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-ingest-internal

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
ingest-internal/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

216 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.12 Security-Internal

8.2.12.1 Introduction

Ce document présente la configuration pour le module security-internal.

8.2.12.2 security-internal-exploitation

Ce document spécifie la configuration (fichiers de config) pour lancer le services de security-internal.

8.2.12.2.1 Fichier security-internal.conf

Ce fichier permet de définir la configuration du serveur MongoDB, du serveur jetty, les tenants, ainsi que la configu-
ration de l’authentification personae pour les permissions des endpoints externes de VITAM.

Configuration MongoDB
mongoDbNodes:
{% for host in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[host]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
dbName: identity
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data'].securityInternal.user }}
dbPassword: {{ mongodb['mongo-data'].securityInternal.password }}

jettyConfig: jetty-config.xml

personalCertificatePermissionConfig: personal-certificate-permissions.conf

#Basic Authentication
adminBasicAuth:
- userName: {{ admin_basic_auth_user }}

password: {{ admin_basic_auth_password }}

8.2.12.2.2 Fichier personal-certificate-permissions.conf

Configuration des permissions nécessitant une authentification personae ou ne nécessitant pas d’authentification per-
sonae.

Personal certification configuration for endpoint permissions

permissionsRequiringPersonalCertificate:

permissionsWithoutPersonalCertificate:
- 'dipexport:create'
- 'dipexportv2:create'
- 'dipexport:id:dip:read'
- 'transfers:create'
- 'transfers:reply'
- 'transfers:id:sip:read'

(suite sur la page suivante)

8.2. Composants 217

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- 'logbookobjectslifecycles:id:read'
- 'logbookoperations:read'
- 'logbookoperations:id:read'
- 'logbookunitlifecycles:id:read'
- 'units:read'
- 'units:unitpid:id:read'
- 'objects:unitpid:id:objects:read:binary'
- 'objects:objectpid:id:read'
- 'objects:objectpid:id:read:binary'
- 'units:stream'
- 'objects:stream'
- 'units:id:read:json'
- 'units:id:update'
- 'units:id:objects:read:json'
- 'units:id:objects:read:binary'
- 'units:id:objects:accessrequests:create'
- 'accessrequests:check'
- 'accessrequests:remove'
- 'units:update'
- 'units:update:revert'
- 'unitsWithInheritedRules:read'
- 'units:rules:update'
- 'units:bulk:update'
- 'accesscontracts:create:json'
- 'accesscontracts:read'
- 'accesscontracts:id:read'
- 'accesscontracts:id:update'
- 'accessionregisters:read'
- 'accessionregisters:id:accessionregisterdetails:read'
- 'agencies:create'
- 'agencies:read'
- 'agencies:id:read'
- 'agenciesfile:check'
- 'agenciesreferential:id:read'
- 'audits:create'
- 'contexts:create:json'
- 'contexts:read'
- 'contexts:id:read'
- 'contexts:id:update'
- 'distributionreport:id:read'
- 'formats:read'
- 'formats:create'
- 'formats:id:read'
- 'formatsfile:check'
- 'ingestcontracts:create:json'
- 'ingestcontracts:read'
- 'ingestcontracts:id:read'
- 'ingestcontracts:id:update'
- 'operations:read'
- 'operations:id:read:status'
- 'operations:id:read'
- 'operations:id:update'
- 'operations:id:delete'
- 'profiles:create:binary'
- 'profiles:create:json'
- 'profiles:read'
- 'profiles:id:read:json'

(suite sur la page suivante)

218 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- 'profiles:id:update:binaire'
- 'profiles:id:read:binary'
- 'profiles:id:update:json'
- 'rules:read'
- 'rules:create'
- 'rules:id:read'
- 'rulesfile:check'
- 'rulesreport:id:read'
- 'rulesreferential:id:read'
- 'securityprofiles:create:json'
- 'securityprofiles:read'
- 'securityprofiles:id:read'
- 'securityprofiles:id:update'
- 'traceability:id:read'
- 'traceabilitychecks:create'
- 'traceabilitylinkedchecks:create'
- 'workflows:read'
- 'ingests:create'
- 'ingests:local:create'
- 'ingests:id:archivetransfertreply:read'
- 'ingests:id:manifests:read'
- 'switchindex:create'
- 'reindex:create'
- 'evidenceaudit:check'
- 'referentialaudit:check'
- 'archiveunitprofiles:create:binary'
- 'archiveunitprofiles:create:json'
- 'archiveunitprofiles:read'
- 'archiveunitprofiles:id:read:json'
- 'archiveunitprofiles:id:update:json'
- 'ontologies:create:binary'
- 'ontologies:create:json'
- 'ontologies:read'
- 'ontologies:id:read:json'
- 'ontologies:id:read:binary'
- 'ontologies:id:update:json'
- 'reclassification:update'
- 'rectificationaudit:check'
- 'storageaccesslog:read:binary'
- 'objects:read'
- 'elimination:analysis'
- 'elimination:action'
- 'forcepause:check'
- 'removeforcepause:check'
- 'probativevalue:check'
- 'probativevalue:create'
- 'accessionregisterssymbolic:read'
- 'griffins:create'
- 'preservationScenarios:create'
- 'griffins:read'
- 'griffin:read'
- 'preservationScenarios:read'
- 'preservationScenario:read'
- 'preservation:update'
- 'batchreport:id:read'
- 'preservationreport:id:read'
- 'logbookoperations:create'

(suite sur la page suivante)

8.2. Composants 219

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- 'computeInheritedRules:action'
- 'computeInheritedRules:delete'
- 'managementcontracts:create:json'
- 'managementcontracts:read'
- 'managementcontracts:id:read'
- 'managementcontracts:id:update'
- 'audit:data:consistency'
- 'objects:deleteGotVersions'
- 'accessionregisterdetails:read'
- 'transaction:read'
- 'transaction:create'
- 'transaction:close'
- 'transaction:reopen'
- 'transaction:abort'
- 'transaction:send'
- 'transaction:id:units'
- 'transaction:id:units:update'
- 'transaction:id:units:metadata:csv:update'
- 'transaction:id:units:metadata:jsonl:update'
- 'transaction:id:units:bulk:update'
- 'transaction:unit:create'
- 'transaction:zip:create'
- 'transaction:unitsWithInheritedRules:read'
- 'transaction:update'
- 'transaction:unit:read'
- 'transaction:unit:id:read'
- 'transaction:object:upsert'
- 'transaction:object:read'
- 'transaction:binary:upsert'
- 'transaction:binary:read'
- 'project:create'
- 'project:read'
- 'project:update'
- 'project:id:read'
- 'project:query:read'
- 'project:id:binary'
- 'project:id:units'
- 'project:id:zip:create'
- 'project:id:delete'
- 'project:id:transactions'
- 'transaction:id:delete'
- 'transaction:id:read'
- 'job:read'
- 'schema:unit:read'
- 'schema:objectgroup:read'
- 'schema:unit:create'
- 'schema:unit:delete'

8.2.12.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-security-internal

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-security-internal

220 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
vitam-security-internal/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.13 Logbook

8.2.13.1 Présentation

8.2.13.2 Logbook Exploitation

8.2.13.2.1 Configuration du Logbook

logbook.conf : fichier Yaml de configuration du serveur logbook. Celle-ci possède une propriété :

∙ alertEvents : configuration des alertes de sécurité

une alerte est déclenchée soit sur l’analyse du couple {evType,outCome} soit sur celle du {outDetail}

1. Dans le cas du déclenchement sur l’analyse du couple {evType, outCome}

- evType: 'CHECK_HEADER.CHECK_CONTRACT_INGEST'
outcome: 'KO'

2. Dans le cas du déclenchement sur l’analyse du {outComeDetail}

- outDetail: 'CHECK_HEADER.CHECK_CONTRACT_INGEST.KO'

3. La liste des détections de l’alerte

∙ non conformité de la base des règles de gestion au référentiel enregistré (CHECK_RULES)

∙ refus d’entrée d’un SIP pour des raisons d’inadéquation de contrats
(CHECK_HEADER.CHECK_CONTRACT_INGEST)

∙ soumission d’un SIP avec une classification incompatible avec la plateforme
(CHECK_CLASSIFICATION_LEVEL)

∙ valeur de durée dans les régle de gestion inférieure à la durée minimum
(CHECK_RULES.MAX_DURATION_EXCEEDS)

∙ refus d’un accès avec les droits personae (STP_PERSONAL_CERTIFICATE_CHECK)

8.2. Composants 221

VITAM - Documentation d’exploitation, Version 7.1.5

∙ absence de sécurisation des journaux sur 12h (TODO)

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/logbook.

8.2.13.2.2 Fichier logbook.conf

#jinja2: lstrip_blocks: True
Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
dbName: logbook
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data'].logbook.user }}
dbPassword: {{ mongodb['mongo-data'].logbook.password }}
jettyConfig: jetty-config.xml
p12LogbookPassword: {{ keystores.timestamping.secure_logbook }}
p12LogbookFile: keystore_secure-logbook.p12
workspaceUrl: {{ vitam.workspace | client_url }}
processingUrl: {{ vitam.processing | client_url }}

ElasticSearch
clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for server in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[server]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}

ElasticSearch tenant indexation
elasticsearchTenantIndexation:

default_config:
logbookoperation:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓logbookoperation.number_of_replicas | default('2') }}

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

(suite sur la page suivante)

222 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

{% endif %}
{% endfor %}

{% endif %}

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}
- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.logbookoperation is defined %}
logbookoperation:

{% if entry.logbookoperation.number_of_shards is defined %}
number_of_shards: {{ entry.logbookoperation.number_of_shards }}
{% endif %}
{% if entry.logbookoperation.number_of_replicas is defined %}
number_of_replicas: {{ entry.logbookoperation.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

#Basic Authentication
adminBasicAuth:
- userName: {{ admin_basic_auth_user }}

password: {{ admin_basic_auth_password }}

Configuration for logbook coherence check
list of operations that generate LFC
opWithLFC: [

"PROCESS_SIP_UNITARY",
"FILINGSCHEME",
"HOLDINGSCHEME",
"UPDATE_RULES_ARCHIVE_UNITS",
"PROCESS_AUDIT",
"STP_UPDATE_UNIT"]

list of events not declared in wf
opEventsNotInWf: [

"STP_SANITY_CHECK_SIP",
"SANITY_CHECK_SIP",
"CHECK_CONTAINER",
"STP_UPLOAD_SIP"

]
list of events to skip for OP-LFC check
opLfcEventsToSkip: [

"STP_SANITY_CHECK_SIP", "SANITY_CHECK_SIP", "CHECK_CONTAINER", "STP_UPLOAD_SIP",
→˓"ATR_NOTIFICATION", "ROLL_BACK",
"STORAGE_AVAILABILITY_CHECK", "ACCESSION_REGISTRATION",
"ROLL_BACK", "ATR_NOTIFICATION", "COMMIT_LIFE_CYCLE_OBJECT_GROUP", "COMMIT_LIFE_

→˓CYCLE_UNIT",
"LIST_OBJECTGROUP_ID", "REPORT_AUDIT",
"LIST_ARCHIVE_UNITS", "LIST_RUNNING_INGESTS"]

Configuration des alertes de securite
alertEvents:
- evType: 'CHECK_HEADER.CHECK_CONTRACT_INGEST'

outcome: 'KO'
(suite sur la page suivante)

8.2. Composants 223

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- evType: 'CHECK_RULES.MAX_DURATION_EXCEEDS'
outcome: 'KO'

- evType: 'CHECK_RULES'
outcome: 'KO'

- outDetail: 'CHECK_CLASSIFICATION_LEVEL.KO'
- outDetail: 'STP_PERSONAL_CERTIFICATE_CHECK.KO'

Traceability params
operationTraceabilityTemporizationDelay: {{ vitam.logbook.
→˓operationTraceabilityTemporizationDelay | default(300) }}
operationTraceabilityMaxRenewalDelay: {{ vitam.logbook.
→˓operationTraceabilityMaxRenewalDelay | default(690) }}
operationTraceabilityMaxRenewalDelayUnit: {{ vitam.logbook.
→˓operationTraceabilityMaxRenewalDelayUnit | default('MINUTES') }}
operationTraceabilityThreadPoolSize: {{ vitam.logbook.
→˓operationTraceabilityThreadPoolSize | default(16) }}
lifecycleTraceabilityTemporizationDelay: {{ vitam.logbook.
→˓lifecycleTraceabilityTemporizationDelay | default(300) }}
lifecycleTraceabilityMaxRenewalDelay: {{ vitam.logbook.
→˓lifecycleTraceabilityMaxRenewalDelay | default(690) }}
lifecycleTraceabilityMaxRenewalDelayUnit: {{ vitam.logbook.
→˓lifecycleTraceabilityMaxRenewalDelayUnit | default('MINUTES') }}
lifecycleTraceabilityMaxEntries: {{ vitam.logbook.lifecycleTraceabilityMaxEntries |
→˓default(100000) }}

{% if primary_site | lower != "true" %}
Reconstruction cache duration (in minutes)
reconstructionMetricsCacheDurationInMinutes: {{ vitam.logbook.
→˓reconstructionMetricsCacheDurationInMinutes | default(15) }}
{% endif %}

8.2.13.2.3 Fichier functional-administration-client.conf

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2.13.2.4 Fichier logbook-client.conf

serverHost: {{ vitam.logbook.host }}
serverPort: {{ vitam.logbook.port_service }}

8.2.13.2.5 Fichier storage-client.conf

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.13.3 Opérations

∙ Démarrage du service

224 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

En tant qu’utilisateur root : systemctl start vitam-logbook

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-logbook

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
logbook/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.14 Metadata

8.2.14.1 Présentation

8.2.14.2 Configuration / fichiers utiles

8.2.14.2.1 Fichier metadata.conf

#jinja2: lstrip_blocks: True
workspaceUrl: {{vitam.workspace | client_url}}
urlProcessing: {{vitam.processing | client_url}}
contextPath: {{ vitam_struct.context_path }}

Archive Unit Profile cache settings (max entries in cache & retention timeout in
→˓seconds)
archiveUnitProfileCacheMaxEntries: {{ vitam.metadata.
→˓archiveUnitProfileCacheMaxEntries }}
archiveUnitProfileCacheTimeoutInSeconds: {{ vitam.metadata.
→˓archiveUnitProfileCacheTimeoutInSeconds }}

Schema validator cache settings (max entries in cache & retention timeout in
→˓seconds)
schemaValidatorCacheMaxEntries: {{ vitam.metadata.schemaValidatorCacheMaxEntries }}
schemaValidatorCacheTimeoutInSeconds: {{ vitam.metadata.
→˓schemaValidatorCacheTimeoutInSeconds }}

DIP purge service (in minutes)
dipTimeToLiveInMinutes: {{ vitam.metadata.dipTimeToLiveInMinutes }}
criticalDipTimeToLiveInMinutes: {{ vitam.metadata.criticalDipTimeToLiveInMinutes }}

(suite sur la page suivante)

8.2. Composants 225

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

TRANSFER purge service (in minutes)
transfersSIPTimeToLiveInMinutes: {{ vitam.metadata.transfersSIPTimeToLiveInMinutes }}

{% if primary_site | lower != "true" %}
Reconstruction cache duration (in minutes)
reconstructionMetricsCacheDurationInMinutes: {{ vitam.metadata.
→˓reconstructionMetricsCacheDurationInMinutes | default(15) }}
Concurrent reconstruction threads
reconstructionPoolSize: {{ vitam.metadata.reconstructionPoolSize | default(16) }}
Reconstruction bulk size
reconstructionBatchSize: {{ vitam.metadata.reconstructionBatchSize | default(1000) }}
Timeout for batch metadata loading from storage offers
reconstructionBatchLoadingTimeoutInSeconds: {{ vitam.metadata.
→˓reconstructionBatchLoadingTimeoutInSeconds | default(600) }}
{% endif %}

refreshElasticIndexPostBulkIndexing: {{ vitam.metadata.
→˓refreshElasticIndexPostBulkIndexing | default(true) }}

Units and Objects Stream Threshold
unitsStreamThreshold: {{ vitam.metadata.unitsStreamThreshold | default(1000000) }}
unitsStreamExecutionLimit: {{ vitam.metadata.unitsStreamExecutionLimit | default(3) }}
objectsStreamThreshold: {{ vitam.metadata.objectsStreamThreshold | default(1000000) }}
objectsStreamExecutionLimit: {{ vitam.metadata.objectsStreamExecutionLimit |
→˓default(3) }}

Persistent Identifier Reconstruction configuration
persistentIdentifierReconstructionDelayInMinutes: {{ vitam.metadata.
→˓persistentIdentifierReconstructionDelayInMinutes | default(1440) }}
persistentIdentifierReconstructionThreadPoolSize: {{ vitam.metadata.
→˓persistentIdentifierReconstructionThreadPoolSize | default(10) }}
persistentIdentifierReconstructionBulkSize: {{ vitam.metadata.
→˓persistentIdentifierReconstructionBulkSize | default(1000) }}

Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_data'] %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endfor %}
dbName: metadata
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb['mongo-data'].metadata.user }}
dbPassword: {{ mongodb['mongo-data'].metadata.password }}

jettyConfig: jetty-config.xml

ElasticSearch
clusterName: {{ vitam_struct.cluster_name }}
elasticsearchNodes:
{% for server in groups['hosts_elasticsearch_data'] %}
- hostName: {{ hostvars[server]['ip_service'] }}

httpPort: {{ elasticsearch.data.port_http }}
{% endfor %}

ElasticSearch External Metadata Mapping
elasticsearchExternalMetadataMappings:

(suite sur la page suivante)

226 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

- collection: Unit
mappingFile: {{ vitam.metadata.elasticsearch_mapping_dir }}/unit-es-mapping.json

- collection: ObjectGroup
mappingFile: {{ vitam.metadata.elasticsearch_mapping_dir }}/og-es-mapping.json

ElasticSearch tenant indexation
elasticsearchTenantIndexation:

default_config:
unit:

number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.unit.
→˓number_of_shards | default('1') }}

number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.
→˓unit.number_of_replicas | default('2') }}

objectgroup:
number_of_shards: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_shards | default('1') }}
number_of_replicas: {{ vitam_elasticsearch_tenant_indexation.default_config.

→˓objectgroup.number_of_replicas | default('2') }}

{% if vitam_elasticsearch_tenant_indexation.dedicated_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.dedicated_tenants is not none %}
dedicated_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.dedicated_tenants %}
- tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}
number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

{% if vitam_elasticsearch_tenant_indexation.grouped_tenants is defined and vitam_
→˓elasticsearch_tenant_indexation.grouped_tenants is not none %}
grouped_tenants:
{% for entry in vitam_elasticsearch_tenant_indexation.grouped_tenants %}
- name: '{{ entry.name }}'
tenants: '{{ entry.tenants }}'
{% if entry.unit is defined %}
unit:

{% if entry.unit.number_of_shards is defined %}
number_of_shards: {{ entry.unit.number_of_shards }}
{% endif %}
{% if entry.unit.number_of_replicas is defined %}

(suite sur la page suivante)

8.2. Composants 227

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

number_of_replicas: {{ entry.unit.number_of_replicas }}
{% endif %}

{% endif %}
{% if entry.objectgroup is defined %}
objectgroup:

{% if entry.objectgroup.number_of_shards is defined %}
number_of_shards: {{ entry.objectgroup.number_of_shards }}
{% endif %}
{% if entry.objectgroup.number_of_replicas is defined %}
number_of_replicas: {{ entry.objectgroup.number_of_replicas }}
{% endif %}

{% endif %}
{% endfor %}

{% endif %}

#Basic Authentication
adminBasicAuth:
- userName: {{ admin_basic_auth_user }}

password: {{ admin_basic_auth_password }}

{% if vitam.metadata.isDataConsistencyAuditRunnable | default(false) | bool %}
Metadata Consistency Audit (Experimental / Not for Production)
isDataConsistencyAuditRunnable: true
enableDataConsistencyRectificationMode: {{ vitam.metadata.
→˓enableDataConsistencyRectificationMode | default(false) }}
dataConsistencyAuditOplogMaxSize: {{ vitam.metadata.dataConsistencyAuditOplogMaxSize
→˓| default(100) }}

mongodShardsConf:
dbUserName: {{ mongodb['mongo-data']['localadmin']['user'] }}
dbPassword: {{ mongodb['mongo-data']['localadmin']['password'] }}
mongoDbShards:
{% for shard_id in groups['hosts_mongod_data'] | map('extract', hostvars, 'mongo_

→˓shard_id') | unique | sort %}
- shardName: shard{{ shard_id }}
mongoDbNodes:
{% for server in groups['hosts_mongod_data'] %}

{% if hostvars[server]['mongo_shard_id'] == shard_id %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongod_port }}
{% endif %}

{% endfor %}
{% endfor %}

{% endif %}

8.2.14.2.1.1 Paramétrage des caches

Metadata maintient en mémoire un ensemble de caches pour la gestion des données peu modifiées et qui interviennent
lors des modifications de métadonnées (référentiels d’ontologie, schéma de donnée).

Cache du référentiel de l’ontologie :

∙ ontologyCacheMaxEntries : Nombre maximum d’objets à maintenir dans le cache (par défaut 100). Ce
paramètre dépend du nombre de traitements actifs.

∙ ontologyCacheTimeoutInSeconds : Durée en secondes de rétention des objets en cache (par défaut
300, soit 5 minutes)

228 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Cache du référentiel des profiles d’unités archivistiques :

∙ archiveUnitProfileCacheMaxEntries : Nombre maximum d’objets à maintenir dans le cache (par
défaut 100). Ce paramètre dépend du nombre de traitements actifs.

∙ archiveUnitProfileCacheTimeoutInSeconds : Durée en secondes de rétention des objets en cache
(par défaut 300, soit 5 minutes)

Cache des validateurs de schémas chargés en mémoire :

∙ schemaValidatorCacheMaxEntries : Nombre maximum d’objets à maintenir dans le cache (par défaut
100). Ce paramètre dépend du nombre de traitements actifs.

∙ schemaValidatorCacheTimeoutInSeconds : Durée en secondes de rétention des objets en cache (par
défaut 300, soit 5 minutes)

8.2.14.2.1.2 Paramétrage des mappings externes elasticsearch

∙ elasticsearchExternalMetadataMappings : La liste des collections et le chemin vers le fichier de
mapping elasticsearch associé dans le dossier de configuration /vitam/conf/metadata/mapping

la Liste elasticsearchExternalMetadataMappings est composée comme suit :

∙ collection : La collection Unit en premier

∙ mappingFile : Le chemin vers le fichier mapping de la collection, généralement dans le fichier de configu-
ration du composant metadata.

∙ collection : La collection ObjectGroup

∙ mappingFile : Le chemin vers le fichier mapping de la collection, généralement dans le fichier de configu-
ration du composant metadata.

Avertissement : ces mapping devront être en cohérence avec l’ontologie.

8.2.14.2.1.3 Paramétrage de la limite du flux des unités archivestiques

∙ unitsStreamThreshold : c’est le seuil en nombre d’unités archivestiques de plateforme, si le nombre des
résultats dépassent ce seuil.

aucun résultat ne sera fourni.

∙ unitsStreamExecutionLimit : la limite d’exécution d’une recherche par jour. Si cette valeur est égale à
zéro, le nombre de recherche est illimité.

8.2.14.2.1.4 Paramétrage de la limite du flux des groupes d’objets techniques

∙ objectsStreamThreshold : c’est le seuil en nombre de group d’objets techniques.

Si le nombre des résultats dépassent ce seuil, aucun résultat ne sera fourni.

∙ objectsStreamExecutionLimit : la limite d’exécution d’une recherche par jour. Si cette valeur est égale
à zéro, le nombre de recherche est illimité.

8.2.14.2.2 Fichier functional-administration-client.conf

8.2. Composants 229

VITAM - Documentation d’exploitation, Version 7.1.5

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2.14.2.3 Fichier storage-client.conf

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.14.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-metadata

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-metadata

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
metadata/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.15 Processing

8.2.15.1 Introduction

8.2.15.1.1 But de cette documentation

Le but de cette documentation est d’expliquer la configuration et l’exploitation de ce module.

8.2.15.2 Processing

Nom de l’image docker : processing

Dans cette image est déployé le module processing

230 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.15.2.1 Configuration du worker

Dans /vitam/conf :

1. processing.conf : Fichier Yaml de configuration du server processing. Il possède une propriété :

∙ jettyConfig : emplacement du ficher de configuration XML jetty (exemple jetty-config.xml)

∙ urlWorkspace : URL d’accès au service distant workspace (exemple http://localhost:8088)

∙ urlMetadata : URL d’accès au service distant metadata (exemple http://localhost:8088)

2. logbook-client.conf : Fichier de configuration du client qui communique avec le logbook. Il contient les pro-
priétés suivantes :

∙ serverHost : host distant du service logbook

∙ serverPort : port distant du service logbook

3. server-identity.conf : identification du serveur

4. logback.xml : configuration des logs

8.2.15.2.2 Supervision du service

Contrôler le retour HTTP 200 et identité du serveur (cf server-identity.conf) sur l’URL <protocole web https
ou https>://<host>:<port>/processing/v1/status

8.2.15.3 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/processing.

8.2.15.3.1 Fichier processing.conf

urlMetadata: {{ vitam_struct | client_url }}
urlWorkspace: {{ vitam.workspace | client_url }}
jettyConfig: jetty-config.xml
workflowRefreshPeriod: 1
processingCleanerPeriod: 1
maxDistributionInMemoryBufferSize: {{vitam.processing.
→˓maxDistributionInMemoryBufferSize | default(100000) }}
maxDistributionOnDiskBufferSize: {{vitam.processing.maxDistributionOnDiskBufferSize |
→˓default(100000000) }}

Async resource monitoring config (for unavailable async resources when using tape
→˓storage offer)
delayAsyncResourceMonitor: {{vitam.processing.delayAsyncResourceMonitor |
→˓default(300) }}
delayAsyncResourceCleaner: {{vitam.processing.delayAsyncResourceCleaner |
→˓default(300) }}

8.2. Composants 231

http://localhost:8088
http://localhost:8088

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.15.3.2 Fichier version.conf

binaryDataObjectVersions:
- BinaryMaster
- Dissemination
- Thumbnail
- TextContent
physicalDataObjectVersions:
- PhysicalMaster
- Dissemination

8.2.15.3.3 Fichier storage-client.conf

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.15.3.4 Fichier metadata-client.conf

serverHost: {{ vitam.metadata.host }}
serverPort: {{ vitam.metadata.port_service }}

8.2.15.4 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-processing

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-processing

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
processing/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

232 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.15.5 Parallélisation des workflows et des opérations

∙ Plusieurs workflows et opérations fonctionnelles peuvent être bloqués par certains processus qui les empêchent
de terminer en succès. Cet

interblocage est dû à une utilisation mutuelles de certaines ressources qui ne peuvent pas être traitées par plusieurs
processus différents. Ci-dessous un tableau récapitulatif de la liste des workflows que VITAM exposent, leurs dépen-
dances par rapport à d’autres workflows qui les bloquent, ainsi que d’autres opérations qui présentent une dépendance
à d’autres opérations.

TABLEAU 1: Parallélisation des workflows et des opérations
Fonctionnalité

Workflow / Endpoint

Bloqué(e) par

Ingest BigIngestWorkflow.json
DefaultFilingSchemeWorkflow.json
DefaultHoldingSchemeWorkflow.json
DefaultIngestBlankTestWorkflow.json
DefaultIngestWorkflow.json /

Clean up Ingest IngestCleanupWorkflow.json Reclassification
Unit,Elimination(action),Transfer
reply, Clean up Ingest

MAJ units BulkAtomicUpdateUnitDescWorkflow.json /
MAJ RG units MassUpdateUnitRuleWorkflow.json /
MAJ units MassUpdateUnitDescWorkflow.json /
Calcul échéances ComputeInheritedRulesDeleteWorkflow.json

ComputeInheritedRulesWorkflow.json /
Revert Unit data RevertEssentialMetadataWorkflow.json /
Reclassification Unit ReclassificationWorkflow.json /
Calcul valeur probante ExportProbativeValueWorkflowV2.json /
Export Units ExportUnitWorkflow.json /
MAJ RG dans les units DefaultRulesUpdateWorkflow.json /
Migration de données DataMigrationWorkflow.json /
Audit DefaultAuditWorkflow.json /
Audit d’évidence de don-
nées

EvidenceAuditWorkflow.json /

Audit correctif de données RectificationAuditWorkflow.json /
Preservation PreservationWorkflow.json /
Suppression des Got DeleteGotVersionsWorkflow.json /
Sécurisation LFC Got DefaultObjectGroupLifecycleTraceability.jsonSécurisation LFC Got en cours, Gots à

sécuriser
Sécurisation LFC Unit DefaultUnitLifecycleTraceability.json Sécurisation LFC Unit en cours, Units à

sécuriser
Securisation logbook LinkedCheckTraceability.json /
Elimination (analyse) EliminationAnalysisWorkflow.json /
Elimination (action) EliminationActionWorkflow.json Reclassification

Unit,Elimination(action)
Transfer reply TransferReplyWorkflow.json /
Transfer units TransferUnitWorkflow.json /
Import des régles de ges-
tion

/adminmanagement/v1/rules/
import

Import des régles de gestion

Suite sur la page suivante

8.2. Composants 233

VITAM - Documentation d’exploitation, Version 7.1.5

Tableau 1 – suite de la page précédente
Fonctionnalité

Workflow / Endpoint

Bloqué(e) par

Import des services agents /adminmanagement/v1/
agencies/import

Import des services agents

8.2.16 scheduler

8.2.16.1 Présentation

Rôle :

∙ Lancer les opérations planifiées

Fonctions :

Liste des jobs sur les deux sites :

∙ Superviser l’expiration des certificats

Liste des jobs sur site primaire :

∙ Sécurisation du journal des opérations chaque heure à 05 minutes 0 secondes, par défaut.

∙ Sécurisation du journal du cycle de vie des unités archivistiques chaque heure à 35 minutes 0 secondes, par
défaut.

∙ Sécurisation du journal du cycle de vie des groupes d’objets chaque heure à 15 minutes 0 secondes, par défaut.

∙ Contrôle de la validité de la sécurisation des journaux chaque jour à 00 :55, par défaut.

∙ Déclencher le calcul des registres des fonds symbolique et les ajoute dans les bases de données chaque jour à
0 :50, par défaut.

∙ Validation de la cohérence des règles de gestion entre les offres de stockage et les bases de données chaque
heure à 40 minutes 0 secondes, par défaut.

Liste des jobs sur site secondaire :

∙ Reconstruction des données portées par le composant logbook chaque 05 minutes, par défaut.

∙ Reconstruction des données portées par le composant functional-administration chaque 05 minutes, par défaut.

∙ Reconstruction des données accession-register portées par le composant functional-administration chaque 05
minutes, par défaut.

La modification de ces crons peut être fait via la balise <cron-expression> dans les fichiers jobs-XXX.xml qui vont
être détaillé dans le chapitre suivant.

8.2.16.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/scheduler.

234 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.16.2.1 Fichier scheduler.conf

8.2.16.2.2 Fichier quartz.properties

8.2.16.2.3 Fichier jobs-functional-administration.xml

8.2.16.2.4 Fichier jobs-internal-security.xml

8.2.16.2.5 Fichier jobs-logbook.xml

8.2.16.2.6 Fichier jobs-metadata.xml

8.2.16.2.7 Fichier jobs-offer.xml

8.2.16.2.8 Fichier jobs-storage.xml

8.2.16.2.9 Fichier internal-security-client.conf

8.2.16.2.10 Fichier logbook-client.conf

8.2.16.2.11 Fichier metadata-client.conf

8.2.16.2.12 Fichier functional-administration-client.conf

8.2.16.3 Opérations

∙ Démarrage du service

Exécutez le playbook deployment/ansible-vitam-exploitation/start_vitam_scheduler.yml
pour lancer le service du planificateur la première fois. Pour démarrer les jobs ultérieurement, utilisez le playbook
deployment/ansible-vitam-exploitation/start_vitam_scheduling.yml.

∙ Arrêt du service

Exécutez le playbook deployment/ansible-vitam-exploitation/stop_vitam_scheduler.yml
pour arrêter le service du planificateur. Pour stopper les jobs, utilisez le playbook deployment/
ansible-vitam-exploitation/stop_vitam_scheduling.yml.

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web http ou https>://<host>:<port>/
scheduler/status

Contrôler le retour HTTP 200 sur l’URL http://<host>:<port admin>/scheduler/status

8.2.16.4 Description

Ce module se compose de jobs quartz pouvant être activés au besoin grâce à la configuration d’Ansible.

∙ AuditObjectJob

∙ AuditDataConsistencyMongoEsJob

8.2. Composants 235

VITAM - Documentation d’exploitation, Version 7.1.5

∙ IdentityExpirationJob

∙ MetadataReconstructionJob

∙ OfferLogCompactionJob

∙ PersistentIdentifierReconstructionJob

∙ ProcessObsoleteComputedInheritedRulesJob

∙ PurgeDipJob

∙ PurgeSipJob

∙ ReconstructionAccessionRegisterJob

∙ ReconstructionOperationJob

∙ ReconstructionReferentialJob

∙ ReferentialCreateSymblolicAccessionRegisterJob

∙ RuleManagementAuditJob

∙ StorageBackupLogJob

∙ StorageLogTraceabilityJob

∙ StoreGraphJob

∙ TraceabilityAuditJob

∙ TraceabilityJob

∙ TraceabilityLFCJob

Les détails de ces jobs sont expliqués ci-dessous.

8.2.16.4.1 Jobs quartz

Les jobs du planificateur s’activent automatiquement selon la configuration souhaitée.

Prudence : Attention, il faut que le délai d’exécution du job soit supérieur à org.quartz.scheduler.
idleWaitTime, qui est réglé à 30 secondes par défaut.

Si le délai d’exécution a été réglé par erreur à une valeur inférieure, il peut arriver qu’il soit impossible de chan-
ger le délai d’exécution à une valeur correcte. Dans ce cas, la procédure à suivre est de mettre les jobs en pause
(PUT http://<host>:<port admin>/scheduler/v1/pause/ALL), attendre au minimum 30 secondes,
puis réinitialiser les jobs (POST http://<host>:<port admin>/scheduler/v1/jobs)

8.2.16.4.1.1 AuditObjectJob.java

Ce job lance le workflow d’audit d’intégrité et/ou d’existence à travers la configuration auditType. Le job d’intégrité
se déclenche toutes les 4 heures, en commençant à 00 :30. Le job d’existence se déclenche toutes les 4 heures, en
commençant à 00 :50.

Ce job prend deux paramètres :

∙ operationsDelayInMinutes : permet de ne pas prendre les données fraîchement enregistrées.

∙ auditType : prend l’une des valeurs Existence ou Integrity.

8.2.16.4.1.2 AuditDataConsistencyMongoEsJob.java

Ce job permet de vérifier et corriger les incohérences entre MongoDB et Elasticsearch.

236 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.16.4.1.3 IdentityExpirationJob.java

Ce job vérifie s’il y a des certificats qui vont expirer. Il est programmé par défaut pour s’exécuter chaque jour à minuit.

8.2.16.4.1.4 MetadataReconstructionJob.java

Ce job facilite la reconstruction depuis l’offre vers MongoDB et Elasticsearch sur un site secondaire. On peut le
programmer à travers la valeur vitam_timers.metadata.frequency_reconstruction, et par défaut, il
se lance chaque 5 minutes.

8.2.16.4.1.5 OfferLogCompactionJob.java

Ce job gère la compaction des journaux de chaque offre et ne se lance que sur le site primaire. On peut le programmer
à travers la valeur vitam_timers.offer.frequency_offerlog_compaction, et par défaut, il se lance
toutes les 30 minutes, en commençant à la 10e minute de l’heure.

8.2.16.4.1.6 PersistentIdentifierReconstructionJob.java

Ce job facilite la reconstruction des identifiants persistants. On peut le programmer à travers la valeur
vitam_timers.metadata.frequency_persistent_identifier_reconstruction, par défaut, il
est désactivé.

8.2.16.4.1.7 ProcessObsoleteComputedInheritedRulesJob.java

Ce job s’occupe du traitement des règles calculées ou héritées devenues obsolètes et ne se lance
que sur le site primaire. On peut le programmer à travers la valeur vitam_timers.metadata.
frequency_computed_inherited_rules, par défaut, il se lance chaque jour à 2h30 du matin.

8.2.16.4.1.8 PurgeDipJob.java

Ce job effectue la purge des anciens DIP et ne se lance que sur le site primaire. On peut le programmer à travers la
valeur vitam_timers.metadata.frequency_purge_dip, par défaut, il se lance chaque heure.

8.2.16.4.1.9 PurgeSipJob.java

Ce job effectue la purge des anciens SIP et ne se lance que sur le site primaire. On peut le programmer à travers
la valeur vitam_timers.metadata.frequency_purge_transfers_sip, par défaut, il se lance chaque
matin à 2h25.

8.2.16.4.1.10 ReconstructionAccessionRegisterJob.java

Ce job permet de faire la reconstruction des données concernant AccessionRegisterSymbolic et Ac-
cessionRegisterDetail portées par le composant functional-administration uniquement sur le site secon-
daire. On peut le programmer à travers la valeur vitam_timers.functional_administration.
frequency_accession_register_reconstruction, par défaut, il se lance chaque 5min.

8.2. Composants 237

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.16.4.1.11 ReconstructionOperationJob.java

Ce job permet de faire la reconstruction des opérations depuis l’offre et logbook et ne se lance
que sur le site secondaire. On peut le programmer à travers la valeur vitam_timers.logbook.
frequency_logbook_reconstruction, par défaut, il se lance chaque 5min.

8.2.16.4.1.12 ReconstructionReferentialJob.java

Ce job permet de faire la reconstruction des données portées par le composant functional-administration
uniquement sur le site secondaire. On peut le programmer à travers la valeur vitam_timers.
functional_administration.frequency_reconstruction, par défaut, il se lance chaque 5min.

8.2.16.4.1.13 ReferentialCreateSymblolicAccessionRegisterJob.java

Ce job permet de déclencher une commande qui va calculer le registre des fonds symbolique et les ajoute dans les
bases de données uniquement sur le site primaire. On peut le programmer à travers la valeur vitam_timers.
functional_administration.frequency_create_accession_register_symbolic, par défaut,
il se lance chaque 5min.

8.2.16.4.1.14 RuleManagementAuditJob.java

Ce job permet de faire la validation de la cohérence des règles de gestion entre les offres de stockage et les
bases de données uniquement sur le site primaire. On peut le programmer à travers la valeur vitam_timers.
functional_administration.frequency_rule_management_audit, par défaut, il se lance chaque
jour, à 40 minutes passées de chaque heure.

8.2.16.4.1.15 StorageBackupLogJob.java

Ce job effectue la sauvegarde des journaux d’accès et des journaux d’écriture uniquement sur le site primaire. On
peut le programmer à travers la valeur vitam_timers.storage.vitam_storage_accesslog_backup,
par défaut, il se lance toutes les 4 heures, en commençant à minuit et 10 minutes.

8.2.16.4.1.16 StorageLogTraceabilityJob.java

Ce job assure la sécurisation des opérations de stockage uniquement sur le site primaire. On peut le programmer à
travers la valeur vitam_timers.storage.frequency_traceability_log, par défaut, il se lance toutes
les 4 heures, en commençant à minuit et 40 minutes.

8.2.16.4.1.17 StoreGraphJob.java

Ce job permet la sauvegrade des graphs sur l’offre uniquement sur le site primaire. On peut le programmer à travers la
valeur vitam_timers.metadata.frequency_store_graph, par défaut, il se lance toutes les 30 minutes,
en commençant à la 10e minute de chaque heure.

238 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.16.4.1.18 TraceabilityAuditJob.java

Ce job vérifie s’il y a eu une traçabilité au cours de la dernière période uniquement sur le site primaire. On peut le
programmer à travers la valeur vitam_timers.logbook.frequency_traceability_audit, par défaut,
il se lance à 00 :55 chaque jour. Ce job prend 4 paramètres :

∙ operationTraceabilityMaxRenewalDelay
∙ operationTraceabilityMaxRenewalDelayUnit
∙ lifecycleTraceabilityMaxRenewalDelay
∙ lifecycleTraceabilityMaxRenewalDelayUnit

8.2.16.4.1.19 TraceabilityJob.java

Ce job sécurise les opérations dans le logbook uniquement sur le site primaire. On peut le programmer à travers la
valeur vitam_timers.logbook.frequency_traceability_operations, par défaut, il se lance toutes
les heures, à la 5e minute de chaque heure.

8.2.16.4.1.20 TraceabilityLFCJob.java

Ce job sécurise les événements du cycle de vie dans le logbook uniquement sur le site primaire. On peut le program-
mer à travers la valeur vitam_timers.logbook.frequency_traceability_lfc_objectgroup, par
défaut, il se lance toutes les heures, à la 15e minute de chaque heure.

8.2.17 Storage

8.2.17.1 Introduction

8.2.17.1.1 But de cette documentation

Le but de cette documentation est d’expliquer la configuration et l’exploitation des modules :

∙ storage-engine
∙ storage-offer-default

8.2.17.2 storage-engine

8.2.17.2.1 Présentation

Rôle :

∙ Stockage des données (Méta Données, Objets Numériques et journaux SAE et de l’archive)

Fonctions :

∙ Utilisation de stratégie de stockage (abstraction par rapport aux offres de stockage sous-jacentes)

∙ Gestion des différentes offres de stockage

8.2. Composants 239

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.17.2.2 Storage Engine

Nom de l’image docker : storage-engine

Dans cette image sont déployés :

∙ le moteur de stockage (storage-engine)

∙ l’implémentation du driver correspondant à l’offre de stockage par défaut (storage-offer-default)

8.2.17.2.2.1 Configuration du moteur de stockage

Dans /vitam/conf :

1. storage-engine.conf : Fichier Yaml de configuration du server storage-engine. Il possède une propriété :

∙ urlWorkspace : URL d’accès au service distant workspace (exemple http://localhost:8088)

2. driver-location.conf : Fichier Yaml de configuration du DriverManager, Il permet de définir l’emplacement où
sont stockés les fichiers JAR contenant les implémentations des différents drivers pour les différentes offres. Il
possède une seule propriété :

∙ driverLocation : emplacement des jars (chemin absolu de préférence)

3. driver-mapping.conf : Fichier Yaml de configuration du DriverMapper (persistance de l’association driver /
offre). Pour le moment, ce fichier de configuration contient le chemin d’accès aux fichiers qui définissent le
mapping driver<->offre, plus tard il évoluera sans doute pour prendre en compte des données en base et donc
contenir la configuration d’accès à la base. Il contient deux propriétés :

∙ driverMappingPath : Définit l’emplacement des fichiers de persistance (au jourd’hui on a 1 seul driver/offre,
donc 1 seul fichier de persistence sera présent). La propriété doit finir par « / ».

∙ delimiter : Définit le « délimiteur » (CSV style) des fichiers.

4. static-offer.json : Contient la description de l’offre “default” au format JSON (un jour sera sans doute dans une
base de données). En PJ un exemple de ce fichier. La propriété baseUrl et parameters nécessitent d’être templaté.
Et la propriété parameters doit contenir keystore, trustore et leur mot de passe que le storage driver va utiliser
pour la vérification de l’authentication. Il s’agit de l’URL d’accès à l’offre de stockage “default”. Exemple :

{
"id" : "default",
"baseUrl" : "https://localhost:8088",
"parameters" : {
"user" : "bob"
"keyStore-keyPath": "src/test/resources/storage-test/tls/client/client.p12",
"keyStore-keyPassword": "vitam2016",
"trustStore-keyPath": "src/test/resources/storage-test/tls/server/truststore.jks",
"trustStore-keyPassword": "tazerty",
"referent": "true"

}
}

To remove TLS support :
∙ change « https » to « http » in baseUrl

240 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

http://localhost:8088

VITAM - Documentation d’exploitation, Version 7.1.5

{
"id" : "default",
"baseUrl" : "http://localhost:8088",
"parameters" : {
"user" : "bob"

}
}

To define « referent » offer :
∙ choose exactly one offer by adding parameter referent

[
{
"id" : "default",
"baseUrl" : "http://localhost:8088",
"parameters" : {

"user" : "bob",
"referent": "true"

}
},
{
"id" : "offer2",
"baseUrl" : "http://localhost:8089",
"parameters" : {

"user" : "bob"
}

}
]

∙ change storage-default-offer.json to disable authentication

jettyConfig: jetty-config-nossl.xml
authentication : false

∙ change the jetty-config-nossl.xml of the offer (CAS Manager) to not include any TLS configuration

5. static-strategy.json : Contient les informations de la stratégie de stockage (1 seule pour le moment). Ce fichier
n’est pas à modifier.

{
"id" : "default",
"hot" : {
"copy" : 1,
"offers" : [
{
"id" : "default",
"rank": 0

}
]

}
}

6. server-identity.conf : identification du serveur

7. logback.xml : configuration des logs

8.2. Composants 241

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.17.2.2.2 Configuration du driver de l’offre de stockage par défaut

Dans /vitam/data :
1. fr.gouv.vitam.storage.offers.workspace.driver.DriverImpl : Il s’agit du fichier de persistence. Il contient

l’identifiant de l’offre associée au driver (plus tard potentiellement DES offres associées) : « default ». Il DOIT
être placé dans le répertoire défini dans le fichier driver-mapping.conf.

Dans /vitam/lib :
1. storage-driver-default.jar : Il s’agit d’un jar contenant l’implémentation du Driver vitam pour l’offre « storage-

offer-default ». Ce jar DOIT être placé dans le dossier défini dans la propriété driverLocation du fichier driver-
location.conf. Par défaut il est chargé en tant que dépendance du projet.

8.2.17.2.2.3 Supervision du service

Contrôler le retour HTTP 200 et identité du serveur (cf server-identity.conf) sur l’URL <protocole web https
ou https>://<host>:<port>/storage/v1/status

8.2.17.2.3 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/storage-engine.

8.2.17.2.3.1 Fichier driver-location.conf

driverLocation: {{ vitam_folder_lib }}

8.2.17.2.3.2 Fichier driver-mapping.conf

driverMappingPath: {{ vitam_folder_data }}/
delimiter: ;

8.2.17.2.3.3 Fichier static-offer.json

[
{% for item in all_used_offers %}
{
{% if item.id is defined %}

"id" : "{{ item.id }}",
{% else %}

"id" : "{{ item.name }}.service.{{ item.vitam_site_name | default(vitam_site_
→˓name) }}.{{ consul_domain }}",
{% endif %}

"baseUrl" : "http{% if vitam.storageofferdefault.https_enabled | bool == true %}s{
→˓% endif %}://{{ item.name }}.service.{{ item.vitam_site_name | default(vitam_site_
→˓name) }}.{{ consul_domain }}:{{ vitam.storageofferdefault.port_service }}",

{% if item.asyncRead is defined %} "asyncRead": {{item.asyncRead|lower }}, {%
→˓endif %}

(suite sur la page suivante)

242 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

"parameters" : {
{% if vitam.storageofferdefault.https_enabled | bool == true %}
"keyStore-keyPath": "{{ vitam_folder_conf }}/keystore_storage.p12",
"keyStore-keyPassword": "{{ keystores.client_storage.storage }}",
"trustStore-keyPath": "{{ vitam_folder_conf }}/truststore_storage.jks",
"trustStore-keyPassword": "{{ truststores.client_storage }}"
{% endif %}

}
}
{% if not loop.last %},
{% endif %}
{% endfor %}
]

8.2.17.2.3.4 Fichier static-strategy.json

Ce fichier décrit les stratégies de stockage définies, ainsi que les offres en associées. Chaque offre de stockage définit
un ordre de lecture rank. Cet ordre sera pris en considération pour la lecture des objets dans une stratégie. Cependant,
pour le cas de la reconstruction, la lecture des objets se fait à travers l’offre référente de la startégie (celle qui a la
propriété referent en true).

[
{

"id" : "default",
"offers" : [

{% for item in vitam_strategy %}
{% if item.id is defined %}

{"id" : "{{ item.id }}"{% if item.referent | default(false) | bool ==
→˓true %}, "referent" : true{% endif %}{% if item.status is defined %}, "status" : "{
→˓{ item.status | upper }}" {% endif %}{% if item.rank is defined %}, "rank" : {{
→˓item.rank }} {% endif %}}{% if not loop.last %},{% endif %}
{% else %}

{"id" : "{{ item.name }}.service.{{ item.vitam_site_name |default(vitam_
→˓site_name) }}.{{ consul_domain }}"{% if item.referent | default(false) | bool ==
→˓true %}, "referent" : true{% endif %}{% if item.status is defined %}, "status" : "{
→˓{ item.status| upper }}" {% endif %}{% if item.rank is defined %}, "rank" : {{ item.
→˓rank }} {% endif %}}{% if not loop.last %},{% endif %}
{% endif %}
{% endfor %}

]
}

{% if other_strategies is defined %}
{% for strategy_name, strategy_offers in other_strategies.items() %}

,
{

"id" : "{{ strategy_name }}",
"offers" : [

{% for strategy_offer in strategy_offers %}
{"id" : "{{ strategy_offer.name }}.service.{{ strategy_offer.vitam_site_

→˓name |default(vitam_site_name) }}.{{ consul_domain }}"{% if strategy_offer.referent
→˓| default(false) | bool == true %}, "referent" : true{% endif %}{% if strategy_
→˓offer.status is defined %}, "status" : "{{ strategy_offer.status | upper }}" {%
→˓endif %}{% if strategy_offer.rank is defined %}, "rank" : {{ strategy_offer.rank }}
→˓{% endif %}}{% if not loop.last %},{% endif %}
{% endfor %}

(suite sur la page suivante)

8.2. Composants 243

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

]
}

{% endfor %}
{% endif %}

]

8.2.17.2.3.5 Fichier storage-engine.conf

readOnly: {{ primary_site | lower == "false" }}
urlWorkspace: {{ vitam.workspace | client_url }}
timeoutMsPerKB: {{ vitam.storageengine.timeoutMsPerKB }}
minWriteTimeoutMs: {{ vitam.storageengine.minWriteTimeoutMs }}
minBulkWriteTimeoutMsPerObject: {{ vitam.storageengine.minBulkWriteTimeoutMsPerObject
→˓}}
jettyConfig: jetty-config.xml
zippingDirecorty: {{ vitam_folder_data }}/storage_archives
loggingDirectory: {{ vitam_folder_log }}
p12LogbookPassword: {{ keystores.timestamping.secure_storage }}
p12LogbookFile: keystore_{{ vitam_timestamp_usage }}.p12
storageTraceabilityOverlapDelay: {{ vitam.storageengine.
→˓storageTraceabilityOverlapDelay }}
offerSynchronizationBulkSize: {{ vitam.storageengine.offerSynchronizationBulkSize }}
offerSyncThreadPoolSize: {{ vitam.storageengine.offerSyncThreadPoolSize }}
offerSyncNumberOfRetries: {{ vitam.storageengine.offerSyncNumberOfRetries }}
offerSyncFirstAttemptWaitingTime: {{ vitam.storageengine.
→˓offerSyncFirstAttemptWaitingTime }}
offerSyncWaitingTime: {{ vitam.storageengine.offerSyncWaitingTime }}
offerSyncAccessRequestCheckWaitingTime: {{ vitam.storageengine.
→˓offerSyncAccessRequestCheckWaitingTime }}
storageLogBackupThreadPoolSize: {{ vitam.storageengine.storageLogBackupThreadPoolSize
→˓}}
storageLogTraceabilityThreadPoolSize: {{ vitam.storageengine.
→˓storageLogTraceabilityThreadPoolSize }}
#Basic Authentication
adminBasicAuth:
- userName: {{ admin_basic_auth_user }}

password: {{ admin_basic_auth_password }}

8.2.17.2.4 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-storage

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-storage

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

244 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
storage/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.17.2.4.1 access-log

Le log des accès est généré lors d’un accès à l’objet (fichier numérique), que ce soit par téléchargement de l’objet ou
export d’un DIP. Les accès à l’unité archivistique ne sont pas concernés.

Exemple de log généré lors de l’export d’un DIP d’une unité archivistique ayant un GOT contenant un objet

{"eventDateTime":"2019-01-11T12:50:53.344","xRequestId":
→˓"aeeaaaaaachfmo4dabyw6aliht3q74aaaaaq","applicationId":"MyApplicationId-ChangeIt",
→˓"objectIdentifier":"aeaaaaaaaahk2vrsabz26alhywthyoaaaaba","size":"11","qualifier":
→˓"BinaryMaster","version":"1","contextId":"CT-000001","contractId":"ContratTNR",
→˓"archivesId":"aeaqaaaaaahk2vrsabz26alhywthzbaaaaea"}

Structure des logs :

∙ « eventDateTime » : date et heure de l’accès au format AAAA-MM-JJTHH :MM :SS.[digits de millisecondes]

∙ « xRequestId » : identifiant de l’opération d’export du DIP

∙ « applicationId » : identifiant de l’application ayant demandé l’export du DIP

∙ « objectIdentifier » : identifiant de l’objet auquel on a accédé

∙ « size » : taille en octets de l’objet

∙ « qualifier » : usage de l’objet

∙ « version » : version de l’usage de l’objet

∙ « contextId » : identifiant du contexte utilisé pour l’accès

∙ « contractId » : identifiant du contrat utilisé pour l’accès

∙ « archivesId » : identifiant de l’unité archivistique dont dépend le groupe d’objets contenant l’objet auquel on a
accédé

Selon le paramétrage du contrat d’accès (AccessLog ACTIVE/INACTIVE), l’accès à un objet sera journalisé ou non.
Par défaut, l’accès n’est pas journalisé.

Pour l’heure système en cours, ces fichiers sont présents sur les machines hébergeant le composant storage sous
l’arborescence /vitam/log/storage/access-log/. Chaque fichier est nommé tel que :

<tenant>_<date>_<id opération>.log

Exemple en stockage filesystem pour un environnement nommé int : /vitam/data/offer/container/
int_<tenant>_storageaccesslog/

8.2. Composants 245

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.17.3 offer

8.2.17.3.1 Présentation

Ce composant est une déclinaison des offres de stockage pérenne des données.

Rôle :

∙ Fournir une offre de stockage par défaut permettant la persistance des objets.

Fonctions :

∙ Offre de stockage fournie par défaut

∙ Stockage simple des objets numériques sur plusieurs providers :

∙ stockage sur système de fichiers local

∙ stockage sur object store compatible S3

∙ stockage sur object store compatible Swift

∙ stockage sur bibliothèques de bandes magnétiques (offre froide).

Par tenant VITAM déclaré, jusqu’à 17 containers sont créés :

∙ accessionregisterdetail

∙ accessionregistersymbolic

∙ backup

∙ backup_operation

∙ check_logbookreports

∙ dip

∙ distribution_reports

∙ logbook

∙ manifest

∙ object

∙ objectGroup

∙ report

∙ rules

∙ storageaccesslog

∙ storagelog

∙ storagetraceability

∙ unit

selon la norme <vitam_site_name>_<tenant>_<container> (R9 et plus) ou <tenant>_<container>
(R7 et migrations depuis R7).

8.2.17.3.2 Storage Offer Default

Nom de l’image docker : storage-offer-default

Dans cette image est déployée l’offre de stockage par défaut utilisant le workspace.

246 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

8.2.17.3.2.1 Configuration de l’offre de stockage

1. default-storage.conf : Fichier Yaml de configuration du service. Contient les propriétés suivantes :

∙ contextPath : context path du server (mettre / par défaut)
∙ storagePath : chemin sur le filesystem sur lequel sont stockés les objects (/vitam/data).

2. server-identity.conf : identification du serveur
3. logback.xml : configuration des logs

8.2.17.3.2.2 Supervision du service

Contrôler le retour HTTP 200 et identité du serveur (cf server-identity.conf) sur l’URL <protocole web https
ou https>://<host>:<port>/offer/v1/status

8.2.17.3.3 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/offer.

8.2.17.3.3.1 Fichier default-offer.conf

contextPath: /
Smile : TODO : remove storagePath from this file
storagePath: {{ vitam_folder_data }}
jettyConfig: jetty-config.xml
authentication: {{ vitam_struct.https_enabled | bool | lower }}
Configuration MongoDB
mongoDbNodes:
{% for server in groups['hosts_mongos_offer'] %}
{% if hostvars[server]['mongo_cluster_name'] == offer_conf or inventory_hostname in
→˓single_vm_hostnames %}
- dbHost: {{ hostvars[server]['ip_service'] }}

dbPort: {{ mongodb.mongos_port }}
{% endif %}
{% endfor %}
dbName: offer
dbAuthentication: {{ mongodb.mongo_authentication }}
dbUserName: {{ mongodb[offer_conf].offer.user }}
dbPassword: {{ mongodb[offer_conf].offer.password }}

offerLogCompaction:
expirationValue: {{ vitam_offers[offer_conf].offer_log_compaction.expiration_value

→˓| default(21) }}
expirationUnit: {{ vitam_offers[offer_conf].offer_log_compaction.expiration_unit |

→˓default("DAYS") }}
compactionSize: {{ vitam_offers[offer_conf].offer_log_compaction.compaction_size |

→˓default(10000) }}

maxBatchThreadPoolSize: {{ vitam_offers[offer_conf]["maxBatchThreadPoolSize"] |
→˓default(32) }}

(suite sur la page suivante)

8.2. Composants 247

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

batchMetadataComputationTimeout: {{ vitam_offers[offer_conf][
→˓"batchMetadataComputationTimeout"] | default(600) }}
cleanupObjectsOnWriteError: {{ vitam_offers[offer_conf]["cleanupObjectsOnWriteError"]
→˓| default(true) }}

8.2.17.3.3.2 Fichier default-storage.conf

provider: {{ vitam_offers[offer_conf]["provider"] }}

{% if vitam_offers[offer_conf]["provider"] in ["filesystem","filesystem-hash"] %}
storagePath: {{ vitam_folder_data }}
{% endif %}

{% if vitam_offers[offer_conf]["provider"] in ["openstack-swift","openstack-swift-v2",
→˓"openstack-swift-v3"] %}
swiftKeystoneAuthUrl: {{ vitam_offers[offer_conf]["swiftKeystoneAuthUrl"] | default("
→˓") }}
swiftDomain: {{ vitam_offers[offer_conf]["swiftDomain"] | default("") }}
swiftProjectName: {{ vitam_offers[offer_conf]["swiftProjectName"] | default("") }}
swiftUser: {{ vitam_offers[offer_conf]["swiftUser"] | default("") }}
swiftPassword: {{ vitam_offers[offer_conf]["swiftPassword"] | default("") }}
swiftUrl: {{ vitam_offers[offer_conf]["swiftUrl"] | default("") }}
swiftTrustStore: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}
→˓.jks
swiftTrustStorePassword: {{ password_truststore }}
swiftMaxConnectionsPerRoute: {{ vitam_offers[offer_conf]["swiftMaxConnectionsPerRoute
→˓"] | default(200) }}
swiftMaxConnections: {{ vitam_offers[offer_conf]["swiftMaxConnections"] |
→˓default(1000) }}
swiftConnectionTimeout: {{ vitam_offers[offer_conf]["swiftConnectionTimeout"] |
→˓default(200000) }}
swiftReadTimeout: {{ vitam_offers[offer_conf]["swiftReadTimeout"] | default(60000) }}
swiftDisableKeepAlive: {{ vitam_offers[offer_conf]["swiftDisableKeepAlive"] |
→˓default(false) }}
swiftNbRetries: {{ vitam_offers[offer_conf]["swiftNbRetries"] | default(3) }}
swiftHardRenewTokenDelayBeforeExpireTime: {{ vitam_offers[offer_conf][
→˓"swiftHardRenewTokenDelayBeforeExpireTime"] | default(60) }}
swiftSoftRenewTokenDelayBeforeExpireTime: {{ vitam_offers[offer_conf][
→˓"swiftSoftRenewTokenDelayBeforeExpireTime"] | default(300) }}
{% if vitam_offers[offer_conf]["enableCustomHeaders"] is defined and vitam_
→˓offers[offer_conf]["enableCustomHeaders"] is sameas true %}
enableCustomHeaders: true
customHeaders:
{% for header in vitam_offers[offer_conf]["customHeaders"] %}

- key: {{ header.key }}
value: {{ header.value }}

{% endfor %}
{% endif %}

{% endif %}

{% if vitam_offers[offer_conf]["provider"] == "amazon-s3-v1" %}
s3RegionName: {{ vitam_offers[offer_conf]["s3RegionName"] }}
s3Endpoint: {{ vitam_offers[offer_conf]["s3Endpoint"] }}

(suite sur la page suivante)

248 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

s3AccessKey: {{ vitam_offers[offer_conf]["s3AccessKey"] }}
s3SecretKey: {{ vitam_offers[offer_conf]["s3SecretKey"] }}
s3PathStyleAccessEnabled: {{ vitam_offers[offer_conf]["s3PathStyleAccessEnabled"] |
→˓default(true) }}
s3SignerType: {{ vitam_offers[offer_conf]["s3SignerType"] | default("AWSS3V4SignerType
→˓") }}
s3MaxConnections: {{ vitam_offers[offer_conf]["s3MaxConnections"] | default(50) }}
s3ConnectionTimeout: {{ vitam_offers[offer_conf]["s3ConnectionTimeout"] |
→˓default(10000) }}
s3SocketTimeout: {{ vitam_offers[offer_conf]["s3SocketTimeout"] | default(50000) }}
s3RequestTimeout: {{ vitam_offers[offer_conf]["s3RequestTimeout"] | default(0) }}
s3ClientExecutionTimeout: {{ vitam_offers[offer_conf]["s3ClientExecutionTimeout"] |
→˓default(0) }}
s3DisableMultipartUpload: {{ vitam_offers[offer_conf]["s3DisableMultipartUpload"] |
→˓default(false) }}
s3MaxUploadPartSizeMB: {{ vitam_offers[offer_conf]["s3MaxUploadPartSizeMB"] |
→˓default(5120) }}
s3MultiPartCleanNbRetries: {{ vitam_offers[offer_conf]["s3MultiPartCleanNbRetries"] |
→˓default(3) }}
s3MultiPartCleanWaitingTimeInMilliseconds: {{ vitam_offers[offer_conf][
→˓"s3MultiPartCleanWaitingTimeInMilliseconds"] | default(10000) }}
s3TrustStore: {{ vitam_folder_conf }}/truststore_{{ vitam_struct.vitam_component }}.
→˓jks
s3TrustStorePassword: {{ password_truststore }}
{% endif %}

{% if vitam_offers[offer_conf]["provider"] in ["tape-library"] %}
tapeLibraryConfiguration:

inputFileStorageFolder: "{{ vitam_folder_data }}/inputFiles"
inputTarStorageFolder: "{{ vitam_folder_data }}/inputTars"
tmpTarOutputStorageFolder: "{{ vitam_folder_data }}/tmpTarOutput"
cachedTarStorageFolder: "{{ vitam_folder_data }}/cachedTars"
maxTarEntrySize: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration"][

→˓"maxTarEntrySize"] | default(100000) }}
maxTarFileSize: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration"][

→˓"maxTarFileSize"] | default(1000000) }}
forceOverrideNonEmptyCartridges: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["forceOverrideNonEmptyCartridges"] | default('false') }}
cachedTarMaxStorageSpaceInMB: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration

→˓"]["cachedTarMaxStorageSpaceInMB"] }}
cachedTarEvictionStorageSpaceThresholdInMB: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["cachedTarEvictionStorageSpaceThresholdInMB"] }}
cachedTarSafeStorageSpaceThresholdInMB: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["cachedTarSafeStorageSpaceThresholdInMB"] }}
maxAccessRequestSize: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration"][

→˓"maxAccessRequestSize"] }}
readyAccessRequestExpirationDelay: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["readyAccessRequestExpirationDelay"] }}
readyAccessRequestExpirationUnit: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["readyAccessRequestExpirationUnit"] }}
readyAccessRequestPurgeDelay: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration

→˓"]["readyAccessRequestPurgeDelay"] }}
readyAccessRequestPurgeUnit: {{ vitam_offers[offer_conf]["tapeLibraryConfiguration

→˓"]["readyAccessRequestPurgeUnit"] }}
accessRequestCleanupTaskIntervalDelay: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["accessRequestCleanupTaskIntervalDelay"] }}
accessRequestCleanupTaskIntervalUnit: {{ vitam_offers[offer_conf][

→˓"tapeLibraryConfiguration"]["accessRequestCleanupTaskIntervalUnit"] }}(suite sur la page suivante)

8.2. Composants 249

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

topology:
buckets:

{% for bucket in vitam_offers[offer_conf]["topology"]["buckets"] %}
{{ bucket.name }}:
tenants: {{ bucket.tenants }}
tarBufferingTimeoutInMinutes: {{ bucket.tarBufferingTimeoutInMinutes }}

{% endfor %}

tapeLibraries:
{% for library in vitam_offers[offer_conf]["tapeLibraries"] %}

{{ library.name }}:
robots:

{% for robot in library.robots %}
-
device: {{ robot.device }}
mtxPath: "{{ robot.mtxPath }}"
timeoutInMilliseconds: {{ robot.timeoutInMilliseconds }}

{% endfor %}
drives:

{% for drive in library.drives %}
-
index: {{ drive.index }}
device: {{ drive.device }}
mtPath: "{{ drive.mtPath }}"
ddPath: "{{ drive.ddPath }}"
timeoutInMilliseconds: {{ drive.timeoutInMilliseconds }}
readWritePriority: {{ drive.readWritePriority | default('WRITE') }}

{% endfor %}
fullCartridgeDetectionThresholdInMB: {{ library.

→˓fullCartridgeDetectionThresholdInMB }}

{% endfor %}
{% endif %}

L’arborescence de stockage des fichiers dans l’offre est décrite dans le DAT .

8.2.17.3.4 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-offer

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-offer

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
offer/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

250 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.18 Technical administration

8.2.18.1 Présentation

8.2.19 Worker

8.2.19.1 Introduction

Le but de cette documentation est d’expliquer la configuration et l’exploitation du module worker.

8.2.19.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/worker.

8.2.19.2.1 Fichier batch-report-client.conf

serverHost: {{ vitam.batchreport.host }}
serverPort: {{ vitam.batchreport.port_service }}
secure: {{ vitam.batchreport.https_enabled | bool | lower }}

8.2.19.2.2 Fichier format-identifiers.conf

Ce fichier permet de définir l’URL d’accès à Siegfried.

siegfried-local:
type: SIEGFRIED
client: http
host: localhost
port: {{ siegfried.port }}
rootPath: {{ vitam_folder_tmp }}/
versionPath: {{ vitam_folder_data }}/version/folder

8.2.19.2.3 Fichier functional-administration-client.conf.j2

Ce fichier permet de définir l’accès à functional-administration.

8.2. Composants 251

VITAM - Documentation d’exploitation, Version 7.1.5

serverHost: {{ vitam.functional_administration.host }}
serverPort: {{ vitam.functional_administration.port_service }}

8.2.19.2.4 Fichier metadata-client.conf

Ce fichier permet de définir l’accès au metadata.

serverHost: {{ vitam.metadata.host }}
serverPort: {{ vitam.metadata.port_service }}

8.2.19.2.5 Fichier storage-client.conf

Ce fichier permet de définir l’accès au storage.

serverHost: {{ vitam.storageengine.host }}
serverPort: {{ vitam.storageengine.port_service }}

8.2.19.2.6 Fichier verify-timestamp.conf

Configuration - verify timestamp
p12LogbookPassword: {{ keystores.timestamping.secure_logbook }}
p12LogbookFile: keystore_secure-logbook.p12

8.2.19.2.7 Fichier version.conf

binaryDataObjectVersions:
- BinaryMaster
- Dissemination
- Thumbnail
- TextContent
physicalDataObjectVersions:
- PhysicalMaster
- Dissemination

8.2.19.2.8 Fichier worker.conf

Ce fichier permet de définir le paramétrage du composant worker.

Configuration processing
HERE MUST BE MY (WORKER) current configuration
registerServerHost: {{ ip_service }}
registerServerPort: {{ vitam_struct.port_service }}
Configuration handler
processingUrl: {{vitam.processing | client_url}}
urlMetadata: {{vitam.metadata | client_url}}
urlWorkspace: {{vitam.workspace | client_url}}
Configuration jetty

(suite sur la page suivante)

252 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

(suite de la page précédente)

jettyConfig: jetty-config.xml
#Configuration parallele
capacity: {{ vitam_worker_capacity }}
{% if vitam_worker_workerFamily is defined %}
workerFamily: {{ vitam_worker_workerFamily }}
{% endif %}

indexInheritedRulesWithAPIV2OutputByTenant: ["{{ vitam.worker.api_output_index_
→˓tenants | join('", "') }}"]
indexInheritedRulesWithRulesIdByTenant: ["{{ vitam.worker.rules_index_tenants |
→˓join('", "') }}"]

Archive Unit Profile cache settings (max entries in cache & retention timeout in
→˓seconds)
archiveUnitProfileCacheMaxEntries: {{ vitam.metadata.
→˓archiveUnitProfileCacheMaxEntries }}
archiveUnitProfileCacheTimeoutInSeconds: {{ vitam.worker.
→˓archiveUnitProfileCacheTimeoutInSeconds }}

Schema validator cache settings (max entries in cache & retention timeout in
→˓seconds)
schemaValidatorCacheMaxEntries: {{ vitam.metadata.schemaValidatorCacheMaxEntries }}
schemaValidatorCacheTimeoutInSeconds: {{ vitam.worker.
→˓schemaValidatorCacheTimeoutInSeconds }}

Paramètres obligatoires :

∙ processingUrl : URL de connexion au compsoant Vitam processing

∙ urlMetadata : URL de connexion au composant VITAM metadata

∙ urlWorkspace : URL de connexion au composant VITAM workspace

∙ registerServerHost : host ou le worker déployé

∙ registerServerPort : port ou le worker déployé

∙ jettyConfig : le fichier config jetty associé au service du worker

Paramètres optionnels :

∙ workerFamily : la famille dont le worker appartant en fonction de tache exécutée

∙ capacity : capacité du worker en mode parallèle de tache (par défaut à 1 dans l’ansiblerie, si non définie)

8.2.19.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-workspace

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-workspace

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
workspace/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

8.2. Composants 253

VITAM - Documentation d’exploitation, Version 7.1.5

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2.20 Workspace

8.2.20.1 Présentation

Rôle :

∙ Fourniture d’un espace pour l’échange de fichiers (et faire un appel par pointeur lors des appels entre compo-
sants) entre les différents composants de Vitam

∙ Fourniture d’un espace pour le stockage temporaire de données (exports DIP disponibles en téléchargement)

Fonctions :

∙ Utilisation du moteur de stockage dans un mode minimal (Opérations CREATE, READ, DELETE sur 1 seule
offre de stockage)

8.2.20.2 Configuration / fichiers utiles

Les fichiers de configuration sont gérés par les procédures d’installation ou de mise à niveau de l’environnement
VITAM. Se référer au DIN.

Les fichiers de configuration sont définis sous /vitam/conf/workspace.

8.2.20.2.1 Fichier workspace.conf

storagePath: {{ vitam_folder_data }}
jettyConfig: jetty-config.xml
provider: filesystem
contextPath: {{ vitam_struct.context_path }}

8.2.20.3 Opérations

∙ Démarrage du service

En tant qu’utilisateur root : systemctl start vitam-workspace

∙ Arrêt du service

En tant qu’utilisateur root : systemctl stop vitam-workspace

∙ Sauvegarde du service

Ce service ne nécessite pas de sauvegarde particulière.

∙ Supervision du service

254 Chapitre 8. Exploitation des composants de la solution logicielle VITAM

VITAM - Documentation d’exploitation, Version 7.1.5

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port>/
workspace/v1/status

Contrôler le retour HTTP 200 sur l’URL <protocole web https ou https>://<host>:<port
admin>/admin/v1/status

∙ Exports

N/A

∙ gestion de la capacité

N/A

∙ actions récurrentes

∙ cas des batches

N/A

8.2. Composants 255

CHAPITRE 9

Intégration d’une application externe dans Vitam

9.1 Prérequis

L’application externe devra être en mesure de requêter les composants VITAM ingest-external et
access-external sur leurs ports de service respectifs par le protocole HTTPS.

Il faut donc prévoir une ouverture de flux réseau pour le protocole TCP (selon l’infrastructure en place) sur les ports
de service des composants VITAM ingest-external et access-external.

La sécurisation des connexions HTTP avec les applications externes est déléguée aux composants VITAM
ingest-external et access-external (ou bien éventuellement à un reverse-proxy, selon l’infrastructure
de déploiement VITAM retenue).

La création d’un certificat TLS client pour l’application externe est requise afin de permettre l’habilitation et l’authen-
tification applicative des requêtes émises depuis l’application externe vers les composants VITAM ingest-external et
access-external.

9.2 Intégration de certificats clients de VITAM

Note : Cette section décrit l’ajout de certificats SIA ou personnels (Personae) dans le cadre des procédures d’exploi-
tation de la solution logicielle VITAM. L’intégration de certificats clients de VITAM au déploiement est décrite dans le
document d’installation (DIN).

9.2.1 Authentification applicative SIA

Le certificat client de l’application externe doit être ajouté dans la base de données du composant
security-internal, afin de permettre la gestion des habilitations et l’authentification applicative de l’application
externe.

256

VITAM - Documentation d’exploitation, Version 7.1.5

L’exemple suivant permet d’ajouter un certificat présent sous /path/to/certificate et associé au contexte
applicatif portant l’identifiant contexte_identifier.

9.2.1.1 Ajout d’un certificat pour l’authentification applicative SIA

curl -XPOST -H "Content-Type:application/json" 'http://<ip admin security-internal>:
→˓<port admin security-internal>/v1/api/identity' -d "
{

\"contextId\":\"contexte_identifier\",
\"certificate\":\"$(base64 /path/to/certificate)\"

}"

Note : Se repporter à la documentation sur la gestion des habilitations pour ce qui concerne l’ajout de contextes
applicatifs.

Avertissement : Lorsque l’authentification du client, par le protocole TLS, est réalisée, la CA du certificat client
doit être déployée dans le truststore des composants VITAM ingest-external et access-external. Dans
ce cas de figure, suivre la procédure de la section Mise à jour des certificats (page 15), en ayant pris soin au préa-
lable de déposer les certificats de la chaîne de certification client dans le répertoire environments/certs/client-
external/ca. Si le certificat client est passé dans le header http (cas de l’authentification applicative par hea-
der http X-SSL-CLIENT-CERT), le certificat client n’est alors pas utilisé dans la négociation TLS et il n’est
donc pas nécéssaire d’inclure la CA associée dans le truststore des composants VITAM ingest-external et
access-external.

9.2.2 Authentification Personae

Le certificat personnel (Personae) doit être ajouté dans la base de données du composant security-internal,
afin de permettre l’authentification renforcée de l’utilisateur.

Les exemples suivants permettent d’ajouter ou supprimer un certificat présent sous /path/to/certificate.

9.2.2.1 Ajout d’un certificat pour l’authentification Personae

curl -XPOST -H "Content-type: application/octet-stream" --data-binary @/path/to/
→˓certificate 'http://<ip admin security-internal>:<port admin security-internal>/v1/
→˓api/personalCertificate'

9.2.2.2 Suppression d’un certificat pour l’authentification Personae

curl -XDELETE -H "Content-type: application/octet-stream" --data-binary @/path/to/
→˓certificate 'http://<ip admin security-internal>:<port admin security-internal>/v1/
→˓api/personalCertificate'

9.2. Intégration de certificats clients de VITAM 257

VITAM - Documentation d’exploitation, Version 7.1.5

9.3 Révocation de certificats clients de VITAM

La release « R8 » introduit une nouvelle fonctionnalité permettant la révocation des certificats SIA et Personae afin
d’empecher des accès non autorisés aux API de la solution logicielle VITAM (vérification dans la couche https des
CRL).

Le fonctionnement de la validation des certifcats de la solution logicielle VITAM SIA et Personae par CRL est le
suivant :

∙ L’administrateur transmet à la solution logicielle VITAM le CRL d’un CA qui a émis le certificat présent dans la
solution logicielle VITAM, via le point d’API suivant

http://{{ hosts_security_internal }}:{{vitam.security_internal.port_admin}}/v1/
→˓api/crl

Prudence : La CRL fournie doit être obligatoirement au format DER (cf. http://www.ietf.org/rfc/rfc3280.
txt »>RFC 3280 : Internet X.509 Public Key Infrastructure Certificate and CRL Profile)

Exemple :

curl -v -X POST -u {{ admin_basic_auth_user }}:{{ admin_basic_auth_password }} http:/
→˓/{{ hosts_security_internal }}:{{vitam.security_internal.port_admin}}/v1/api/crl -H
→˓'Content-Type: application/octet-stream' --data-binary @/path/to/crl/my.crl

Le paramètre adminUser correspond à la valeur admin_basic_auth_user déclarée dans le fichier
vitam_security.yml

Le paramètre adminPassword correspond à la valeur admin_basic_auth_password déclarée dans le fichier
vault-vitam.yml

∙ Le système va contrôler tous les certificats (collections identity.Certificate et identity.
PersonalCertificate) émis par le IssuerDN correspondant à la CRL, en vérifiant si ces derniers sont
révoqués ou non. Si c’est le cas, alors la solution logicielle VITAM positionne le statut du certificat révoqué
à REVOKED. Cela a pour conséquence le rejet de tout accès aux API VITAM avec utilisation du certificat
révoqué (les filtres de sécurité émettront des exceptions dans les journaux de log).

∙ Une alerte de sécurité est émise dans les journaux en cas de révocation.

9.4 Déploiement des keystores

9.4.1 Vitam n’est pas encore déployé

Déployer Vitam en suivant la procédure indiquée dans le DIN.

9.4.2 Vitam est déjà déployé

Suivre la procédure de la section Mise à jour des certificats (page 15).

258 Chapitre 9. Intégration d’une application externe dans Vitam

http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt

CHAPITRE 10

Aide à l’exploitation

10.1 Analyse de premier niveau

Cette section a pour but de présenter les premiers outils à utiliser pour réaliser une analyse de premier niveau, en cas
de problème avec la solution logicielle VITAM.

10.1.1 Etat par Consul

Se connecter à l’IHM de Consul et recenser les états des composants de la solution logicielle VITAM.

259

VITAM - Documentation d’exploitation, Version 7.1.5

A l’heure actuelle, tous les composants doivent avoir un statut de couleur verte. Si ce n’est pas le cas :

1. seul un composant est KO, alors redémarrer le composant incriminé

2. si plusieurs services sont KO, suivre la procédure de redémarrage de VITAM

3. si tous les « check-DNS » (visible dans le détail des checks de chaque service) sont KO, s’assurer que, sur
les machines hébergeant VITAM, le fichier /etc/resolv.conf contient, en début de fichier, la ligne :
nameserver 127.0.0.1.

10.1.2 Etat par Kibana

Se connecter à Kibana, aller dans « Dashboards ». Cliquer sur le bouton « Load Saved Dashboard » et sélectionner
« Composants VITAM ». Eventuellement, changer la résolution (en haut à droite, par défaut, réglé sur les 15 dernières
minutes).

Sur « pie-logback-error-level », cliquer sur la section de camembert d’intérêt (ERROR) et regarder, en bas de page, les
éventuelles erreurs remontées dans Kibana.

10.2 Playbook ansible pour échanger avec le support

Afin de simplifier les échanges avec le support VITAM, un playbook d’exploitation a été développé pour collecter
automatiquement les informations suivantes :

∙ la récupération des informations machines de la solution logicielle VITAM

∙ l’état Consul des composants

∙ la récupération des traces applicatives (fichiers log)

∙ l’état des clusters Elasticsearch

260 Chapitre 10. Aide à l’exploitation

VITAM - Documentation d’exploitation, Version 7.1.5

∙ la possibilité, au choix de l’exploitant, de fournir également les clés publiques des certificats

À l’issue de l’exécution de ce playbook, les données collectées sont compactées et ac-
cessibles à l’emplacement suivant selon la règle de nommage : environments/
troubleshoot_<date>-<log_files_age>_<vitam_site_name>.zip

Ce fichier pourra ainsi être communiqué à VITAM dans le cadre d’une demande de Support.

La commande pour générer le fichier est à lancer depuis le répertoire deployment

ansible-playbook ansible-vitam-exploitation/troubleshoot.yml -i environments/hosts.
→˓<environnement> --ask-vault-pass

Certaines questions seront demandées durant l’exécution du playbook. Si vous souhaitez automatiser l’exécution de
cette commande, voici les paramètres que vous pouvez passer en extra-vars :

--extra-vars "confirmation=YES log_files_age=1"

∙ confirmation [YES, default :NO] : Pour confirmer le lancement du playbook.

∙ log_files_age [default :2] : Pour définir le nombre de jours de logs à récupérer (doit être >0).

Paramètres optionnels :

--extra-vars "sync_type=rsync get_crt=YES excludes=gc*"

∙ sync_type [default :fetch, rsync] : Pour définir la méthode de récupération des fichiers de logs. La méthode rsync
va installer le package rsync sur les machines et nécessitera l’ouverture des ports réseaux associés au niveau des
Firewall pour fonctionner.

∙ get_crt [YES, default :NO] : Pour confirmer la récupération des certificats dans le troubleshoot.

∙ excludes [xxx*,yyy*, default :””] : Pour exclure certains fichiers à récupérer dans le troubleshoot.

10.3 Identification des AU non conformes

Le schéma JSON des AU a été corrigé et rationalisé. Toute donnée issue d’un Ingest d’une release précédente est
conforme à cette expression corrigée du schéma. Dans les versions précédentes, le DSL autorisait des modifications
non conformes au SEDA. Ce n’est plus possible dans la présente version.

Si des modifications non conformes ont eu lieu, alors des AU non conformes peuvent donc se retrouver en base.
Lorsque cela arrive : * L’export DIP de l’AU peut échouer. * La modification d’un champ A rapportera une erreur sur
un champs B non-conforme. La correction de ce problème se fera avec une requête DSL qui modifie le champ A et
le champs B (en lui donnant une valeur conforme). * Maintenant les champs SEDA sont soit des tableaux, soit des
valeurs simples (string ou objet). Certains champs qui pouvaient s’écrire sous forme de valeurs non tabulaires, doivent
maintenant être écrits sous forme de tableau, même s’ils n’ont qu’un seul élément. Ex : Coverage.Spatial.

Cette procédure scriptée permet de détecter l’ensemble des AU non conformes. Les retours associés pourront être
transmis au support VITAM (assistance@programmevitam.fr).

La commande pour générer le fichier est à lancer depuis le répertoire deployment

ansible-playbook ansible-vitam-exploitation/check_unit_compatibility.yml -i
→˓environments/hosts.<environnement> --ask-vault-pass

A l’issue, si des AU sont considérées en erreur, se rapprocher du métier pour réaliser une première analyse / tentative
de correction, par correction des données incorrectes.

Si l’erreur persiste, contacter le support.

10.3. Identification des AU non conformes 261

mailto:assistance@programmevitam.fr

CHAPITRE 11

Questions Fréquemment Posées

11.1 Présentation

Cette section a vocation à répertorier les différents problèmes rencontrés et apporter la solution la plus appropriée ; elle
est amenée à être régulièrement mise à jour pour répertorier les problèmes rencontrés.

11.2 Retour d’expérience / cas rencontrés

11.2.1 Crash rsyslog, code killed, signal : BUS

Il a été remarqué chez un partenaire du projet Vitam, que rsyslog se faisait killer peu après son démarrage par le signal
SIGBUS. Il s’agit très probablement d’un bug rsyslog <= 8.24 https://github.com/rsyslog/rsyslog/issues/1404

Pour fixer ce problème, il est possible d’upgrader rsyslog sur une version plus à jour en suivant cette documentation :

∙ Centos 18

∙ Debian 19

11.2.2 Mongo-express ne se connecte pas à la base de données associée

Si mongoDB a été redémarré, il faut également redémarrer mongo-express.

11.2.3 Elasticsearch possède des shard non alloués (état « UNASSIGNED »)

Lors de la perte d’un noeud d’un cluster elasticseach, puis du retour de ce noeud, certains shards d’elasticseach peuvent
rester dans l’état UNASSIGNED ; dans ce cas, cerebro affiche les shards correspondant en gris (au-dessus des noeuds)
dans la vue « cluster », et l’état du cluster passe en « yellow ». Il est possible d’avoir plus d’informations sur la

18. https://www.rsyslog.com/rhelcentos-rpms/
19. https://www.rsyslog.com/debian-repository/

262

https://github.com/rsyslog/rsyslog/issues/1404
https://www.rsyslog.com/rhelcentos-rpms/
https://www.rsyslog.com/debian-repository/

VITAM - Documentation d’exploitation, Version 7.1.5

cause du problème via une requête POST sur l’API elasticsearch _cluster/reroute?explain. Si la cause de
l’échec de l’assignation automatique a été résolue, il est possible de relancer les assignations automatiques en échec
via une requête POST sur l’API _cluster/reroute?retry_failed. Dans le cas où l’assignation automatique
ne fonctionne pas, il est nécessaire de faire l’assignation à la main pour chaque shard incriminé (requête POST sur
_cluster/reroute) :

{
"commands": [

{
"allocate": {

"index": "topbeat-2016.11.22",
"shard": 3,
"node": "vitam-iaas-dblog-01.int"

}
}

]
}

Cependant, un shard primaire ne peut être réalloué de cette manière (il y a risque de perte de données). Si le défaut
d’allocation provient effectivement de la perte puis de la récupération d’un noeud, et que TOUS les noeuds du cluster
sont de nouveaux opérationnels et dans le cluster, alors il est possible de forcer la réallocation sans perte.

{
"commands": [

{
"allocate": {

"index": "topbeat-2016.11.22",
"shard": 3,
"node": "vitam-iaas-dblog-01.int",
"allow_primary": "true"

}
}

]
}

Sur tous ces sujets, Cf. la documentation officielle 20.

11.2.4 Elasticsearch possède des shards non initialisés (état « INITIALIZING »)

Tout d’abord, il peut être difficile d’identifier les shards en questions dans cerebro ; une requête HTTP GET sur l’API
_cat/shards permet d’avoir une liste plus compréhensible. Un shard non initialisé correspond à un shard en cours
de démarrage (Cf. une ancienne page de documentation 21. Si les shards non initialisés sont présents sur un seul noeud,
il peut être utile de redémarrer le noeud en cause. Sinon, une investigation plus poussée doit être menée.

11.2.5 Elasticsearch est dans l’état « read-only »

Lorsque Elasticsearch répond par une erreur 403 et que le message suivant est observé dans les logs
ClusterBlockException[blocked by: [FORBIDDEN/xx/index read-only / allow delete
(api)];, cela est probablement consécutif à un remplissage à 100% de l’espace de stockage associé aux index
Elasticsearch. Elasticsearch passe alors en lecture seule s’il ne peut plus indexer de documents et garantit ainsi la
disponibilité des requêtes en lecture seule uniquement.

Afin de rétablir Elasticsearch dans un état de fonctionnement nominal, il vous faudra alors exécuter la requête suivante :

20. https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-reroute.html
21. https://www.elastic.co/guide/en/elasticsearch/reference/1.4/states.html

11.2. Retour d’expérience / cas rencontrés 263

https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-reroute.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/states.html

VITAM - Documentation d’exploitation, Version 7.1.5

curl -XPUT -H "Content-Type: application/json" http://<es-host>:<es-port>/_all/_
→˓settings -d '{"index.blocks.read_only_allow_delete": null}'

11.2.6 MongoDB semble lent

Pour analyser la performance d’un cluster MongoDB, ce dernier fournit quelques outils permettant de faire une pre-
mière analyse du comportement : mongostat 22 et mongotop 23 .

Dans le cas de VITAM, le cluster MongoDB comporte plusieurs shards. Dans ce cas, l’usage de ces deux commandes
peut se faire :

∙ soit sur le cluster au global (en pointant sur les noeuds mongos) : cela permet d’analyser le comportement global
du cluster au niveau de ses points d’entrées ;

mongostat --host <ip_service> --port 27017 --username vitamdb-admin --
→˓password <password ; défaut : azerty> --authenticationDatabase admin
mongotop --host <ip_service> --port 27017 --username vitamdb-admin --
→˓password <password ; défaut : azerty> --authenticationDatabase admin

∙ soit directement sur les noeuds de stockage (mongod) : cela donne des résultats plus fins, et permet notamment
de séparer l’analyse sur les noeuds primaires & secondaires d’un même replicaset.

mongotop --host <ip_service> --port 27019 --username vitamdb-localadmin --
→˓password <password ; défaut : qwerty> --authenticationDatabase admin
mongostat --host <ip_service> --port 27019 --username vitamdb-localadmin -
→˓-password <password ; défaut : qwerty> --authenticationDatabase admin

D’autres outils sont disponibles directement dans le client mongo, notamment pour troubleshooter les problèmes dûs
à la réplication 24 :

mongo --host <ip_service> --port 27019 --username vitamdb-localadmin --password
→˓<password ; défaut : qwerty> --authenticationDatabase admin
> rs.printSlaveReplicationInfo()
> rs.printReplicationInfo()
> db.runCommand({ serverStatus: 1 })

D’autres commandes plus complètes existent et permettent d’avoir plus d’informations, mais leur analyse est plus
complexe :

returns a variety of storage statistics for a given collection
> use metadata
> db.stats()
> db.runCommand({ collStats: "Unit" })

Enfin, un outil est disponible en standard afin de mesurer des performances des lecture/écritures avec des patterns
proches de ceux utilisés par la base de données (mongoperf 25) :

echo "{nThreads:16,fileSizeMB:10000,r:true,w:true}" | mongoperf

22. https://docs.mongodb.com/manual/reference/program/mongostat/
23. https://docs.mongodb.com/manual/reference/program/mongotop/
24. https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets
25. https://docs.mongodb.com/manual/reference/program/mongoperf/

264 Chapitre 11. Questions Fréquemment Posées

https://docs.mongodb.com/manual/reference/program/mongostat/
https://docs.mongodb.com/manual/reference/program/mongotop/
https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets
https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets
https://docs.mongodb.com/manual/reference/program/mongoperf/

VITAM - Documentation d’exploitation, Version 7.1.5

11.2.7 Les shards de MongoDB semblent mal équilibrés

Normalement, un processus interne à MongoDB (le balancer) s’occupe de déplacer les données entre les shards
(par chunk) pour équilibrer la taille de ces derniers. Les commandes suivantes (à exécuter dans un shell mongo sur
une instance mongos - attention, ces commandes ne fonctionnent pas directement sur les instances mongod) permettent
de s’assurer du bon fonctionnement de ce processus :

∙ sh.status() : donne le status du sharding pour le cluster complet ; c’est un bon premier point d’entrée pour
connaître l’état du balancer.

∙ use <dbname>, puis db.<collection>.getShardDistribution(), en indiquant le bon nom de
base de données (ex : metadata) et de collection (ex : Unit) : donne les informations de répartition des
chunks dans les différents shards pour cette collection.

11.2.8 L’importation initiale (profil de sécurité, certificats) retourne une erreur

Les playbooks d’initialisation importent des éléments d’administration du système (profils de sécurité, cer-
tificats) à travers des APIs de la solution VITAM. Cette importation peut être en échec, par exemple à
l’étape TASK [init_contexts_and_security_profiles : Import admin security profile
to functionnal-admin], avec une erreur de type 400. Ce type d’erreur peut avoir plusieurs causes, et sur-
vient notamment lors de redéploiements après une première tentative non réussie de déploiement ; même si la cause
de l’échec initial est résolue, le système peut se trouver dans un état instable. Dans ce cas, un déploiement complet sur
environnement vide est nécessaire pour revenir à un état propre.

Une autre cause possible ici est une incohérence entre l’inventaire, qui décrit notamment les offres de stockage liées
aux composants offer, et le paramétrage vitam_strategy porté par le fichier offers_opts.yml. Si une offre
indiquée dans la stratégie n’existe nulle part dans l’inventaire, le déploiement sera en erreur. Dans ce cas, il faut
remettre en cohérence ces paramètres et refaire un déploiement complet sur environnement vide.

11.2.9 Problème d’ingest et/ou d’access

Si vous repérez un message de ce type dans les log VITAM :

fr.gouv.vitam.common.security.filter.RequestAuthorizationValidator.
→˓checkTimestamp(AuthorizationWrapper.java:102) : [vitam-env-int8-app-04.vitam-
→˓env:storage:239079175] Timestamp check failed. 16s
fr.gouv.vitam.common.security.filter.RequestAuthorizationValidator.
→˓checkTimestamp(AuthorizationWrapper.java:107) : [vitam-env-int8-app-04.vitam-
→˓env:storage:239079175] Critical timestamp check failure. 61s

Il faut vérifier / corriger l’heure des machines hébergeant la solution logicielle VITAM. .. caution : : Si un delta de
temps important (10s par défaut) a été détecté entre les machines, des erreurs sont tracées dans les logs et une alerte
est remontée dans le dashboard Kibana des Alertes de sécurité. Au delà d’un seuil critique (60s par défaut) d’écart
de temps entre les machines, les requêtes sont systématiquement rejetées, ce qui peut causer des dysfonctionnements
majeurs de la solution.

11.3 Erreur d’inconsistance des données MongoDB / ES

En cas de détection d’un problème de synchronisation des données entre les bases de données Elasticsearch-data (clus-
ter d’indexation dédié aux données métier) et les bases de données MongoDB-data (replicaset MongoDB stockant les
données métier de Vitam) avec un message d’erreur du type : « An internal data consistency error has been detected »,
la procédure suivante pourra être appliquée : Réindexation (page 51).

11.3. Erreur d’inconsistance des données MongoDB / ES 265

CHAPITRE 12

Annexes

12.1 Cycle de vie des certificats

Le tableau ci-dessous indique le mode de fonctionnement actuel pour les différents certificats et CA. Précisions :

∙ Les « procédures par défaut » liées au cycle de vie des certificats dans la présente version de la solution VITAM
peuvent être résumées ainsi :

∙ Création : génération par PKI partenaire + copie dans répertoires de déploiement + script
generate_stores.sh + déploiement ansible

∙ Suppression : suppression dans répertoires de déploiement + script generate_stores.sh + déploie-
ment ansible

∙ Renouvellement : regénération par PKI partenaire + suppression / remplacement dans répertoires de dé-
ploiement + script generate_stores.sh + redéploiement ansible

∙ Il n’y a pas de contrainte au niveau des CA utilisées (une CA unique pour tous les usages VITAM ou plusieurs
CA séparées – cf. DAT). On appelle ici :

∙ « PKI partenaire » : PKI / CA utilisées pour le déploiement et l’exploitation de la solution VITAM par le
partenaire.

∙ « PKI distante » : PKI / CA utilisées pour l’usage des frontaux en communication avec le back office
VITAM.

266

VITAM - Documentation d’exploitation, Version 7.1.5

Classe Type Usages Origine Création Suppression Renouvellement
Interne CA ingest & ac-

cess
PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne CA offer PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif Horodatage PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif Storage
(Swift)

Offre de sto-
ckage

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif Storage (s3) Offre de sto-
ckage

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif ingest PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif access PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif offer PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

Interne Certif Timestamp PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

IHM demo CA ihm-demo PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

IHM demo Certif ihm-demo PKI parte-
naire

proc. par dé-
faut

proc. par dé-
faut

proc. par dé-
faut

SIA CA Appel API PKI distante proc. par dé-
faut (PKI dis-
tante)

proc. par dé-
faut

proc. par dé-
faut (PKI dis-
tante)+recharger
Certifs

SIA Certif Appel API PKI distante Génération
+ copie ré-
pertoire +
deploy(par la
suite appel
API d’inser-
tion)

Suppression
Mongo

Suppression
Mongo +
API d’inser-
tion

Personae Certif Appel API PKI distante API ajout API suppres-
sion

API suppres-
sion + API
ajout

Remarques :
∙ Lors d’un renouvellement de CA SIA, il faut s’assurer que les certificats qui y correspondaient soient retirés

de MongoDB et que les nouveaux certificats soient ajoutés par le biais de l” API dédiée.

∙ Lors de toute suppression ou remplacement de certificats SIA, s’assurer que la suppression ou remplace-
ment des contextes associés soit également réalisé.

∙ L’expiration des certificats n’est pas automatiquement prise en charge par la solution VITAM (pas de noti-
fication en fin de vie, pas de renouvellement automatique). Pour la plupart des usages, un certificat expiré
est proprement rejeté et la connexion ne se fera pas ; les seules exceptions sont les certificats Personae,
pour lesquels la validation de l’arborescence CA et des dates est à charge du front office en interface avec
VITAM.

12.1. Cycle de vie des certificats 267

VITAM - Documentation d’exploitation, Version 7.1.5

12.2 Gestion des anomalies en production

Les anomalies empêchant le bon fonctionnement de la solution VITAM déjà déployée dans un système en production
sont gérées par le programme VITAM selon un processus dédié. Il reprend la terminologie du « Contrat de Service
VITAM ».

12.2.1 Numérotation des versions

A partir de la version 1 de la solution VITAM, la numérotation des versions du logiciel est du type X.Y.Z(-P) selon les
principes suivants :

∙ X : version majeure de la solution VITAM. Elle suit le calendrier des versions majeures, construit de concert
avec les partenaires.

∙ Y : version mineure de la solution VITAM. Elle suit le calendrier des itérations, typiquement une itération dure
trois semaines.

∙ Z : version bugfix de la solution VITAM. Elle suit le calendrier des itérations, typiquement une itération à chaque
trois semaines.

∙ Seules les versions maintenues continuent de bénéficier de nouvelles versions bugfix.

∙ P : patch de la solution VITAM. Un patch correspond à la mise à disposition, entre deux releases, de binaires
et/ou fichiers de configuration et de déploiement, pour corriger des bugs bloquants.

∙ Seules les versions maintenues continuent de bénéficier de patchs.

12.2.2 Mise à disposition du logiciel

La solution VITAM est mise à disposition des partenaires selon le calendrier suivant :

∙ Des releases sont mises à disposition des partenaires et du grand public régulièrement, typiquement une release
pour cinq itérations de développement. Il s’agit alors de la version mineure courante. Pour rappel, la version
1.0.0 correspond à la release 6 (R6).

∙ Les versions bugfix de chaque version maintenue sont mises à disposition des partenaires et du grand public
régulièrement, à chaque itération (s’il y a eu des anomalies corrigées dans la période).

∙ Les patchs de chaque version maintenue sont mis à disposition des partenaires à chaque fois qu’une anomalie
de production critique est identifiée et corrigée. Les correctifs correspondant aux patchs sont ensuite inclus dans
une version bugfix ultérieure.

12.2.3 Gestion des patchs

L’objectif d’un patch est de rétablir au plus vite le fonctionnement en production des systèmes partenaires. La livraison
se limite ainsi aux packages (RPM / DEB) concernés par la correction, avec les fichiers de déploiement et de confi-
guration nécessaires. Les instructions pour « patcher » l’applicatif sont également mises à disposition, en fonction du
périmètre impacté (simple arrêt / relance ; purges ; scripts de déploiement. . .).

Les patchs sont mis à disposition des partenaires sur un dépôt en ligne. L’objectif est d’offrir la possibilité pour
les partenaires d’automatiser la récupération des packages mis à jour, et éventuellement de pouvoir reconstituer un
packaging complet de Vitam.

Note : Ce choix de gestion de patchs implique des numéros de version qui pourront être différents entre chaque
paquet. Le réalignement se fait au niveau des versions bugfix ou mineures.

268 Chapitre 12. Annexes

VITAM - Documentation d’exploitation, Version 7.1.5

La mise à disposition du code source du patch est considérée comme moins critique et se réalise dans un second temps,
sur Github.

12.2. Gestion des anomalies en production 269

Table des figures

1 Vue d’ensemble d’un déploiement VITAM : zones, composants . 10

270

Liste des tableaux

1 Documents de référence VITAM . 2

1 Matrice de compétences . 7

1 Parallélisation des workflows et des opérations . 233

271

Index

A
API, 3
AU, 3

B
BDD, 3
BDO, 3

C
CA, 3
CAS, 3
CCFN, 3
CN, 3
COTS, 3
CRL, 3
CRUD, 3

D
DAT, 3
DC, 3
DEX, 3
DIN, 3
DIP, 3
DMV, 3
DNS, 3
DNSSEC, 3
DSL, 3
DUA, 3

E
EAD, 3
EBIOS, 3
ELK, 3

F
FIP, 3

G
GOT, 3

I
IHM, 3
IP, 3
IsaDG, 3

J
JRE, 3
JVM, 4

L
LAN, 4
LFC, 4
LTS, 4

M
M2M, 4
MitM, 4
MoReq, 4

N
NoSQL, 4
NTP, 4

O
OAIS, 4
OOM, 4
OS, 4
OWASP, 4

P
PCA, 4
PDMA, 4
PKI, 4
PRA, 4

R
REST, 4
RGAA, 4
RGI, 4

272

VITAM - Documentation d’exploitation, Version 7.1.5

RPM, 4

S
SAE, 4
SEDA, 4
SGBD, 5
SGBDR, 5
SIA, 5
SIEM, 5
SIP, 5
SSH, 5
Swift, 5

T
TLS, 5
TNA, 5
TNR, 5
TTL, 5

U
UDP, 5
UID, 5

V
VITAM, 5
VM, 5

W
WAF, 5
WAN, 5

Index 273

	Introduction
	But de cette documentation
	Destinataires de ce document

	Rappels
	Information concernant les licences
	Documents de référence
	Documents internes
	Référentiels externes

	Glossaire

	Expertises requises
	Architecture de la solution logicielle VITAM
	Exploitation globale
	Gestion des accès
	API
	IHM de démonstration
	IHM de recette

	Audit de cohérence de données entre MongoDb et Elasticsearch
	Principe de fonctionnement
	Configuration
	Exécution
	Lecture de l’oplog
	Traitement des opérations de l’oplog MongoDB et comparaison avec ES
	Comportement de l’audit suite à la comparaison de données

	Lancement de l’audit

	Configuration des champs ObjectGroup devant être exclus de la recherche
	Configuration
	Fonctionnement

	Portails d’administration
	Technique
	Fonctionnel

	Paramétrage & configuration
	Mise à niveau de la configuration de l’environnement
	Mise à jour du nombre de tenants
	Mise à jour des paramètres JVM

	Déploiement / mises à jour
	Mise à jour des certificats
	Mise à jour de la solution logicielle VITAM
	Ajouter un/des instances de composants VITAM

	Interruption / maintenance
	Procédure d’arrêt complet
	Procédure de démarrage complet
	Procédure de statut
	Autres cas
	Procédure de maintenance / indisponibilité de VITAM
	Procédure de maintenance liée aux timers systemD
	Procédure de maintenance sur les composants d’administration
	Procédure de maintenance des IHM
	Procédure de maintenance des Bases de données métier

	Sauvegarde / restauration
	Sauvegarde
	mongoDB
	Elasticsearch

	Restauration
	mongoDB
	Elasticsearch

	Cas de la base mongo certificates

	Sauvegarde et restauration de mongodb gros volumes
	Préconisation
	Sauvegarde d’un cluster Mongo shardé
	Restauration d’un cluster Mongo shardé
	Cas particulier de l’offre froide
	Sauvegarde
	Script de sauvegarde du cluster mongodb
	Sauvegarde des fichiers backup dans l’offre froide

	Restauration
	Accès aux fichiers de l’offre froide
	Restaurer le cluster mongodb

	Gestion des profils de sécurité
	Hiérarchie : profils de sécurité, contextes et certificats
	Ajout/Suppression de profils de sécurité
	Configuration
	Ajout des fichiers crt
	Lancement du playbook
	Reconfiguration de VITAM
	Si utilisation de la PKI de tests
	Cas d’une autre PKI
	Application des stores mis à jour

	Certificats personae
	Configuration des permissions des certificats personae
	Déploiement des certificats personae
	Vitam n’est pas encore déployé
	Vitam est déjà déployé

	Gestion des indexes Elasticseach dans un contexte massivement multi-tenants
	Présentation
	Recommandations d’implémentation

	Batchs et traitements
	Curator
	Timers systemD
	Sécurisation des journaux d’opérations
	Sécurisation des cycles de vie
	Sécurisation des offres de stockages
	Autres timers

	Sauvegarde des données graphe (Log shipping)
	Déclenchement de la sauvegarde
	Reconstruction des données graphe

	Recalcul des données graphe
	Déclenchement

	Montée de version du fichier de signature de Siegfried
	Griffins
	Ajout de nouveaux / mise à jour de griffins
	Ajout de griffins
	Mise à jour des griffins
	Préparation du système
	Prise en compte technique par VITAM

	Reconstruction
	Procédure mono-site
	Procédure multi-sites
	Cas du site primaire
	Cas du site secondaire

	Contrôle des données reconstruites

	Plan de Reprise d’Activité (PRA)
	Déclenchement
	Retour en situation nominale
	Déclenchement

	Resynchronisation d’une offre
	Cas de l’ajout d’une nouvelle offre
	Procédure de resynchronisation d’une offre
	Procédure de resynchronisation partielle d’une offre
	Procédure de resynchronisation ciblée d’une offre

	Audit comparatif entre 2 offres de stockage miroirs
	Procédure de lancement et de suivi de l’audit comparatif d’offres

	Procédure d’exploitation suite à la création ou la modification d’une ontologie
	Création d’une ontologie
	Changement de type d’une ontologie existante

	L’ontologie externe suite à la montée de version de VITAM
	Procédure d’exploitation pour la mise en pause forcée d’une opération
	Mise en pause forcée
	Sortie de la mise en pause forcée

	Réindexation
	Déclenchement

	Nettoyage des ingests incomplets
	Conditions d’éligibilité des ingests à nettoyer
	Déclenchement

	Suppression des DIP et des fichiers de transfert
	Procédure d’exploitation pour la révocation des certificats SIA et Personae
	Activation/désactivation d’une offre
	Nettoyage d’un environnement
	Etat des lieux après purge
	Limitations

	Suivi de l’état du système
	Veille et patchs sécurité
	API de de supervision
	Patte d’administration
	/admin/v1/status
	/admin/v1/version
	/admin/v1/autotest

	Patte de service

	Logs
	Paramétrage des règles de log
	Rétention des index sous elasticsearch-log

	Audit
	Audit de cohérence
	Audit sur les collections d’administration

	Gestion de la capacité
	Suivi de l’état de sécurité
	Alerting
	Système
	Applicatif

	Suivi des Workflows
	Suivi
	IHM
	Appels REST
	Playbook ansible

	Cas des worklows en FATAL
	Plugins et Handlers
	Distributor
	Processing - State Machine

	Redémarrer un processus en cas de pause
	Trouver la cause
	Relancer le Workflow
	Vérifier les inputs
	Rejouer une étape
	Prochaine étape
	Finaliser le workflow

	Cohérence des journaux
	Lancement
	Résultat

	Liste des timers systemd
	Timers de maintenance des index elasticsearch-log
	vitam-curator-close-old-indexes
	vitam-curator-delete-old-indexes

	Timers de gestion des journaux (preuve systémique)
	vitam-storage-log-traceability

	Timers de reconstruction VITAM
	vitam-metadata-reconstruction
	vitam-metadata-store-graph
	vitam-metadata-computed-inherited-rules

	Timers techniques VITAM
	vitam-metadata-purge-dip
	vitam-metadata-purge-transfers-SIP
	vitam-offer-log-compaction
	vitam-metadata-audit-mongodb-es

	Exploitation des COTS de la solution logicielle VITAM
	Généralités
	COTS
	Cerebro
	Présentation
	Configuration / fichiers utiles
	Fichier /vitam/conf/cerebro/application.conf

	Opérations

	Consul
	Présentation
	Cas serveur
	Cas agent

	Configuration / fichiers utiles
	Cas des applicatifs monitorés par Consul
	Fichier /vitam/conf/consul/service-<composant>.json

	Opérations

	Kibana interceptor
	Présentation
	Configuration / fichiers utiles
	Fichier elastic-kibana-interceptor.conf

	Opérations

	Elasticsearch chaîne de log
	Présentation
	Configuration / fichiers utiles
	Fichier /vitam/conf/elasticsearch-log/log4j2.properties
	Fichier /vitam/conf/elasticsearch-log/jvm.options
	Fichier /vitam/conf/elasticsearch-log/elasticsearch.yml
	Fichier /vitam/conf/elasticsearch-log/sysconfig
	Fichier /usr/lib/tmpfiles.d/elasticsearch-log.conf

	Opérations

	Elasticsearch Data
	Présentation
	Configuration / fichiers utiles
	Fichier log4j2.properties
	Fichier jvm.options
	Fichier elasticsearch.yml
	Fichier sysconfig
	Fichier /usr/lib/tmpfiles.d/elasticsearch-data.conf

	Opérations

	Grafana
	Présentation
	Configuration / fichiers utiles
	Fichier /etc/grafana/grafana.ini

	Opérations

	Kibana
	Présentation
	Configuration / fichiers utiles
	Opérations

	Log server
	Présentation
	Configuration / fichiers utiles
	Opérations

	MongoDB
	Service vitam-mongos
	Présentation
	Configuration / fichiers utiles
	Fichier mongos.conf
	Fichier keyfile
	Fichier de données

	Opérations

	Service vitam-mongoc
	Présentation
	Configuration / fichiers utiles
	Fichier mongoc.conf
	Fichier keyfile
	Fichier de données

	Opérations

	Service vitam-mongod
	Présentation
	Configuration / fichiers utiles
	Fichier mongod.conf
	Fichier keyfile
	Fichier de données

	Opérations

	Topologies de déploiement et tolérance aux pannes
	Présentation
	Déploiement d’un cluster de développement
	Déploiement d’un cluster de production
	Déploiement d’un cluster de production avec réduction de la RAM

	Exploitation d’un cluster MongoDB
	Extension du cluster : ajouter un ou n Shards

	Prometheus
	Prometheus
	Présentation
	Configuration / fichiers utiles
	Fichier de configuration
	Génération du fichier de configuration
	Fichier de variable d’environnement
	Fichiers de données
	Règles livrées avec la solution VITAM
	Etat de la machine
	Processeur
	Mémoire
	Disque
	Ajout de nouvelles règles

	Opérations

	Alertmanager
	Présentation
	Configuration / fichiers utiles
	Fichier de configuration
	Configuration de Prometheus
	Fichier de variable d’environnement
	Fichiers de données

	Opérations

	Node Exporter
	Présentation
	Configuration / fichiers utiles
	Fichier de variable d’environnement

	Opérations

	Elasticsearch Exporter
	Présentation
	Configuration / fichiers utiles
	Fichier de variable d’environnement

	Opérations

	Restic
	Présentation
	Comment fonctionne Restic ?
	La notion d’«Incremental For Ever»
	La notion de snapshot

	Configuration / fichiers utiles
	Fichier restic.conf
	Fichier conf.d/{{ restic.backup.name }}.conf

	Opérations
	restic_backup
	restic_restore
	Consultation des logs

	Siegfried
	Présentation
	Configuration / fichiers utiles
	Opérations

	Exploitation des composants de la solution logicielle VITAM
	Généralités
	Composants
	Fichiers communs
	Fichier /vitam/conf/<composant>/sysconfig/java_opts
	Fichier /vitam/conf/<composant>/logback-access.xml
	Fichier /vitam/conf/<composant>/logback.xml
	Fichier /vitam/conf/<composant>/jetty-config.xml
	Fichier /vitam/conf/<composant>/logbook-client.conf
	Fichier /vitam/conf/<composant>/server-identity.conf
	Fichier /vitam/conf/<composant>/antisamy-esapi.xml
	Fichier /vitam/conf/<composant>/vitam.conf
	Fichier /vitam/conf/<composant>/java.security

	Access
	access external
	Présentation
	Configuration / fichiers utiles
	Fichier access-external.conf
	Fichier access-internal-client.conf
	Fichier functional-administration-client.conf
	Fichier ingest-internal-client.conf
	Fichier internal-security-client.conf

	Opérations

	access-internal
	Présentation du composant
	Configuration / fichiers utiles
	Fichier access-internal.conf
	Fichier storage-client.conf
	Fichier metadata-client.conf
	Fichier functional-administration-client.conf

	Opérations

	Batch-Report
	Présentation
	Configuration
	Fichier batch-report.conf

	Client batch-report
	Opérations

	Collect
	Présentation
	Configuration / fichiers utiles
	Fichier collect.conf
	Fichier functional-administration-client.conf
	Fichier internal-security-client.conf

	Opérations

	common-plugin
	Présentation du composant
	Classes utiles
	Classe Item Status
	Classe VitamAutoCloseable
	Classe ParameterHelper
	Classe VitamParameter
	Classe ProcessingException
	Classe IOParameter
	Classe ProcessingUri
	Classe UriPrefix
	Classe AbstractWorkerParameters
	Classe DefaultWorkerParameters
	Classe WorkerParameterName
	Classe WorkerParameters
	Classe WorkerParametersDeserializer
	Classe WorkerParametersFactory
	Classe WorkerParametersSerializer
	Interface HandlerIO
	Classe WorkerAction
	Classe HandlerIOImpl

	Common
	Présentation
	Format Identifiers
	Configuration des services d’identification des formats

	Functional administration
	Présentation
	Configuration / fichiers utiles
	Fichier functional-administration.conf
	Passage des identifiants des référentiels en mode esclave
	Paramétrage du batch de calcul pour l’indexation des règles héritées
	Configuration du Functional administration

	Opérations

	Hello World Plugin
	Présentation
	Comment intégrer votre plugins dans vitam ?
	Créer un nouveau workflow
	Comment ajouter un nouveau workflow dans vitam ?
	Comment ajouter la traduction de clés des Plugins ?
	Comment appeler le nouveau workflow ?
	Remarques
	Securité

	ihm-demo
	Présentation
	Configuration / fichiers utiles
	Fichier access-external-client.conf
	Fichier ihm-demo.conf
	Fichier ingest-external-client.conf
	Fichier shiro.ini

	Configuration de apache shiro
	Présentation authentification via LDAP et via certificat
	Décryptage de shiro.ini

	Opérations

	ihm-recette
	Présentation
	Configuration / fichiers utiles
	Fichier access-external-client.conf
	Fichier driver-location.conf
	Fichier driver-mapping.conf
	Fichier functional-administration-client.conf
	Fichier ihm-recette-client.conf
	Fichier ihm-recette.conf
	Fichier ingest-external-client.conf
	Fichier shiro.ini
	Fichier static-offer.json
	Fichier static-strategy.json
	Fichier storage-client.conf
	Fichier storage.conf
	Fichier storage-offer.conf
	Fichier tnr.conf

	Opérations

	Ingest
	Introduction
	ingest-external
	Présentation
	Configuration / fichiers utiles
	Fichier ingest-external.conf
	Fichier ingest-internal-client.conf
	Fichier internal-security-client.conf
	Fichier format-identifiers.conf
	Fichier functional-administration-client.conf
	Fichier scan-clamav.sh

	Opérations

	ingest-internal
	Présentation
	Configuration / fichiers utiles
	Fichier ingest-internal.conf
	Fichier storage-client.conf

	Opérations

	Security-Internal
	Introduction
	security-internal-exploitation
	Fichier security-internal.conf
	Fichier personal-certificate-permissions.conf

	Opérations

	Logbook
	Présentation
	Logbook Exploitation
	Configuration du Logbook
	Fichier logbook.conf
	Fichier functional-administration-client.conf
	Fichier logbook-client.conf
	Fichier storage-client.conf

	Opérations

	Metadata
	Présentation
	Configuration / fichiers utiles
	Fichier metadata.conf
	Paramétrage des caches
	Paramétrage des mappings externes elasticsearch
	Paramétrage de la limite du flux des unités archivestiques
	Paramétrage de la limite du flux des groupes d’objets techniques

	Fichier functional-administration-client.conf
	Fichier storage-client.conf

	Opérations

	Processing
	Introduction
	But de cette documentation

	Processing
	Configuration du worker
	Supervision du service

	Configuration / fichiers utiles
	Fichier processing.conf
	Fichier version.conf
	Fichier storage-client.conf
	Fichier metadata-client.conf

	Opérations
	Parallélisation des workflows et des opérations

	scheduler
	Présentation
	Configuration / fichiers utiles
	Fichier scheduler.conf
	Fichier quartz.properties
	Fichier jobs-functional-administration.xml
	Fichier jobs-internal-security.xml
	Fichier jobs-logbook.xml
	Fichier jobs-metadata.xml
	Fichier jobs-offer.xml
	Fichier jobs-storage.xml
	Fichier internal-security-client.conf
	Fichier logbook-client.conf
	Fichier metadata-client.conf
	Fichier functional-administration-client.conf

	Opérations
	Description
	Jobs quartz
	AuditObjectJob.java
	AuditDataConsistencyMongoEsJob.java
	IdentityExpirationJob.java
	MetadataReconstructionJob.java
	OfferLogCompactionJob.java
	PersistentIdentifierReconstructionJob.java
	ProcessObsoleteComputedInheritedRulesJob.java
	PurgeDipJob.java
	PurgeSipJob.java
	ReconstructionAccessionRegisterJob.java
	ReconstructionOperationJob.java
	ReconstructionReferentialJob.java
	ReferentialCreateSymblolicAccessionRegisterJob.java
	RuleManagementAuditJob.java
	StorageBackupLogJob.java
	StorageLogTraceabilityJob.java
	StoreGraphJob.java
	TraceabilityAuditJob.java
	TraceabilityJob.java
	TraceabilityLFCJob.java

	Storage
	Introduction
	But de cette documentation

	storage-engine
	Présentation
	Storage Engine
	Configuration du moteur de stockage
	Configuration du driver de l’offre de stockage par défaut
	Supervision du service

	Configuration / fichiers utiles
	Fichier driver-location.conf
	Fichier driver-mapping.conf
	Fichier static-offer.json
	Fichier static-strategy.json
	Fichier storage-engine.conf

	Opérations
	access-log

	offer
	Présentation
	Storage Offer Default
	Configuration de l’offre de stockage
	Supervision du service

	Configuration / fichiers utiles
	Fichier default-offer.conf
	Fichier default-storage.conf

	Opérations

	Technical administration
	Présentation

	Worker
	Introduction
	Configuration / fichiers utiles
	Fichier batch-report-client.conf
	Fichier format-identifiers.conf
	Fichier functional-administration-client.conf.j2
	Fichier metadata-client.conf
	Fichier storage-client.conf
	Fichier verify-timestamp.conf
	Fichier version.conf
	Fichier worker.conf

	Opérations

	Workspace
	Présentation
	Configuration / fichiers utiles
	Fichier workspace.conf

	Opérations

	Intégration d’une application externe dans Vitam
	Prérequis
	Intégration de certificats clients de VITAM
	Authentification applicative SIA
	Ajout d’un certificat pour l’authentification applicative SIA

	Authentification Personae
	Ajout d’un certificat pour l’authentification Personae
	Suppression d’un certificat pour l’authentification Personae

	Révocation de certificats clients de VITAM
	Déploiement des keystores
	Vitam n’est pas encore déployé
	Vitam est déjà déployé

	Aide à l’exploitation
	Analyse de premier niveau
	Etat par Consul
	Etat par Kibana

	Playbook ansible pour échanger avec le support
	Identification des AU non conformes

	Questions Fréquemment Posées
	Présentation
	Retour d’expérience / cas rencontrés
	Crash rsyslog, code killed, signal: BUS
	Mongo-express ne se connecte pas à la base de données associée
	Elasticsearch possède des shard non alloués (état « UNASSIGNED »)
	Elasticsearch possède des shards non initialisés (état « INITIALIZING »)
	Elasticsearch est dans l’état « read-only »
	MongoDB semble lent
	Les shards de MongoDB semblent mal équilibrés
	L’importation initiale (profil de sécurité, certificats) retourne une erreur
	Problème d’ingest et/ou d’access

	Erreur d’inconsistance des données MongoDB / ES

	Annexes
	Cycle de vie des certificats
	Gestion des anomalies en production
	Numérotation des versions
	Mise à disposition du logiciel
	Gestion des patchs

	Index

