PROGRAMME

[<eTa)

o’ @G EG ooeEeaos > o »»s & »
archivage numerique

VITAM - Architecture

Version 7.1.5

VITAM

janv. 13, 2026

Table des matieres

1 Introduction 1
1.1 Objectif decedocument o i e e e e e e e e e 1

1.2 Structure du document e e e e e e e e e e e e e e e e 1

2 Rappels 2
2.1 Information concernant les licences e e e 2
2.2 Documents de référence e e e e e e e 2
22,1 DocumentS INtEIMES v v v v v et e e e e e e e e e e e e e e e e e e e 2

2.2.2 Référentiels eXternest e e e e e e e e e e e 3

2.3 GIOSSAITE . . o v v e 3

3 Vue d’ensemble 6
3.1 Drivers du projet e e e e e e e e 6
31 ENjeuX . . . o e e e e e e e e e e e e e e e e 6

3.1.2 Contraintes et objectifs L e e e 7

3.1.3 Positionnement e 7

3.2 Interfaces externes dusysteéme L.l 8
32,1 Interfaces reqUiSes v v i it e e e e e e e e e e e e e e e e 8

3.2.2 Interfaces MELEr €XPOSEES . . v v v v v v i e e e e e e e e e e e e e e e e e e e 8

3.3 Orientations générales e e e e e e e e e 8
33,1 0OpenSourceo e e e e e e e e e 9

332 APIREST e e e e 9

33.3 BigDataetCloudcomputing e 10

334 Cloud Storage v v v v i e 10

3.3.5 PCA/PRA et répartitions des travauX v v v v v v bt e e e e e e e e e e 11

3.3.6 Sécurité des données additionnelle o oo 11

3.3.7 Architecture multi-tenants L . e e e e e e e e e e 12

3.3.8 Solutionexploitable L. 12

3.4 Architecture fonctionnelle L e 13

4 Architecture applicative 14
4.1 Architecture applicativeo e e e e e 14
4.1.1 Driversde I'architecture 0 i e e e e e e e e e 14

412 SEIVICES .« v v v v e i e 14

4.1.3 Détail des flux d’information métier e 17

4.1.4 Données MELIET v i e 17

4.2 Architecture des données & multisite L. L 17

42.1 Inventaire des dOnNnéest i e e e e e e e 17

422 Stockage et Strat€@ies e e e e e e e e e e e e e e e e e e 19
423 Multisite o e e e e e 20
4.2.4 Stratégies & multisiteo e 21
4.2.4.1 Mode standard : exemple d’architecture mono-stratégie 22
4.2.42 Mode avancé : exemple d’architecture multi-stratégie orienté Qualité de service . . 23
4.2.4.3 Mode avancé : exemple d’architecture multi-stratégie orienté Offres objets 24

4.3 ServiceS MELIEISot e e e e e e e e e e e e e 26
43.1 APl externes (ingest-external et access-external) 26
4.3.2 Moteur d’entrée (ingest-internal) oLl e 26
4.3.3 Moteur d’acces (access-internal) e 27
4.3.4 Gestion des droits & acces (security-internal) L. oL 27
4.3.5 Moteur d’exécution (ProcesSing) . . . o v v v v v v v b e e e e e e e e e e e e e 27
4.3.6 Espacede travail (workspace) L 28
437 Worker (worker) e e e e e e e e e 28
4.3.8 Moteur de données (metadata) 28
4.3.9 Moteur de journalisation (logbook) Lo 28
4.3.10 Gestion des référentiels (functional-administration) 29
4.3.11 Moteur de stockage (StOTage) v it e e e e e e e e e 29
4.3.12 Offre de stockage par défaut (storage-offer-default) 29
4.3.13 Interface de démonstration (ihm-demo) 30
43.14 Scheduler e e e e 30
4.3.15 Connecteur @ENEriqUe v v v v v e 30
5 Architecture technique / exploitation 31
5.1 Principes d’architecture technique L. e 31
5.1.1 Principes communs et environnement des ServiCes v v v v v e v e e e e e 31
5.1.1.1 Principes relatifs aux composants délivrés 31
ST NOommage . . . o v v vttt e e e e e e e e e e e e e 31

5.1.1.1.2 Principes relatifs aux services VITAM 32

5.1.1.1.3 Principes relatifsaux COTS 33

5.1.2 Utilisateurs, dossiers & droitS v v v v v e e e e e e e e e e e e e e e 33
5.1.2.1 Utilisateurs et groupes d’exécution ot e e 33
512110 Groupes e e e e 34

5.1.2.1.2 Utilisateurs o e e e e e 34

5.1.2.2 Arborescencede fichiers e 34
5.1.2.2.1 Services VITAM oo e 34

5.1.2.2.1.1 Arborescence VITAM 34

5.1.2.2.1.2 Intégration au systeéme 35

51.222 COTS . . . o 35

5.1.3 Principes sur les communications inter-services et le clustering 35
5.1.3.1 Clusters applicatifs métier e 35
5.1.3.1.1 Appels REST des servicesmétier 36

5.1.3.1.2 0 Workerso o e 36

5.1.32 COTS &clustering o o v i e e e e e e e e 36
5.1.3.3 Annuaire de services (SErvice registry) o o oo 36

5.1.4 Packaging e 37
5.1.4.1 PrinCipes COMMUNS v v v v v v v e e e e e e e e e e e e e e e e 37
5142 DEpOts . . . o o e e e 37
5.1.42.1 CentOS e e e 38

51422 Debian. 38

5.1.4.3 Prise en compte de la configuration dans le packaging 38
51431 CentOS e 38

51432 Debian L 39

52

53

54

55

5.6

5.1.5 Déploiementde lasolution 39

5.1.5.1 Principes de déploiement e 39
5.1.52 Contrainteset vued’ensemble oo oo L 39
5.1.5.3 Imstallationinitiale L o 41
5.1.54 Principes de mise a jourachaudo L. 41
5155 Multi-site o o e e e e e 41
5.1.5.6 Supportde 'élasticité i e e e e 42
5.1.5.7 Validationdu déploiement L 42

5.1.6 Suivide I'étatdusysteme 42
5.1.6.1 APLdesupervision ottt e e e e e e 42
51,62 MEHQUeS v i e e e e e e e e e 42
51063 LogS . v o ot e e 43
5.1.6.3.1 Protocoles : syslog e 43

51,632 Typesdelog e 43

5.1.6.3.2.1 Logs applicatifs L . 44

5.1.6.3.2.2 Logs du garbage collectorJava 44

51,6323 Logsd’acces. oot e e e 44

5.1.6.4 SuivideI’étatde déploiement 44
5.1.6.5 Intégration a un systeme de monitoring tiers 45

5.1.7 Administration technique L e 45
5.1.7.1 Démarrage /arrét des serviceso e 45
5.1.7.2 Taches régulieres o o i e 45

5.1.8 Gestiondes données du systeémeo e e e e e e e e 45
5.1.8.1 Casdes déploiements de petite taille 45
51811 Dossiers o o e e e e 46

5.1.8.1.2 Sauvegarde o 46

5.1.8.2 Restauration L. e e e e e e e 46
Services techniques fournis par lasolution Lo oL 46
5.2.1 Moteur de déploiement et de configurationo 46
5.2.2 Chaine de traitement de logs etde métriques 47
523 Service registry e e e e e e 47
Composants logiciels utilisés L 47
531 Fournis e 48
531 COTS .. e 48
5.3.1.2 Bibliothéques structurantes it i e e e 48

532 ReqUIS .« ¢ v v o e e e e e e e e e e e 49
Architecture technique détaillée 49
541 Fluxmétier o e e e e e e 50
542 Fluxexploitation i i e e e e e e e e e e e e 53
543 Fluxtechniques i i e e e e e e e 54
544 Découpage €nZONESttt e e e e e e e e e e e e e e 55
Stockage desdonnéesl L e 56
5.5.1 Stratégiesde stockage L. 57
552 Offrefilesystem e e e 57
553 Offre Swift o 58
554 Offre S3 . . . o L 59
5.5.5 Offre Tape-library e 64
Concentration et exploitation des logs applicatifs oL, 65
561 BesOINS e 65
5.6.2 Modele g€nérique e e e e e e e e e e e e e e e 65
5.6.3 Choix desimplémentations Lo e e e e e e e e e 66
563.1 Emetteur delogsot i e e 67
5.632 Agentdetransportdelog o 68
5.6.3.3 Concentrationde logs e 68

5.7

5.8

59

5.10

5.11

5.6.3.4 Stockagedeslogs e e e e e 68

5.6.34.1 Gestiondesindex e 69

5.6.3.5 Visualisationdeslogs e 70

5.6.4 Intégration a un systeme de gestion de logs existants 70
5.6.5 LImites e e e e 70
Meétriques applicatives L. e e e e e 70
S57.1 0 BeSOINS o i e e e e e e e e 70
572 Modele g8nérique e e e e e e e e e e e e e 71
5.7.3 Choix des implémentations o e 71
5.7.3.1 Enregistreur de métriqueso bt e e e e e e e e e e 71
5.7.3.2 Reporters de métriqueso L L e e e e e 71
5.7.3.3 Endpointdes métriques e e e e e e 72
5.7.3.4 Stockage des mEtriques o e e e e e e e e 72

574 LIMItes e e e e e e 72
Outillage de déploiement L e 73
581 Outil . . . L 73
5.8.2 Architecturede 'outil 73
5.83 Gestion des SECIELS . . .« v v v i it e e e e e e e e e e e e e e e e e e 74
SerVICe TEZISITY .+« v v o o e e it e 74
59.1 Architecture e e 74
59.2 Résolution DNS e 75
593 Multi-site e e e e 75
5.9.4 Packaging e e e e e e e 76
5.95 MONIOring v v it e e e e e e e e e e e e e e e e e e 76
Dépendances aux services d’infrastructureso oL o 76
5.10.1 Ordonnanceurs techniques /batchso oo oo 76
S0 1.1 Curator . . . oo vt e e e e e e e 76
5.10.1.2 Sécurisation des journaux d’opérationso e e 76
5.10.1.3 Sécurisation des journaux d’écritureo e 76
5.10.1.4 Sécurisationdescyclesdevie Lo oL 77
5.10.1.5 Casdelasauvegarde. e e 77

5.10.2 Socles d’ex€cution e e e e e e e e 77
5.102.1 Middlewares ool e e e e e e 77
Composants déployés L e e e e e e e e e e e 77
S5.11.1 Access-external e 77
5.11.2 Access-internal e 77
5.11.3 Batch-report 78
5.11.4 Collect-external e e e 78
5.11.5 Collect-internal L e e e 78
5.01.6 Consul L oL e e 78
5.11.6.1 Architecture de déploiement. 79

SALT Curator oL e e e e e e e e e e 79
5.11.8 Elasticsearch-data e 80
5.11.8.1 Architecture de déploiement. e 80
SAL.8.2 MONItOriNg . . . v v v v v e et e e e e e e e e e e e e e e e 80

5.11.9 Elasticsearch-log e 80
5.11.9.1 Architecture de déploiement 81
5.11.10 Functional-administration o e e 81
SO1.11 Grafanao oL e e e e 81
5.11.11.1 Architecture de déploiement vt it 81
SATALLT Portsutilisés o oo oL 81

5.11.12 Ingest-external e 81
SALA2.1 ANUVITUS © . oo vt e e e e e e e e e e e e 82
5.11.13 Ingest-internal L. L. e e e e e e e 82

5.12
5.13

SA1.14 Kibana. o o e e e e e e e e e e e e 82

SAL.14.1 Déploiement v o vt e e e e e e e e e e e e e 83
SIS Logbook . . . v o o e e e e e e 83
5.11.16 Logstash o o e 83
SALI7 Metadata L L e e e e e e e e e e e 83
5.11.18 Metadata Collect e 84
5119 Mongodb e e e e e e e e e 84

5.11.19.1 Base mongo-data e e e e e e e e e 84

5.11.19.2 Base mongo-offer L 84

5.11.19.3 Architecture de déploiement 85

5.11.19.3.1 Architecture I noeud 85

5.11.19.3.2 Architecture distribuée Lo 85

5.11.19.3.3 Portsutilisés e 86

S1.20 Processing v v o i e e e e e e e e e e e e e e e 86
5.11.21 Prometheus Server v v v v it e e e e e e e e e e e e e e e e 86
5.11.21.1 Architecture de déploiement 87
5.11.21.1.1 Portsutilis€s o oL 87

5.11.22 Prometheus alertmanager v i i e e e e e e e e e e e e e 87
5.11.22.1 Architecture de déploiement L e 87
SA122.1.1 Portsutilisés oL e 87

5.11.23 Prometheus node_eXporter v v it e e e e e e e e e 87
5.11.23.1 Architecture de déploiement L 87
5.11.23.1.1 Portsutilisés 87

SA1.23.1.2 APTEXPoSEes . . . v v v v i e e e e e e e e e e e e e e 87

5.11.24 Prometheus Elasticsearch Exporter o . 88
5.11.24.1 Architecture de déploiement L. 88
5.11.24.1.1 Portsutilis€so 88

5.11.24.1.2 APTexposées v v v v i i it e e 88

SAL25 1eStC .« o o o o e e e e e 88

5.11.25.1 Architecture de déploiement Lo 88
5.11.26 Scheduler o L e e e e e e 89
5.11.27 Security-internal L L. L e e 89

5.11.27.1 API d’administration o oot e e e e e 89
5.11.28 Siegfried L e e e e e e e e e e 89

5.11.28.1 Mode de fonctionnement dans VITAM 90
S5.01.29 Storage e e e e e e e e e 90
5.11.30 Storage-offer L e 90

5.11.30.1 Types d’offrede stockage 90

5.11.30.1.1 Cas des containersobjet it 91
SA131 Worker . . . o o o e e e 91

S.A131.1 Particularitéso e 91
5.11.32 Workspaceo e 91
5.11.33 Workspace Collect e 91
Guidelines de déploiement e e e e e 92
Eléments de dimensionnement Lo L e e e e 92
531 Compute e e e e e e e e e e e 93

5.13.1.1 «xsmall » : développementlocal 93

5.13.1.2 «small » : recette simple métier 95

5.13.1.3 «medium » : production pour volumétries moyennes 97

5.13.1.4 «large » : production pour volumétries moyennes avec besoin de résilience 99

5.13.1.5 «xlarge » : production pour fortes volumétries 101
5.13.2 Stockage L e e e e e 103
5.13.3 Réseau :Inter-Site v o i i e e e e e e e e e e e e e e e e e 105
5.13.4 Scalabilité e e e e 105

5.14 Matricedes flux L e e e e 105

5.14.1 Matricedes fluxintra-site L. L e 105
5.142 Matricedes fluxinter-site L. L. e 107
Sécurité 108
6.1 PrinCipes o i e e e e e e e e e e e 108
6.1.1 Principesdecloisonnement L. L 108

6.1.2 Principes de sécurisation des acces eXterneso 108

6.1.3 Principes de sécurisation des communications internes au systétme 109

6.1.4 Principes de sécurisation des basesdedonnées 110
6.1.4.1 MongoDB e e e 110

6.14.2 Elasticsearch e 110

6.1.5 Principes de sécurisation des secrets de déploiement 111

6.2 Liste des SECIetS o L e e e e e e e e e e e e e e e e e 111
6.3 Certificats e e e 111
6.4 SELINUX o . e e e e e 112
6.5 Documentationde sécurité oL e e e 112
Architecture détaillée 113
Tl ACCESS o v v o o e e e e e e e e 113
711 Généralités e e e e 113

7.1.2 Architecture Technique L 113
7.1.2.1 Introduction L e e e e e e e e e e 113

7.1.2.1.1 Présentation e 113

7.1.2.1.2 Ttérationd e 113

7.1.2.1.3 Modules - packages e e 114

7122 0 ACCESS-APT .« « v v v e e e e e e e e e e e e e e e e e 114

7.1.2.2.1 Présentation e e e e 114

7.1.23 Access-client.l 114

7.1.24 Utilisation oo i e e e e e e e e e e 115

7.1.25 Leclient o o e e e 115

7.1.2.6 ACCESS-COMMON . .« « . v vt v v ettt e e e e e e e e e e e e e e 115

7.1.2.6.1 Présentation e e e e 115

T127 ACCESS-COTC . . v v v v i i e it e e e e e e e e e e 116

7.1.27.1 Présentationo e e e 116

712772 Packages: e e e e e e e 116

7.1.2.7.2.1 Récupération d’un objet spécifique 116

T12.8 ACCESS-TESL. . . v v vt it e e e e e e 117

7.1.2.8.1 Présentation e e 117

7.1.2.82 Packages: 117

7.1.2.8.3 fr.gouv.vitam.access.external.rest 117

7.1.2.8.3.1 Rest APL 117

7.1.2.9 -AccessApplication.java oo 117

7.1.2.10 -AccessResourcelmpljava.o oL oo 118

7.1.2.11 -LogbookExternalResourcelmpljava 120

7.1.2.12 -AdminManagementExternalResourcelmpl.java 122

713 Séeurité e e e 124

7.2 Batch-report e e e e e e e e e 124
721 GEnéralités e e e e e e e e 124

7.2.2 Architecture Technique L 124
7.22.1 Introduction e e e 124

7.22.1.1 Présentation e 124

7.2.2.1.2 Découpageducode e 124

7.2.2.2 batch-report-client 125

vi

7.2.2.3 batch-report-Common it e e e e e e e e e e e e e 125

7.2.2.4 Acbatch-report-rest e e e e e e 125

T.2.3 SEcurit€ e e e e e e e e e e e e e e e e 125
7.3 Collect e e e e 125
7.3.1 Généralités e e e e e e e 125
7.3.2 Architecture Technique 125
7.3.2.1 Introduction e e e e e e e e e e e e 125
7.3.2.1.1 Présentation e e e 125

7.3.2.1.2 Tt€rationd e e 125

7.3.2.1.3 Modules - packageso oL 126

7.32.2 collect-client e e e e e e 126
7.3.2.3 Utilisation e e e e e e e e e e e e e 126
7324 Leclient e e e e e e e e e 126
7.3.2.5 collect-rest e e e e e e e e e e e e e e e 127
7.3.2.5.1 Présentation e e e e e e 127

7.3.252 Packages: 127

7.3.2.5.3 frgouv.vitam.collect.resourcel 127

7.3.2.5.3.1 Rest API e 127

7.3.2.6 -TransactionResource.java it i e e 127

733 SEcurit€ e e e e e e e e e e e e e e e e 129
T4 COMIMON . . . v v vt et e 129
7.4.1 Architecture Fonctionnelle e 129
7.4.1.1 Introduction e e e e e e e e e 129
7.4.1.1.1 Butdecettedocumentation 129

74112 GUID e 129

74.1.1.3 Serverldentity et Logger 129

7.4.1.2 GUID e e e e 129
7.4.1.2.1 Présentation de la problématique 130

7.4.1.2.1.1 Qu’estce qu'une URL pérenne? 130

7.4.1.2.1.2 Objectifs o e 130

74.12.1.3 Préconisation E-ARK 130

7.4.1.2.2 Solutions envisagéeso i i e 130

7.4.1.2.2.1 ARK 130

7.4.1.2.2.2 Forme d’un ARK 130

741223 Identifiant Vitam 131

74.1.224 Logiquedeconstruction. 131

7.4.1.2.2.5 Logique d’affichage 131

7.4.1.22.6 Capacité de déconstruction 131

7413 Graphes e e e e e e e e e 132
7.4.1.3.1 Objectifs e e e e 132

7.4.1.4 Vérificationdes formats : e e 132

7.4.2 Architecture Technique oL o 132
7.42.1 Introduction e e e e e 132
7.4.2.1.1 Butdecette documentation 132

74212 GUID 132

7.42.2 GUID . . . e e e e e e e e e e e e 133
7.42.2.1 Identifiant Vitam e e 133

7.422.1.1 Forme d’un identifiant Vitam 133

7.4.2.3 Configuration jettyo e e e e e e e 134
7424 GestiondesHandlers: 134
7.4.2.5 Schéma de certificats et d’authentification 135
7.4.2.5.1 Présentation e e 135

7.4.2.6 Common format identification 135
7.4.2.6.1 Présentation e e e 135

vii

7.4.2.62 Souspackageso e e e 135

7.4.2.6.2.1 Identification: 135
7.4.2.6.2.2 Exceptions: e 136
742623 Model: 136
742624 Siegfried: 136
TA2T MeESSAZES . . v v v v e e e e e e e e e e e e 136
7.4.2.8 Messages Logbook e 136
7429 RequestID oL e e e e 137
7.429.1 Filtreclient 137
7.4.29.2 Sauvegarde dans le thread local 137
74293 Filtre Serveur 137
74294 Affichagedansleslogs 137
TA3 Securite e e e e 138
7.43.1 Introduction L e e e e e e e e e e 138
7.4.3.2 Securitt de MongoDB Lo 138
74321 Objectifs 138
7.4.3.3 secretdelaplateforme L 138
74331 Objectifs L 138
7.5 Functional administration L e e e e 138
7.5.1 Architecture Fonctionnelle L e 138
7.5.1.1 Introduction e e e 138
7.5.1.1.1 Butdecette documentation 138
7.5.1.2 Gestiondeformato e 139
7.5.1.3 Gestionderegles e e e 139
7.5.1.4 Sauvegarde du référentiel des regles de gestion 139
7.5.2 Architecture Technique Lo 139
7.5.2.1 Introduction e e 139
753 Securite e e e e 139
7.5.3.1 Introduction e e e 139
7.6 THMdemo e e e 139
7.6.1 Architecture fonctionnelle Lo L 139
7.6.1.1 Architecture fonctionnelle de I’application Back 139
7.6.1.1.1 Butde cette documentation 139
7.6.1.1.2 Fonctionnement généraldumodule 139
7.6.1.1.2.1 Recherche des units : POST /ihm-demo/v1/api/archivesearch/units 140

7.6.1.1.2.2 Affichage du détail d’une archive wunit : GET /ihm-
demo/vl1/api/archivesearch/unit/{id} 140

7.6.1.1.2.3 Modification et enregistrement des détails d’une archive unit : PUT
/ihm-demo/v1/api/archiveupdate/units/{id} 141
7.6.1.1.2.4 Remarque importanteo 141
7.6.1.1.2.5 Resteafaire 141
7.6.1.2 Architecture fonctionnelle de I’application Front 141
7.6.1.2.1 Butde cette documentation 141
7.6.1.2.2 Modules AngularJS déclarés L Lo, 142
7.6.1.23 Routage i i e e e e e 142
7.6.1.2.4 Factories/Services e 142
7.6.1.25 Controllers e e 143
7.6.1.2.6 Componentst e e e e e e 143
7.6.2 Architecture technique 143
7.6.2.1 Architecture technique de ’applicationBack 143
7.6.2.1.1 Butdecette documentation 143
7.6.2.1.2 Organisation du module ihm-demo 143
7.6.2.1.2.1 1. Module ihm-demo-web-application 143
7.6.2.1.2.2 package fr.gouv.vitam.ihmdemo.appserver 144

viii

7.7

7.8

7.9

7.10

7.62.1.2.3 2. Module ihm-core 144

7.6.2.1.2.4 package fr.gouv.vitam.ihmdemo.core 144

7.6.2.2 Architecture technique de ’application Front 144
7.6.2.2.1 Butdecette documentationo 144

7.6.2.2.2 Le Framework Front: AngularJS 1.53 145

7.6.2.2.2.1 Les modules AngularJS utilisés : 145

7.6.2.2.2.2 Autres frameworks Front utilisés 145

7.6.2.2.3 Organisation de 'application 145

THMizrecette o e e e e e e 146
7.77.1 Architecture technique L. oL 146
7.7.1.1 Architecture technique de I’applicationBack 146
7.7.1.1.1 Butde cette documentation 146

7.7.1.1.2 Organisation du module ihm-recette 146

7.7.1.1.2.1 1. Module ihm-demo-web-application 146

7.7.1.1.2.2 package fr.gouv.vitam.ihmdemo.appserver 146

7.7.1.1.2.3 package fr.gouv.vitam.ihmdemo.appserver.performance. 147

7.7.1.1.2.4 2. Module ihm-recette-web-front 147

7.7.1.1.2.5 3.Module ihm-core 147

7.7.1.2 Architecture technique de ’application Front 147
7.7.1.2.1 Butde cette documentation 147

7.7.1.2.2 Le Framework Front: AngularJS1.5.3 147

7.7.1.2.2.1 Les modules AngularJS utilisés : 147

7.7.1.2.2.2 Autres frameworks Front utilisés 147

7.7.1.2.3 Organisation de ’application 148

Ingest . . . o o e e e e 148
7.8.1 Architecture Fonctionnelle e 148
7.8. 1.1 Généralités e e e e e e e 148
7.8.1.2 Généralités e 149
7.8.1.3 Téléchargement standard et testablancd’un SIP: 149
7.8.1.4 Autres Fonctionnalités : e 149
7.8.1.5 Ingest ExternalAntiviruso 149
7.8.1.6 Généralités e e 149
7.8.1.7 Fonctionnalités concernant le workflow o000 150
7.8.1.8 Lesactions: v v it e e e e e e e 150
7.8.1.9 Asynchrone:. e e e 150

7.82 Technique e 151
7.8.2.1 Architecture Technique Ingest 0oL 151
7.82.1.1 Présentation e e e e e e e 151

7.8.2.2 AINEESL-TESE . v v v v o e 151
7.82.2.1 Présentation 151

7.8.2.2.2 IngestInternalApplication.java 151

T.8.3 SECUrite e e e e e e e e e e e e e e e 152
7.83.1 Introduction e e e e e e e e e 152
Security-Internal e e e 152
7.9.1 Architecture Fonctionnelle L 152
7.9.1.1 Introduction i e e e e e e e e e e 152
7.9.1.1.1 Butde cette documentationo 152

7.9.1.1.2 Security-internal L 152

7.9.2 Architecture Technique 152
7.9.2.1 Introduction e e e e 152

793 Securite e e e e e e e 152
7.93.1 Introduction e e e e e e e e e e 152
Logbook e 153
7.10.1 Architecture Fonctionnelle e 153

7.10.1.1 Généralités o e e e e 153

7.10.1.1.1 Journal d’opération e 153
7.10.1.2 Journaldecycledevie. L 153
7.10.1.3 Modelededonnées e e e e e e 153
7.10.1.3.1 Descriptiondeschamps oL 153
7.10.1.4 Modelede données e e e e e 155
7.10.1.4.1 Descriptiondeschamps e 155
7.10.2 Architecture technique L Lo e e e e e 157
7.10.2.1 Introduction e e e e e e e e e e e e e e 157
7.10.2.1.1 Présentation e e e e e e 157

7.10.2.1.2 TItération 3etItération S 157

7.10.2.1.2.1 Ttérations suivantes / a plus longterme 157

7.10.2.1.3 Modules - packages logbook 0., 157
7.10.2.2 DSL . . . e e e e 158

7.10.22.1 Analyse e 158

7.10.2.2.1.1 Présentation e e 158
7.10.2.2.1.2 Explication e e e 159
7.10.2.2.1.3 Utilisation e 159

7.10.2.2.2 ConcClusion i e e e 160
7.10.2.3 ReSt o e e e e e 160

7.10.2.3.1 Présentation e e e e e 160

7.10.2.3.2 ServiCes i e e e e 160
7.10.2.4 Common-client e e e e e e e e e e 160

7.10.2.4.1 Présentation e e e e e e 160

T.10.2.4.2 SErviCes . . v v v v v i e e e e e e e e e e e 161
7.10.2.5 Common-client e e e e e e e e 161

7.10.2.5.1 Présentation e e 161

7.10.2.52 ServiCes . . . o . i e e e e e 161

7.10.2.53 Données e e e e e e e 161
7.10.2.6 COMMONS v vt et e 162

7.10.2.6.1 Présentation e e e e e e e 162

7.10.2.6.2 ServiCes i e e 162
7.10.2.7 Operation CHent 0 v v i e e e e e e e e e e e e e 162

7.10.2.7.1 Présentation e e e e e 162

T.10.2.7.2 ServiCes . . . v v v i e e e e e e e e e e e 162
7.10.2.8 Opération o e e e e e e e e e e 162

7.10.2.8.1 Présentation e e e e e e e 162

7.10.2.8.2 ServiCes i e e e e e 163

7.10.2.83 Rest APL e e 163
7.10.2.9 Lifecycle Client i e e e e e e e 163

7.10.2.9.1 Présentation e e e 163

T.10.2.9.2 SErviCes . . . v v v i i e e e e e e e e e e e e 163
7.10.2.10 Lifecycle o o o e 163

7.10.2.10.1 Présentation e e e e 163

7.10.2.10.2 Services . . . v v v i e e e e e e e e e e e e e 163

7.10.2.10.3 Rest APL e e 163
7.10.2.11 Administration-client e e e e e 164

7.10.2.11.1 Présentation e e e 164

T10.2.11.2 Services . . . v v v o i e e e e e 164
7.10.2.12 Administration e e e e e e e e e e e e e e e e e e e 164

7.10.2.12.1 Présentation e e e e e e 164

T0.2.12.2 SErvices . . v v v v v e e e e e e e e e e e e e 164

7.10.2.12.3 Rest APL e 164

7103 SeCurite v o e e e e e e e e e e 164

7.10.3.1 Introduction i e e e e e 164

T.A1 Metadata e e e e e e e e e e e e 164
7.11.1 Architecture Fonctionnelle i 164
TA1.1.1 Introduction o 0 i it e e e e e e e e e 164
TA1.1.2 Généralités e e e e e e 164

7.11.2 Architecture technique 165
7.11.2.1 Introduction e e e e e e e e e e 165
7.11.2.1.1 Présentation e e e e 165

T.11.2.1.2 Tt€rationd e e e 165

7.11.2.1.3 Modules - packages o 165

70122 Opération oo i e e e e e e e e e 166
7.11.2.2.1 Présentation e e e e e 166

TA1.2.2.2 ServiCes . . . v v v i e e e e e e e e e e e e 166

7.11.223 Rest APL. e e e 166

7.11.23 Metadata-apio e 166
7.11.2.3.1 Présentation 166

7.11.2.4 Metadata-builder e e e 167
7.11.2.4.1 Présentation e e e e e 167

7.01.2.5 Operation Client o0t i e e e e e e e e 167
T.11.2.5.1 Présentation e e e e e e e 167

7.11.2.6 metadata-core e e e e e e e e 167
7.11.2.6.1 Présentation e e e 167

7.11.2.6.2 1.Modulesetpackages e 168

T11.2.63 2. ClasSeS . . v v v v v e e e e e e e e e e e e e e e 168

7.11.2.6.3.1 2.1 ClassDbRequest 168

7.11.2.6.3.2 2.2 Class ElasticsearchAccessMetadata. 169

7.11.2.6.3.3 23 Class MetaDatalmpl 169

7.11.2.6.34 24ClassUnitNode 169

7.11.2.6.3.5 2.5 Class UnitRuleCompute 170

7.11.2.6.3.6 2.5 Class UnitlnheritedRule 170

7.11.277 metadata-parsero e e e e e e 170
7.11.2.7.1 Présentation e e e 170

7.11.2.8 Métadata e e e e e e e e e e e e 170
7.11.2.8.1 Présentation e e e e 170

TA1.2.82 ServiCes . . . v v v v i i e e e e e e e e e e 170

7.11.2.83 Rest APL. e 170

T11.2.9 ReSt o e e e e e e 171
7.11.2.9.1 Présentation e e e e 171

T11.2.92 Services . . . o . v i i e e e e 171

TA1.3 SeCurite o o e e e e e e e e e e e e e e e e e 171
7.11.3.1 Introduction e e e e e e e e e e e e e e 171

TA2 Processing o o v i it e e e e e e e e e e e e e e e 171
7.12.1 architecture-fontionnelle-processing oo 171
7.12.1.1 Introduction e e e e e e e e e e e e 171
7.12.1.1.1 Butde cette documentation 171

TA2.1.1.2 Processingo i o e e e e e e 171

7.12.1.2 Processing Management e e e e e e e e e 172
70213 Engine e e e 172
7.12.1.4 Distributor L e e e e e e e e e e e 172
TA2.1.5 Worker o e e e e e e e e e e e 172
7.12.1.6 Process Monitoring e e e e e e e e e e 173

7.12.2 Architecture Technique oL 173
7.12.2.1 Introduction e e e e e e e e e e e e 173
7.12.2.2 DAT : module processing« v v vt v it i e e e 173

xi

7.12.2.2.1 Moduleetpackageso 173

712222 Modele 173

7.12.2.2.3 Process Distributoro o 174

7.12.2.2.4 Parallélisme dans le distributeur Lo o L 174

7.12.2.3 Rangementdesobjets 175
7.12.23.1 Algorithme e 175

7.12.2.4 Vérification de ladisponibilité o 175
7.12.2.4.1 Algorithme e 175

7.12.2.5 Vérifier SEDA 176
7.12.2.5.1 Algorithme oL 176

7.12.2.6 Meétriques spécifiques du composant processing 177
7.12.2.6.1 BeSOINSo e e 177

7.12.2.6.2 Liste des mEtriques vt e e e e e e e e e 177

7.12.2.6.3 Exploitation des métriques L oL 177

TA2.3 SeCUrite o v v it e e e e e e e e e e e e e e 178
7.12.3.1 Introduction e e e e 178

7.13 Scheduler L e e 178
7131 Généralités e e e 178
7.13.2 Architecture Technique L e e e 178
7.13.2.1 Introduction 178
7.13.2.1.1 Présentationo 178

7.13.2.2 Jobsdelogbook VITAM it 178
7.13.2.2.1 Liste des classes implémentantlesjobs 178

7.13.2.2.1.1 TraceabilityLFCJobjava 178

7.13.2.2.1.2 TraceabilityJobjava o oL 178

7.13.2.2.1.3 TraceabilityAuditJobjava 178

7.13.2.2.1.4 ReconstructionOperationJob.java 179

7.13.2.3 Jobsde metadata VITAM e 179
7.13.2.3.1 Liste des classes implémentantlesjobs 179

7.13.2.3.1.1 AuditDataConsistencyMongoEsJobjava 179

7.13.2.3.1.2 ProcessObsoleteComputedInheritedRulesJobjava 179

7.13.2.3.1.3 PurgeDipJobjava 179

7.13.2.3.1.4 PurgeSipJobjava o oo 179

7.13.2.3.1.5 ReconstructionJobjava 0L 179

7.13.2.3.1.6 StoreGraphJobjava 180

7.13.2.4 Jobs de functional-administration VITAM 180
7.13.2.4.1 Liste des classes implémentantlesjobs 180

7.13.2.4.1.1 ReconstructionAccessionRegisterJob.java 180

7.13.2.4.1.2 ReconstructionReferentialJobjava 180

7.13.2.4.1.3 ReferentialCreateSymblolicAccessionRegisterJob.java 180

7.13.2.4.1.4 RuleManagementAuditJobjava 180

7.13.2.5 Jobsdeoffer VITAM e 181
7.13.2.5.1 Liste des classes implémentantlesjobs 181

7.13.2.5.1.1 OfferLogCompactionJobjava 181

7133 Séeurité e e 181
T4 SOTAZe . . o o v v e e e e e e e e e e e e e e e e 181
7.14.1 Architecture Fonctionnelle L L 181
7.14.1.1 Introduction e e 181

7.14.2 Architecture Technique 181
7.142.1 Introduction e e e e e e 181
7.142.1.1 Présentation e 181

7.142.1.2 Ttération 16 e e 181

7.14.2.1.3 Modules - packages Storageo 182

7.142.2 Architecture générale e 183

xii

7.15

7.16

7.14.2.2.1 Schémagénéral 183

7.14.2.2.2 Workflow du stockage desobjets 183

714223 Tt€ration 6 e e e e e e e e 184

714224 Tt€ration7 o i e e e e e e e e e 184

7.142.25 Ttération 13 184

7.1422.6 Itération 14 e 185

714227 Tt€ration 16 e e e 185

714228 RI2 . o o 185

7.1423 Storage Driver e 185
7.14.23.1 Présentation e e e e e e 185

7.14.2.3.2 Architecture 185

714233 Pourallerplusloin 186

7.14.2.4 Storage Engine. e e e e e 186
7.14.2.4.1 Présentation e e e e e 186

T 142411 ServiCes v v v v i i e e e e e e e e e 186

7142412 RestAPL. 187

7.142.4.1.3 URIdappel i 187

7.142.4.1.4 Headers e e e 187

7.142.4.1.5 Méthodes e 187

7.142.4.1.6 Distribution e e 188

7.14.2.4.1.7 DriverManager: SPI 189

7.14.24.1.8 Principe 189

7.142.4.1.9 Persistance.o e e e e e e e e e 190

7.14.2.5 Storage Engine Client e e 190
7.14.2.5.1 Présentation e e e e 190

7.142.6 Storage Offers L 190
7.14.2.6.1 Présentation e e e 190

7.14.2.7 Vitam Offer e e e e e 191
7.14.2.7.1 Présentation e e e e 191

T 14272 Driver o i e e e e e e e e 191

T 14273 Serveur i i e e e e e e e e e e e e 191

7.14.2.7.3.1 Description L e e e e e e e e 191

7142732 REST e e e e 192

71427733 Description v v vt e e e e e e e e e e 192

7142734 RESTAPL e 192

7.14.2.8 Meétriques spécifiques du composant storage-engine 194
T.14.2.8.1 Besoins e e e e e e e e 194

7.14.2.8.2 Listedes métriques 194

7.14.2.8.3 Exploitation des métriqueso e e e 194

T14.3 SeCUTite v o e e e e e e e e e e e e e e e e e e 195
7.14.3.1 Introduction e e e e e e e e e e e e e e 195
Technical administration i i e e e e e e e e e e e e e e 195
7.15.1 Architecture Fonctionnelle 195
7.15.1.1 Introduction e e e e e e e 195
7.15.2 Architecture Technique L e e e e 195
7.15.2.1 Introduction e e e e e e e e e e e e e 195
TA5.3 SeCUrite o o i e e e e e e e e e e 195
7.15.3.1 Introduction e e e 195
Worker e e e e e 195
7.16.1 architecture-fontionnelle-processing L L e 195
7.16.1.1 Introduction e e e e e e e e e e e e e 195
7.16.1.1.1 Butde cette documentation 195

7.16.1.1.2 Worker. e 195

7.16.1.2 Worker e e e e e e 195

8 Annexes

Index

7.16.1.3 notification-atr-ok e e e e e 195

7.16.1.4 notification-atr-Ko L. e e e e 196
7.16.1.5 Contrdle de la cohérencede SIPs 196

7.16.2 Architecture Technique L 197
7.16.2.1 Module Worker e e e e 197
7.16.2.2 WOTKEr SEIVET v v i o e e o e e e e e e e e e e e e e e e 197
7.16.2.2.1 Présentationo e e 197

T16.2.2. 1.1 Services v v i e e e e e e e e 197

7.1622.1.2 RestAPL. e 197

7.16.22.1.3 URIdappel 197

7.16.2.2.1.4 Headers e 197

7.16.2.2.1.5 Méthodes e e 198

7.16.2.3 Extraire les métadonnées des ArchiveUnit et DataObject. 198
7.16.23.1 Général e e 198

7.16.2.3.1.1 Workspace avant extraction: 198

7.16.2.3.1.2 Workspace apres extraction : 198

7.16.232 Algorithme e 198

7.16.2.3.2.1 Algorithme d’update pour I’extract SEDA 199

7.16.2.4 notification-atr-ok L L e e e e e e 199
7.16.2.5 notification-atr-Ko Lo e e e 200
7.16.2.6 PluginWorker 200
7.16.2.6.1 Butde cette documentation 200

7.16.2.6.2 Introduction 200

7.16.2.6.3 Appelduplugin e 202

7.16.2.6.4 Résultatduplugino L 202

7.16.2.6.5 Implémentation oo 202

7.16.2.6.5.1 Worker. e 202

7.16.2.6.5.2 PluginPropertiesLoader 203

7.16.2.6.5.3 Intégration e e e e 203

T16.3 SeCUTite . . . o v v v i i e e e e e e e e e e e e e e 203
7.16.3.1 Introduction e e e e e e e e e e e e 203

TAT WOrkspace o o o o o e e e e e e e e e e 203
Architecture Fonctionnelle e 203

7.07.1.1 Introduction e e e e e e 203

7.17.2 Architecture Technique o e e 203
7.07.2.1 Introduction L e e e e e e e e e e e 203

TAT.3 SECUTIte v o e 203
7.07.3.1 Introduction e e e e e e e e e e e e e e 203

204

207

xiv

CHAPITRE 1

Introduction

1.1 Objectif de ce document

Ce document est le document d’architecture de la solution logicielle VITAM ; il vise a donner une vision d’ensemble
des problématiques structurantes et de la solution (d’un point de vue applicatif et technique), ainsi que de présenter les
choix structurants de principes et de composants et les raisons de ces choix.
Il s’adresse aux personnes suivantes :

e Les architectes applicatifs des projets désirant intégrer VITAM ;

e Les architectes techniques des projets désirant intégrer VITAM.

1.2 Structure du document

Ce document est séparé en 3 grandes parties :
e L’architecture applicative, principalement a destination des architectes applicatifs ;
e [architecture technique, avec notamment :

e En premiere sous-section, les principes d’architecture technique, principalement a destination des archi-
tectes d’infrastructure

e Dans la suite, les choix d’architecture et de composants techniques, a destination des architectes d’infra-
structure et des exploitants ;

e Les principes et regles de sécurité appliqués et applicables a la solution.

CHAPITRE 2

Rappels

2.1 Information concernant les licences

La solution logicielle VITAM est publiée sous la licence CeCILL 2.1'; la documentation associée (comprenant le
présent document) est publiée sous Licence Ouverte V2.0 2.

Les clients externes java de solution V/TAM sont publiés sous la licence CeCILL-C?; la documentation associée
(comprenant le présent document) est publiée sous Licence Ouverte V2.0%.

2.2 Documents de référence
2.2.1 Documents internes

TABLEAU 1 — Documents de référence VITAM

Nom Lien
DAT http://www.programmevitam.fr/ressources/DocCourante/html/archi
DIN http://www.programmevitam.fr/ressources/DocCourante/html/installation
DEX http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
DMV http://www.programmevitam.fr/ressources/DocCourante/html/migration
Release notes https://github.com/Programme Vitam/vitam/releases/latest

1. https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html

2. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf

3. https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html

4. https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf

https://cecill.info/licences/Licence_CeCILL_V2.1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
https://cecill.info/licences/Licence_CeCILL-C_V1-fr.html
https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf
http://www.programmevitam.fr/ressources/DocCourante/html/archi
http://www.programmevitam.fr/ressources/DocCourante/html/installation
http://www.programmevitam.fr/ressources/DocCourante/html/exploitation
http://www.programmevitam.fr/ressources/DocCourante/html/migration
https://github.com/ProgrammeVitam/vitam/releases/latest

VITAM - Architecture, Version 7.1.5

2.2.2 Référentiels externes
2.3 Glossaire

API Application Programming Interface

AU Archive Unit, unité archivistique

BDD Base De Données

BDO Binary DataObject

CA Certificate Authority, autorité de certification
CAS Content Adressable Storage

CCFN Composant Coffre Fort Numérique

CN Common Name

COTS Component Off The shelf; il s’agit d’un composant « sur étagere », non développé par le projet VITAM, mais
intégré a partir d’un binaire externe. Par exemple : MongoDB, ElasticSearch.

CRL Certificate Revocation List; liste des identifiants des certificats qui ont été révoqués ou invalidés et qui ne sont
donc plus dignes de confiance. Cette norme est spécifiée dans les RFC 5280 et RFC 6818.

CRUD create, read, update, and delete, s’ applique aux opérations dans une base de données MongoDB
DAT Dossier d’ Architecture Technique

DC Data Center

DEX Dossier d’EXploitation

DIN Dossier d’INstallation

DIP Dissemination Information Package

DMV Documentation de Montées de Version

DNS Domain Name System

DNSSEC Domain Name System Security Extensions est un protocole standardisé par I'IETF permettant de résoudre
certains problemes de sécurité 1iés au protocole DNS. Les spécifications sont publiées dans la RFC 4033 et les
suivantes (une version antérieure de DNSSEC n’a eu aucun succes). Définition DNSSEC ?

DSL Domain Specific Language, langage dédié pour le requétage de VITAM
DUA Durée d’Utilité Administrative

EBIOS Méthode d’évaluation des risques en informatique, permettant d’apprécier les risques Sécurité des systemes
d’information (entités et vulnérabilités, méthodes d’attaques et éléments menagants, éléments essentiels et be-
soins de sécurité. ..), de contribuer a leur traitement en spécifiant les exigences de sécurité a mettre en place, de
préparer I’ensemble du dossier de sécurité nécessaire a I’acceptation des risques et de fournir les éléments utiles
a la communication relative aux risques. Elle est compatible avec les normes ISO 13335 (GMITS), ISO 15408
(criteres communs) et ISO 17799

EAD Description archivistique encodée

ELK Suite logicielle Elasticsearch Logstash Kibana

FIP Floating IP

GOT Groupe d’Objet Technique

IHM Interface Homme Machine

IP Internet Protocol

IsaDG Norme générale et internationale de description archivistique

JRE Java Runtime Environment; il s’agit de la machine virtuelle Java permettant d’y exécuter les programmes com-
pilés pour.

5. https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

2.3. Glossaire 3

https://fr.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

VITAM - Architecture, Version 7.1.5

JVM Java Virtual Machine; Cf. JRE
LAN Local Area Network, réseau informatique local, qui relie des ordinateurs dans une zone limitée
LFC LiFe Cycle, cycle de vie

LTS Long-term support, support a long terme : version spécifique d’un logiciel dont le support est assuré pour une
période de temps plus longue que la normale.

M2M Machine To Machine

MitM L’attaque de I’homme du milieu (HDM) ou man-in-the-middle attack (MITM) est une attaque qui a pour but
d’intercepter les communications entre deux parties, sans que ni 1’'une ni ’autre ne puisse se douter que le
canal de communication entre elles a été compromis. Le canal le plus courant est une connexion a Internet
de I'internaute lambda. L’attaquant doit d’abord étre capable d’observer et d’intercepter les messages d’une
victime a ’autre. L’attaque « homme du milieu » est particulierement applicable dans la méthode d’échange de
clés Diffie-Hellman, quand cet échange est utilisé sans authentification. Avec authentification, Diffie-Hellman
est en revanche invulnérable aux écoutes du canal, et est d’ailleurs congu pour cela. Explication

MoReq Modular Requirements for Records System, recueil d’exigences pour 1’organisation de 1’archivage, élaboré
dans le cadre de I’Union européenne.

NoSQL Base de données non-basée sur un paradigme classique des bases relationnelles. Définition NoSQL’

NTP Network Time Protocol

OAIS Open Archival Information System, acronyme anglais pour Systémes de transfert des informations et données
spatiales — Systeme ouvert d’archivage d’information (SOAI) - Modele de référence.

OOM Aussi apelé Out-Of-Memory Killer ; mécanisme de la derniere chance incorporé au noyau Linux, en cas de
dépassement de la capacité mémoire

OS Operating System, systeme d’exploitation

OWASP Open Web Application Security Project, communauté en ligne de facon libre et ouverte a tous publiant

des recommandations de sécurisation Web et de proposant aux internautes, administrateurs et entreprises des
méthodes et outils de référence permettant de contrdler le niveau de sécurisation de ses applications Web

PDMA Perte de Données Maximale Admissible; il s’agit du pourcentage de données stockées dans le systeme qu’il
est acceptable de perdre lors d’un incident de production.

PKI Une infrastructure a clés publiques (ICP) ou infrastructure de gestion de clés (IGC) ou encore Public Key Infra-
structure (PKI), est un ensemble de composants physiques (des ordinateurs, des équipements cryptographiques
logiciels ou matériel type HSM ou encore des cartes a puces), de procédures humaines (vérifications, validation)
et de logiciels (systeme et application) en vue de gérer le cycle de vie des certificats numériques ou certificats
électroniques. Définition PKI®

PCA Plan de Continuité d’ Activité
PRA Plan de Reprise d’ Activité

REST REpresentational State Transfer : type d’architecture d’échanges. Appliqué aux services web, en se basant
sur les appels http standard, il permet de fournir des API dites « RESTful » qui présentent un certain nombre
d’avantages en termes d’indépendance, d’universalité, de maintenabilité et de gestion de charge. Définition
REST?

RGAA Référentiel Général d’ Accessibilité pour les Administrations
RGI Référentiel Général d’Interopérabilité

RPM Red Hat Package Manager ; il s’ agit du format de paquets logiciels nativement utilisé par les distributions Linux
RedHat/CentOS (entre autres)

SAE Systéme d’Archivage Electronique
SEDA Standard d’Echange de Données pour I’ Archivage

https://fr.wikipedia.org/wiki/Attaque_de_1’homme_du_milieu
https://fr.wikipedia.org/wiki/NoSQL
https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
https://fr.wikipedia.org/wiki/Representational_state_transfer

O o

4 Chapitre 2. Rappels

https://fr.wikipedia.org/wiki/Attaque_de_l'homme_du_milieu
https://fr.wikipedia.org/wiki/NoSQL
https://fr.wikipedia.org/wiki/Infrastructure_%C3%A0_cl%C3%A9s_publiques
https://fr.wikipedia.org/wiki/Representational_state_transfer
https://fr.wikipedia.org/wiki/Representational_state_transfer

VITAM - Architecture, Version 7.1.5

SGBD Systeme de Gestion de Base de Données

SGBDR Systéme de Gestion de Base de Données Relationnelle
SIA Systeme d’Informations Archivistique

SIEM Security Information and Event Management

SIP Submission Information Package

SSH Secure SHell

Swift OpenStack Object Store project

TLS Transport Layer Security

TNA The National Archives, Pronom '°

TNR Tests de Non-Régression

TTL Time To Live, indique le temps pendant lequel une information doit étre conservée, ou le temps pendant lequel
une information doit étre gardée en cache

UDP User Datagram Protocol, protocole de datagramme utilisateur, un des principaux protocoles de télécommuni-
cation utilisés par Internet. Il fait partie de la couche transport du modele OSI

UID User IDentification

VITAM Valeurs Immatérielles Transférées aux Archives pour Mémoire
VM Virtual Machine

WAF Web Application Firewall

WAN Wide Area Network, réseau informatique couvrant une grande zone géographique, typiquement a I’échelle d’un
pays, d’un continent, ou de la planete entieére

10. https://www.nationalarchives.gov.uk/PRONOM/

2.3. Glossaire 5

https://www.nationalarchives.gov.uk/PRONOM/

CHAPITRE 3

Vue d’ensemble

3.1 Drivers du projet

3.1.1 Enjeux

Les enjeux de la solution logicielle VITAM se répartissent en 3 grandes catégories :

e Les enjeux liés au respect des processus métier d’archivage ; il s’agit de permettre 1’identification, le maintien
de la disponibilité et de la sécurité, ainsi que le maintien du contrdle sur les documents confiés a VITAM. Dans
le cas particulier de I’archivage définitif, VITAM doit permettre 1’ utilisation des documents a des fins historiques
liées a leur réutilisation, et permettre la conservation de documents dont la DUA est échue mais ayant vocation
a étre conservés indéfiniment.

e Les enjeux liés au volume, a la variété et aux besoin de performances des traitements des données gérées par
VITAM

e VITAM doit pouvoir gérer la conservation et I’accés de volumes élevés d’archives numériques (> 10 '
objets, 10 To => 10 Po), tout en garantissant une perte de données nulle (PDMA ~ 0) pour les données
qui ont été « acceptées » par VITAM apres acquittement d’un versement, ainsi que pour 1’ensemble des
données nécessaires pour assurer la preuve systémique de la plateforme (journaux des opérations, du cycle
de vie, du SAE);

e VITAM doit pouvoir gérer un large éventail de types de données archivées, et ce notamment dans le temps,
incluant une forte variété de métadonnées descriptives des archives et une forte variété de type de format
des objets numériques;

e VITAM doit étre performant dans ses capacités de gestion des données archivées, et notamment permettre
de répondre a des requétes de recherche simples en quelques secondes, a des recherches complexes ar-
chivistiques en quelques minutes et a une demande d’acces a un contenu quelconque en une dizaine de
secondes.

e Les enjeux liés a la sécurité, en fournissant un acces sécurisé et controlé ainsi qu’en garantissant la tragabilité
des actions (gestion notamment de documents devant conserver leur valeur probante). En outre, VITAM doit
permettre de garantir une trés longue durée d’acces et de conservation (> 50 ans) des archives, et doit notamment
pouvoir résister a 1I’obsolescence informatique.

VITAM - Architecture, Version 7.1.5

3.1.2 Contraintes et objectifs

L’acces aux archives numériques doit étre facile :

Adapté : Services Web, Nouveaux média

Interopérable : RGI et respect des standards ou normes d’échange et de communication

Requétable : le SAE doit fournir un service de recherche, tout comme un SGBD : une interface de requétes des
bases qu’il héberge

e Mutualisable :

e le SAE doit pouvoir fournir un plan de classement multiple et une capacité d’acces depuis plusieurs appli-
cations

e le SAE doit pouvoir gérer des dizaines de milliards d’entrées et leurs métadonnées associées avec une va-
riabilité des formats des unités d’archives (objets numériques) et des descriptions associées (métadonnées)

L’acces aux archives numériques doit étre rapide :

e Le temps d’acces pour une archive unitaire (un document) ou des métadonnées doit étre compatible avec les
technologies actuelles (Cf. le paragraphe précédent);

e Pour les acces a des lots d’archives, les moyens utilisés doivent étre appropriés :
e Via un support physique
e Via un téléchargement de masse

e Du fait de la sensibilité des données :
e [’acces doit étre sécurisé (Réseau, Protocolaire, Filtrage)

e L[’acces doit étre contrdlé (sur la base de contrats et de filtres métiers associés)

3.1.3 Positionnement

La solution logicielle VITAM est un back-office pouvant s’interfacer a tout front-office (utilisateur) devant accéder a des
données archivées (pas nécessairement pour de 1’archivage définitif). Il disposera cependant des /HM d’administration
pour I’administration technique et fonctionnelle de la plateforme ainsi que d’'une IHM minimale pouvant pallier a
I’absence temporaire d’un front-office.

La solution logicielle VITAM a pour but d’étre largement réutilisable, et ce notamment en se basant sur ’'usage de
standards métiers (ex : SEDA pour les versements).

Enfin, le socle logiciel doit pouvoir étre utilisable pendant 20 ans (en incluant les évolutions technologiques).

3.1. Drivers du projet 7

VITAM - Architecture, Version 7.1.5

3.2 Interfaces externes du systeme

Connecteurs pour
les dépots de SIP
(SEDA — Z 44-022)

Connecteurs pour
les requétes

depuis des
Applications métiers

—

VITAM

(OAIS + Z 42-013)

Plusieurs offres
de stockage
concurremment
(dont 1 proposée
par défaut par VITAM)

Connecteur d'accés
Lecture / Ecriture
aux archives

FI1G. 1 — Vue de VITAM dans son environnement (vue « boite noire »)

3.2.1 Interfaces requises

Dans cette version du systéme, aucune interface externe autre que les services IT standard (N7P, DNS, dépdts de mise
a jours des OS, ...) n’est requise par VITAM.

3.2.2 Interfaces métier exposées

La solution logicielle VITAM expose trois grands groupes d”API métier :
o Les API d”ingest : elles permettent I’entrée d’une nouvelle archive dans le systeme;

o Les API d’acces : elles permettent d’accéder aux données d’archives présentes dans le systeme (métadonnées et
données d’archives, journaux, référentiels) ;

o Les API d’administration fonctionnelles : elles permettent notamment la modification des référentiels métier.

Ces API sont exposées en tant qu’API REST (HTTPS) au niveau des composants externes (composants
x—external), avec un acces protégé par une authentification par certificat.

Voir aussi :

Les points relatifs a la sécurité des interfaces externes exposées sont abordés dans la section sécurité (page 108).

3.3 Orientations générales

Avertissement : Ces orientations générales donnent la direction vers laquelle tend la solution logicielle VITAM ;
il contient donc des références a des fonctionnalités qui ne sont pas forcément présentes dans cette version du
systeme VITAM.

8 Chapitre 3. Vue d’ensemble

VITAM - Architecture, Version 7.1.5

3.3.1 Open Source

Les logiciels utilisés et le résultat sont Open Source afin de faciliter la réutilisation et d’éviter les contraintes de marchés
publics pour la réutilisation au sein des différentes entités publiques.

Le logiciel produit est un logiciel de Back-office, supposant qu’il y a donc des Front-offices développés par ailleurs.

Le back-office se veut étre mutualisé entre plusieurs Front-offices, pour :

e Permettre la réutilisation des données (objets numériques et métadonnées) dans plusieurs contextes (mémoire
de I’entité publique)

e Permettre la réduction des coiits en centralisant les investissements.

Chaque front-office aura des conditions particulieres d’usage du back-office. Ces conditions particulieres pourront
varier selon :

e La nature des grandes opérations qui pourront étre effectuées (versement, acces, gestion, .. .)

e La nature des variantes d’opérations qui pourront étre effectuées (ajout d’une entrée, modification d’une en-
trée ou de métadonnées, ...) : en résumé lecture seule, écriture simple (insertion), écriture riche (mise a jour),
effacement

e [e domaine d’application de ces opérations (quelles filieres, quels objets numériques, quels périmetres)

e Le filtrage sur ces domaines (2 niveaux : habilité / non habilité, utilisables en fonction de régles de gestion :
communicabilité, diffusion, données publiques/privées, ...)

Méme si VITAM est un back-office, certaines IHM sont prévues pour différentes fonctions :

e /HM d’administration : pour les opérations d’administration (métier) a acces restreint. Selon le front-office
utilisé, cette /HM peut ne pas €tre nécessaire ;

e /HM minimale : elle assure un socle minimal d”/HM pour assurer un usage rapide de la solution logicielle
VITAM. Cette ITHM est prévue pour étre utilisée dans les cas simples, et donc, selon le front-office utilisé, elle
peut ne pas étre nécessaire ;

e /HM de démonstration : elle porte des exemples d’implémentations limitatives tant en fonctionnalité qu’en
garantie de fonctionnement. Ces /HM ne doivent pas &tre mises en production mais sont des exemples dont
peuvent s’inspirer les concepteurs d’applications front-offices.

e Cette /[HM porte notamment des codes de démonstration, des cas particulier d’exemples pour de futures
implémentations de front-offices, mais uniquement sur un aspect codage (requétes et réponses) pour illus-
trer des cas d’usages.

3.3.2 API REST

Pour assurer I’interconnexion entre le back-office et les front-offices, il est proposé d’utiliser des interfaces HTTPS
REST (hors protocoles spécifiques additionnels de transferts de fichiers). Ainsi, toutes les fonctionnalités accessibles
aux front-offices seront offertes via ces API. Les ITHM minimales et de démonstration utiliseront ces API. Les IHM
d’administration pourront utiliser des API spécifiques si nécessaire (mais ce n’est pas une obligation, ces API pouvant
elles aussi étre exposées in fine).

Une analogie peut étre faite entre VITAM et une base de données :
e Une base de données peut héberger une ou plusieurs tables communes a de multiples applications clientes ;
e Les applications clientes utilisent des AP/ (SQL) pour échanger avec le moteur de la base de données;;

e La base de données dispose d’une /HM spécifique d’administration pouvant utiliser les mémes AP/ (SQL) ou
des API spécifiques du moteur.

3.3. Orientations générales 9

VITAM - Architecture, Version 7.1.5

3.3.3 Big Data et Cloud computing

Les contraintes de volumétrie (plusieurs dizaines de milliards d’objets) conduisent a une volumétrie (en nombre)
dépassant les capacités des logiciels usuels (type SGBDR). Les technologies NoSOL ou Cloud computing a forte
distribution permettent de pallier ce probleme.

Pour chaque objet numérique, les métadonnées associées sont variables ([Nom, Prénom, . ..] pour un dossier RH, [Pro-
jet, Domaine, ...] pour un dossier projet, [Action, Plan comptable, ...] pour de la comptabilité, ...). Cette variabilité
peut étre assumée par des technologies NoSQL dites schemaless.

Chaque objet numérique peut étre d’un format différent (Word, PDF, JPG, AV, ...). La lisibilité dans le temps d’un
objet numérique est un enjeu majeur. Si on ne peut plus le lire (le consulter par exemple), il n’est plus compréhensible
par I’humain. Les transformations de format pour en assurer la lisibilité sont donc indispensables dans le temps. Du
fait de la masse (dizaines de milliards d’objets numériques), cette contrainte impose de gérer une vélocité de grande
masse.

Du fait de la prolifération des formats et des usages (usage dit de master pour la conservation, usage dit de diffusion
dans une qualité moindre, voire d’autres usages comme une qualité de type vignette ou contenu textuel (TEXTE)), ces
formats induisent eux aussi une grande variabilité qui doit étre gérée de maniere efficiente (vélocité).

De plus, I’acces aux métadonnées ou aux objets numériques doit pouvoir se faire dans des temps acceptables (de
la seconde a quelques dizaines de secondes pour certains éléments massifs). La aussi, la vélocité est donc un point
important.

Ces 3 V (Volume, Variété, Vélocité) imposent une vision « Big Data » mais non analytique (Big Data de traitements).
Il n’est pas prévu par exemple de pouvoir effectuer des traitements de masse sur le contenu des archives et d’en
déduire des analyses statistiques ou d’utiliser des mécanismes d’intelligence artificielle. Ainsi le modele Hadoop ne
correspond pas a notre usage.

3.3.4 Cloud storage

La particularité de ’acces aux objets numériques est un acces unitaire a minima (I’acces a un lot se résumant a faire des
acces unitaires pour chacun des éléments de ce lot). Ainsi, on accede a un courriel et non uniquement a une boite aux
lettres. De ce fait, chaque objet étant accédé unitairement, la logique retenue pour le stockage est une logique Objet
(CAS) et non une logique systemes de fichiers. L'implémentation réelle peut s’appuyer sur une logique de systémes
de fichiers, mais I’interface visible sera bien objet. Le modele de référence (ce qui ne veut pas dire I’implémentation
réelle ni I'interface exacte) s’inspire de la NF Z 42-020 et du modele Swift ou CEPH. L’avantage des deux dernieres
technologies est qu’elles permettent d’envisager un modele qui peut croitre en taille sans avoir a tout changer a chaque
fois. Il s’agit donc du modele Cloud Storage.

Note : Les notions de Cloud computing ou Cloud Storage ne sont pas a prendre au sens hébergement chez Amazon,
Google ou Azure, mais au sens des technologies sous-jacentes.

Par contre, il doit étre possible de regrouper logiquement des unités en lots (des courriels d’une boite aux lettres) afin
d’en faciliter I’acces. Comme il s’agit de regroupement logique, et que pour une méme unité, plusieurs regroupements
peuvent étre envisagés (un courriel classé dans une boite, et ce méme courriel classé dans un dossier d’affaire), c’est
une vision arborescente (dossiers, sous-dossiers, tout comme une arborescence de répertoires contenant des fichiers)
disjointe des objets numériques qui est mise en oeuvre. Celle-ci s’inspire du modele IsaDG, EAD, SEDA mais aussi
du modele MoReq 2010. 11 a conduit a la notion d” « unités d’archives » (ou Units) structurés dans une arborescence
(plan de classement).

Cette fagon de distinguer ce qui est porté dans I’arbre de métadonnées (le classement) et dans le stockage (les objets
unitaires) permet de faciliter le développement différencié des deux en en réduisant la complexité pour chacun, ce
qui permet d’envisager le remplacement plus facilement de telle ou telle partie, et en particulier pour le stockage,
d’autoriser d’autres implémentations.

10 Chapitre 3. Vue d’ensemble

VITAM - Architecture, Version 7.1.5

3.3.5 PCA/PRA et répartitions des travaux

La solution logicielle VITAM est prévue pour €tre installée sur un nombre de sites suffisant pour assurer la sécurité des
données. Selon les volumétries, le nombre de sites peut étre variable :

e 1 site : Ce cas ne peut concerner que des volumes de tres petite taille dont la sauvegarde journaliere et complete
(« Full daily backup ») est permise et réaliste, ainsi que I’acceptation d’un délai de remise en oeuvre de quelques
jours. Ceci n’empéche pas la mise en oeuvre de sauvegarde différentielle, mais donne une limite raisonnable
d’application du modele. Une version particuliere de Vitam nommée mini-Vitam devrait permettre une telle
mise en oeuvre mais avec des fonctionnalités amoindries pour tenir sur un ensemble limité de serveurs;

e 2 sites : Ce cas peut étre acceptable tant qu’un plan de sauvegarde traditionnel des volumétries est applicable
(moins d’un To a priori) via, par exemple, un schéma de sauvegarde de type « Full backup » hebdomadaire
et « Incremental backup » journalier. Il s’agit de la réplication des architectures usuelles pour les applications
informatiques. Le second site est considéré comme le site de Plan de Reprise d’Activité (PRA);

e 3 sites : Ce cas devrait étre le plus général, car il permet de couvrir les volumes les plus importants (plusieurs
centaines de To ou plus) ou les moyens de sauvegarde usuels ne fonctionnent plus, tout en assurant la sécurité.
En cas de sinistre sur un site, le deuxieme site « chaud » permet de redémarrer rapidement le service. En cas
d’incident aprés un sinistre, le 3 *™ site assure la sécurité des données, comme une sauvegarde classique le
ferait.

3.3.6 Sécurité des données additionnelle

Chaque offre de stockage doit répondre aux enjeux définis dans la norme « NF Z 42-020 » (CCFN).

La recommandation en termes de sécurité est d’avoir au moins 3 copies d’'une méme archive, réparties sur au moins 3
sites pour des raisons de sécurités géographiques (en limitant I’impact de sinistres impliquant la disparition d’un site
de production) et sur au moins 2 types de stockage de natures distinctes.

e Le recours a plusieurs offres de stockage permet d’assurer une meilleure résilience : une attaque, une faille de
sécurité ou un défaut d’usure sont liés a la technologie utilisée ; varier les technologies tend a diminuer ce risque
(comme il est d’'usage de le faire par exemple avec les solutions de sécurité);

e Plusieurs offres de stockage doivent étre supportées simultanément par le logiciel Vitam afin de permettre les
migrations dans le temps entre les offres (tous les 5 a 10 ans selon les technologies utilisées) ;

e Des implémentations d’offres de stockages réalisées par exemple par des acteurs privés en dehors du Programme
Vitam (constructeur, éditeur, etc.) pourront venir compléter ou remplacer les solutions proposées par le pro-
gramme Vitam, ceci permettant d’offrir a Vitam une meilleure capacité a résister dans le temps par la multiplicité
des choix proposés. Une illustration de I’architecture de stockage est présentée ci-apres.

e Plusieurs offres de stockage permettent de servir plusieurs niveaux de services :

e Par exemple des acces rapides pour les acces aux versions de diffusion des archives, et a I’inverse des
acces lents pour les acces aux originaux (masters) potentiellement plus volumineux ; a I'instar de la vidéo
en mode HDV pouvant étre considérée comme le format « master » mais non diffusable du fait de sa taille
— 3 Mo/s environ, soit plus de 11 Go/h — qui serait stockée sur des supports lents, tandis que le format Xvid
— 500 Mo/h - serait utilisé pour la diffusion et servi par des supports rapides;

e Ces niveaux de services différents permettent aussi de répondre a des exigences de sécurité (résilience par
rapport a une autre offre). Il est proposé ainsi la mise en oeuvre de deux niveaux de services majeurs pour
offrir un délai complémentaire de réactivité et éviter ainsi des destructions d’archives (suite a un incident,
une attaque ou un défaut) :

e Via une offre dénommée « stockage primaire » (ou secondaire en secours immédiat ou « chaud »)
servant aux acces rapides mais pouvant subir des éliminations tout aussi rapides (et donc dangereuses
en termes de sécurité) ;

e Et 'autre dénommée « stockage de sécurité », lent par nature (et méme si possible « offline » ou
« froid ») dont les propriétés d’acces rendent lentes les opérations d’écriture et d’élimination.

3.3. Orientations générales 11

VITAM - Architecture, Version 7.1.5

3.3.7 Architecture multi-tenants

La solution logicielle VITAM doit pouvoir €tre instanciée sur une infrastructure mutualisée, avec une administra-
tion centralisée et unique des composants, mais en autorisant une séparation virtuelle et sécurisée des informations
(archives et métadonnées) pour chaque client (client = « tenant » en anglais) ainsi que la gestion séparée de ces
informations par chaque client.

L’objectif est de permettre, par exemple, le regroupement d’acteurs publics au sein d’une méme infrastructure pour
diminuer les cofits d’infrastructure et d’exploitation, tout en assurant une étanchéité entre ces environnements logiques
pour chaque client.

3.3.8 Solution exploitable

Du fait de la complexité des composants a mettre en oeuvre et donc de I’exploitation associée, tant par composant que
dans des visions de suivi d’opérations, la solution logicielle VITAM doit apporter un maximum d’aides et de facilités
aux administrateurs techniques et exploitants, sans forcément se substituer aux outils d’administration propres a chacun
des composants.

Ainsi, il est nécessaire de disposer d’un outillage permettant la configuration, I’installation et la mise a jour des com-
posants et des services pour une plate-forme VITAM.

Il est également nécessaire de disposer d’un outillage permettant de suivre 1’activité du systeme global :
e Gestion des logs centralisée
e Suivi des opérations ou d’une opération en cours
e Planification

Il n’est pas obligatoire de substituer des outils d’administration d’un composant lorsqu’ils existent déja :
e Administration d’une base MongoDB ou d’une base ElasticSearch
e Supervision technique des VM et OS, du réseau,. ..

Par contre, certaines informations utiles (soit pour le déroulement d’une opération comme la charge CPU d’un serveur,
soit pour une vision globale de I’activité comme la charge CPU ou réseau de la plate-forme) pourraient étre captées
par la solution logicielle VITAM pour ses propres usages (et donner de I’information a I’administrateur technique).

12 Chapitre 3. Vue d’ensemble

VITAM - Architecture, Version 7.1.5

3.4 Architecture fonctionnelle

Archiviste
Super

Utilisateur M

Utilisées en I'absence de SIA .
(Période 2017 - 2019)

s,

/APPLICATIONS TIERS

Apps. Versantes
S, Televersement,
autres,...)

Référentiels
externes

La solution logicielle VITAM est constituée de différents composants liés aux fonctionnalités attendues :

FRONT OFFICE - Domaines "StoryMap"™
g | e
e Ileliers Gestion des archives
IHM SIA .
Autres IHM AR ou Clant l—b . Préservation
Client Gestion du Client Acces Client Acces C_____J D Administrati
archives existant [aptinterne | minieirasion
. Stockage

Gestion Gestion Recherches Recherches
des Entrées des Archives Acces Acces

A

Gestion des
archives existante

Préservation

Admin. Fetelle. |} Admin. Tech.

-

API Référentiel

eroms s

o=

i

technique

| —
Gestion do ——N
préservation, (&
Administrateur

Archiviste
Super
Utilisateur

FI1G. 2 — Architecture fonctionnelle cible de VITAM

e API externes : exposition des API REST (aux front-offices, aux applications tierces)

Moteur d’exécution : gestion de toutes les tiches massives/asynchrones. Exemples de moteurs :

o Workflow de transformation : sert a la transformation des documents dans des formats pérennes (versement)
ou pour résister a I’obsolescence des formats stockés (préservation)

o Workflow d’audit

Moteur de stockage : stockage pérenne des données (méta-données et objets numériques)

Moteur de données : stockage accessible et requétable des méta-données

e Journalisation fonctionnelle : tragabilité fonctionnelle (dont a valeur probante)

e [/HM d’administration : interface d’administration technique et fonctionnelle

Pour I’exploitabilité de la solution, on peut rajouter les composants suivants :

e Moteur de déploiement et de configuration

o Composants d’assistances/hook a I’exploitabilité (sauvegarde, supervision, ordonnancement)

e Journalisation technique : concentration des logs techniques

3.4. Architecture fonctionnelle

13

CHAPITRE 4

Architecture applicative

Cette section décrit I’architecture applicative interne de la solution logicielle VITAM, i.e. les différents composants la
constituant et leurs interactions.

4.1 Architecture applicative

4.1.1 Drivers de I'architecture

Les principes d’implémentation applicative ont pour but de faciliter, voire d’assurer les enjeux auxquels la solution
logicielle VITAM est confrontée :

e Modele Open-Source pour la réutilisation dans la sphere publique ainsi que pour conserver la maitrise dans le
temps du socle logiciel ;

Couplage lache entre les composants;

Nécessité de pouvoir disposer de composants de générations différentes rendant un méme service ;

Usage d’API REST pour la communication entre composants internes a VITAM, ainsi qu’en extréme majorité
pour les services exposés a I’extérieur;

Exploitabilité de la solution : limiter le colit d’entrée et de maintenance en :
e Intégrant un outillage favorisant le déploiement et les mises a jour de la plateforme;
o Intégrant les éléments nécessaires pour I’exploiter (supervision, sauvegarde, ordonnancement) ;

e Enfin, a terme, la solution doit pouvoir tirer partie d’une infrastructure élastique et disposant d’offres de
services de stockage diverses (externes).

4.1.2 Services
La solution logicielle VITAM est découpée en services autonomes interagissant pour permettre de rendre le service
global ; ce découpage applicatif suit en grande partie le découpage présenté plus haut dans 1’architecture fonctionnelle.

Les schémas suivants présentent 1’architecture applicative et les flux d’informations entre composants. Tous les com-
posants qui sont en jaune, sont fournis dans le cadre de la solution logicielle VITAM ; tous sont requis pour le bon

14

VITAM - Architecture, Version 7.1.5

fonctionnement de la solution, a I’exception de deux d’entre eux : ihm-demo et storage-offer-default (se-

lon les choix de déploiement). Enfin, chaque service posséde un nom propre qui 1’identifie de maniere unique au sein
de la solution logicielle VITAM.

description
nom du service

Service VITAM

Zone logique

Flux de données d'archives

e— 7'/ de commandes

name

description

Service externe

. Flux de journaux
Systéme

nom

Flux de données référentielles

F1G. 1 — Architecture applicative : 1égende

4 de démonstation
i demo

1HM VITAM [—
pplications métier P

\ N

APl externe cracces aux
[données refatives aux archives|
access externa!

APl exteme de collecte

et préparation de versement
collectexternal
APl interne dingest APl Interne dacces avx Referentiel dacces et P interne de collecte
darchives ldonnes relatives aux archives| de droits et préparation de versement
ingestintemal access intemal security internal collectnternal
' V' §

Moteur d exécution des
tritements sur es archives

Collecte des données de.

workapacacotet
il Werker g watement 4
batch-report. | worker Collecte d'archives
‘ ' Joumatsation desevenermerts
—~ ogveok
A
| » 4

Espace de travall des.
tratem

Moteur de données Espace de travail des
pour collecte

traitements pour collect
metadata-collect

des archives L Référentiels etgtadonnées d'archives
Services métier internef§ VITAM
L o
=
Bases de données métier
VITAM
Offre de stockage VITAM ooo
Offres de stockage
Offres de stoc|

FIG. 2 — Architecture applicative : flux de données d’archives et de commandes

4.1. Architecture applicative

15

VITAM - Architecture, Version 7.1.5

IHM VITAM

Applications métier

APl ex ernes VITAM

APl interne dingest APl interne daccos aux Référentiel dacces et
archives [données relatives aux archives| de droits
ingest intemal

Moteur d exécution des
traitements sur es archives

processin
’ oteur de domnées Espace de travai des
| pour collecte waltements pour calect
metadata-cotect workspace colect
Collecte des données de [2

traitements d
batch-report

e |

worker Collecte d'archives

| Espace de travai des. |

vorkspace storage metadata
| Traitement des arciiiigs, Référentiels et métagnnées d'archives

Services métier intémmes VITAM

Moteur dindexation de | Base de données de
cument jocumens

mongodo.

Bases de données métier

viTAM

offre de stockage viram | 00D
storage offer

[mongo-offer

Offres de stockage
Offres de stockage

FIG. 3 — Architecture applicative : flux de données de journalisation

IHM VITAM

Applications métier

A W

APl exteme d'ngest APl exteme dracces aux
darchives & [données relatives aux archives| \
¢ ccoss external

API externes VITAM

APl interne diaccs aux
[données relatives aux archives|

Référentiel dacces et
de droits

oreur estcuon des)"}
il k| 1

Cotecte desdornées e 9
e e a0 [—
sochreget vorr /¢

Administrtion fonctionnelle
éférentiels métier
functional-administration

pour collecte traitements pour collect

| Moteur de données | Espace de travai des,
metadatacollect workspace-collect

Collecte d'archives

| Espace de traval des | | |
raitem Mateur de stockage Moteur de données
vorkspace storage metadata
des archives Référentiels et

Services métier internes VITAM

Mnrzwd‘\ndexanundel Base de données de |
ocuments focumen

clasticsearch.data mongods

Bases de données métier

ViITAM

offre de stockagevmam | IO D
storage.ofter

mongo-ofter

Offres de stockage
Offres de stockage

FIG. 4 — Architecture applicative : flux de données de référentiels

16

Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

Les services sont organisés en zones logiques :

e Les API externes contiennent les services exposés aux clients (ex : a un S/A); tout acces externe a la solution
logicielle VITAM doit passer par eux. Ils sont responsables notamment de la validation de 1’authentification des
systémes externes, de la validation du droit d’acces aux AP/ internes et de 1’appel des AP/ internes (principe
d”API-Gateway);

e Les services métiers internes hébergent la logique métier de gestion des archives ; ils se subdivisent en :

e Lesservices de traitement des archives : ils effectuent tous les traitements concernant les archives (unitaires
ou de masse);

e Lesservices de recherche et d’acces aux archives : ils permettent de consulter les métadonnées et le contenu
des archives;

e Les services de gestion des référentiels et des métadonnées d’archives : ils permettent de travailler sur les
métadonnées des archives (au sens large, i.e. comprenant les référentiels et les journaux).

e Les offres de stockage (internes - i.e. fournies par VITAM - ou externes - i.e. fournies par un tiers) stockent les
données d’archives gérées par VITAM; la sélection de I’ offre de stockage a utiliser pour une archive donnée est
réalisée en amont (dans le moteur de stockage).

e Enfin, les bases de données métiers stockent les données de travail concernant les archives et leurs traitements
(notamment : métadonnées d’archives, journaux, référentiels)

Une derniére zone, optionnelle, consiste en une /HM de démonstration de la solution. Du point de vue de la solution
VITAM, elle se comporte comme un application métier externe ; elle accede notamment aux services VITAM via les
mémes API qu’une application métier.

4.1.3 Détail des flux d’information métier

On distingue globalement 4 types de flux de données différents :

e Les flux de données d’archives : ils portent les informations métiers associées aux contenus des archives (don-
nées stockées ou métadonnées associées);

e Les flux de commandes : ils portent les demandes d’exécution de traitement d’archives et 1’état de ces exécutions
(et comprennent donc notamment les notifications de fin d’exécution de ces traitements);

e Les flux de journaux : ils portent les journaux d’événements (traces probantes des actions réalisées sur les
archives) ;

o Les flux de référentiels : ils portent les informations des référentiels hébergés au sein de VITAM (référentiels des
formats, des contrats, ...)

4.1.4 Données meétier

Le modele de donnés métier est décrit dans un document dédié ! .

4.2 Architecture des données & multisite

4.2.1 Inventaire des données

Voir aussi :
Le modele de données complet est explicité dans la documentation externe dédiée (« Modele de données »).

Le tableau ci-dessous représente 1’inventaire des données gérées par VITAM, avec leur localisation et le composant
responsable du cycle de vie de la donnée (i.e. regles de création / modification / suppression) :

11. http://www.programmevitam.fr/ressources/DocCourante/html/data-model

4.2. Architecture des données & multisite 17

http://www.programmevitam.fr/ressources/DocCourante/html/data-model

VITAM - Architecture, Version 7.1.5

TABLEAU 1: Inventaire des données VITAM

stence

Type | Données prises en | Composant | Persistence | Persistence | Persistélacsistélarsistétersis
charge par le module respon- locale BDD mé- | Works-Sto- | BDD | in-
sable de la tier pace | rage | tech-| ven-
donnée nigues taire
an-
sible
métier Sas d’entrée des SIP (check | ingest- /vitam/tmp
antivirus et format du SIP) external
métiert Fichier de définition d’un | functional- REF:
référentiel administratioq] X
métier Référentiels métier functional- ES + Mon- REF:
regles de gestion, formats, | administration goDB X
contrats, contextes, profils
de sécurité, . ..
certificats SIA & personae security- MongoDB
internal
métier Etat des workflows (en | processing X
cours, en pause, terminés)
Définition des workflows de | processing /vitam/conf REF:
traitement X
métier Données en cours de traite- | worker /vitam/tmp REF:
ment par un processus X
métief Registre des fonds functional- ES + Mon-
administratiorn] goDB
métier JOP (Journal des opéra- | logbook ES + Mon- REF:
tions) goDB X
métiert JOP sécurisé (Journal des | logbook REF:
opérations sécurisé) X
métiet JCV Unit / ObjectGroup logbook MongoDB REF:
X
métier JCV sécurisé logbook REF:
X
métiert ArchiveUnit (AU), Object- | metadata ES + Mon- REF:
Group (GOT) goDB X
métierr BinaryObject (BDO) storage REF:
X
métier Stratégies de stockage storage /vitam/conf REF:
X
métiert Journal des écritures storage REF : /vi-
tam/log
métier Sécurisation du journal des | storage REF:
écritures X
technicd=og des écritures dans une | storage- MongpDB
métierr offre de stockage offer (offres)
technigdeogs logiciels (tous) /vitam/log ES
(log)
techniguidétriques applicatives (tous) REF:
ES
(log)
Suite sur la page suivante

18

Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

Tableau 1 — suite de la page précédente

Type | Données prises en | Composant | Persistence | Persistence | Persist&ersistétarsistélarsis
charge par le module respon- locale BDD mé- | Works-Sto- | BDD | in-
sable de la tier pace | rage | tech-| ven-

donnée niques taire

an-

sible

technigd@onnées de configuration | (tous) /vitam/conf REF:
(incl. certificats) X

Quelques remarques :

e Si une donnée est persistée a plusieurs endroits, I’emplacement de référence (i.e. faisant foi en cas de désyn-
chronisation entre les emplacements) est indiqué par le préfixe REF :. Les processus de reconstruction ou de
remise en cohérence de la solution logicielle s’appuient sur cet emplacement référentiel pour alimenter les
autres emplacements de stockage. En particulier, les offres de stockage VITAM portent la référence des données
concernant les archives hébergées par le systeme :term : VITAM : leur contenu binaire (BDO), mais également
les métadonnées associées au sens large (AU, GOT, journaux) et les référentiels métier

e Les données de référence a I’origine du registre des fonds sont les journaux opération (JOP)

o Il existe 2 types de journaux d’écriture :

e Le premier, au niveau du moteur de stockage, qui permet de s’assurer de la bonne prise en compte des
écritures par le systeme VITAM. 1l s’agit d’un journal métier, participant a la preuve systémique (il est
donc sécurisé comme les journaux d’opération et de cycle de vie des archives);

e Le deuxieme, au niveau de I’offre de stockage, qui permet de conserver 1’ordre d’écriture des éléments
stockés pour permettre leur rejeu lors d’une reconstruction (totale ou partielle). Il s’agit donc d’un journal
technique, s’inspirant fortement du concept des archivelog des bases de données.

4.2.2 Stockage et stratégies

Voir aussi :

La déscription complete et les usages dans la documentation externe dédiée (« Gestion de multiples stratégies de

stockage »).

Le stockage des données est pris en charge par le moteur de stockage. Celui-ci est en charge de la gestion du stockage
de type Persistence Storage par le biais des offres de stockages. Le moteur de stockage s’appuie sur des stratégies de
stockage pour définir la distribution des écritures dans les offres de stockage avec :

o la stratégie de stockage de plateforme default (obligatoire)

e une ou plusieurs stratégies additionnelles (optionnel)

La répartition posible des données selon les types de stratégies est alors la suivante :

TABLEAU 2: Inventaire des données selon le type de stratégie VITAM

Type Données prises en charge par le module Default strategy Additionnal strategy
métier Fichier de définition d’un référentiel REF : X

métier Référentiels métier REF: X

métier JOP (Journal des opérations) REF: X

métier JOP sécurisé (Journal des opérations sécurisé) REF : X

métier JCV Unit / ObjectGroup REF: X REF: X

métier JCV sécurisé REF: X

métier ArchiveUnit (AU), ObjectGroup (GOT) REF : X REF : X

métier BinaryObject (BDO) REF : X X

Suite sur la page suivante

4.2. Architecture des données & multisite

19

stence

VITAM - Architecture, Version 7.1.5

Tableau 2 — suite de la page précédente
Données prises en charge par le module Default strategy
Sécurisation du journal des écritures REF: X

Type Additionnal strategy

métier

Les stratégies additionelles utilisées doivent déclarer au moins une offre dite référente pour le stockage des Archi-
veUnit (AU), ObjectGroup (GOT) et de leur JCV. Pour le stockage des BinaryObject (BDO) il n’y a aucune regle
particuliere.

Prudence : L utilisation en mode standard de VITAM est le déploiement mono-stratégie (ie. avec uniquement la
stratégie de plateforme default). Le déploiement multi-stratégies (ie. avec les stratégies additionnelles) est consi-
déré comme un mode avancé qui ne doit étre utilisé que si le besoin a été identifié.

4.2.3 Multisite

ingest-external

Zone acces

ingest-internal

processing

access-external

access-internal security-internal

.
administration
Traitement Référentiels & métad

Zone applicgtive ‘

"/-
‘l < metadata

N
I< administration

I '

Reférentiels & métadoghEgs @l archives

4
7 |

worker

batch-report

workspace

Traitement | d'archives

Zone applicd

Zone stockage

Zone données

VITAM - Site 1 - Actif

. mongos . mongos
offer elasticsearch-data offer elasticsearch-data
mongoc mongoc
mongod-offer mongod-offer
mongod mongod

Zone stockage

Zone données

VITAM - Site 2 - Reconstruction au fil de 'eau

Etat des composants en régime nominal :

|actif

au fil de I'eau

participe a la reconstruction

passif (éteint) |

F1G. 5 — Architecture des données d’archives ; fonctionnement multisite.

Le fonctionnement multisite s’ appuie fortement sur les capacités de reconstruction de VITAM :

o VITAM doit étre déployé avec la stratégie de stockage de plateforme default comportant une offre de stockage
sur chaque site;

e Le fonctionnement de VITAM sur plusieurs sites fonctionne sur un principe actif / passif :
e le site principal fonctionne en mode nominal,

e le site secondaire fonctionne en mode « reconstruction au fil de 1’eau » (les tiches planifiées de sécurisation
et d’audit sont arrétées, les composants frontaux et de traitement de données sont arrétés (en gris dans le
schéma précédent), les taches planifiées de reconstruction au fil de I’eau sont activées)

20 Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

e Toute donnée liée aux archives est systématiquement écrite dans les offres de stockage (le cas échéant, en méme
temps que dans les bases de données), donc sur les 2 sites en méme temps;

e Sur le site secondaire, des processus viennent régulierement récupérer les données écrites en dernier dans I’ offre
de stockage de ce site (en se basant sur le contenu des logs d’écriture de I’offre) pour alimenter en update le
contenu des bases de données « secondaires » :

e Référentiels : reconstruction réguliere et totale
e AU/GOT/BDO/Journaux/Graphe : reconstruction au fil de I’eau

En cas de perte du site primaire, 1’intégralité des données est donc présente dans le stockage sur le site secondaire, et
est presque entierement reconstruite dans les bases de données du méme site. Une fois la reconstruction complétement
terminée, le site secondaire est donc accessible; le niveau d’accessibilité dépendra de la stratégie de stockage sur le
site secondaire :

e Soit la dégradation du niveau de résilience des offres est acceptée, et la stratégie de stockage devra étre modifiée
pour limiter les écritures a une seule offre.

e Soit cette stratégie continue a requérir I’écriture sur 2 offres de stockage, et le systeme ne sera accessible qu’en
lecture seule; seule une recréation de 1’offre de stockage sur le site principal permettra le retour a un fonction-
nement nominal (Cf. admonition ci-dessous). Ce scénario est délicat a implémenter, et nécessite notamment la
mise en place d’un contrat d’acces spécifique permettant de bloquer les acces en modification.

Prudence : En cas de bascule de site (PRA), les traitements en cours sur le site 1 sont perdus; en particulier, les in-
gests non terminés doivent étre renvoyés a VITAM et les autres batchs en cours doivent étre relancés. L’ incohérence
des données sera réglée dans une version ultérieure du systeme VITAM.

4.2.4 Stratégies & multisite

Le fonctionnement multisite multi-stratégie suit le méme principe que le mode mono-stratégie.

Pour respecter les normes de 1’architecture multisite ainsi que ces processus associés, des regles supplémentaires
spécifiques au mode avancé multi-stratégies doivent €tre respectées :

e La procédure de reconstruction utilise la notion d’offre dite « référente ». Il s’agit d’un groupe d’offres qui
doivent contenir TOUTES les données nécessaires a la reconstruction d’un site Vitam a partir des données
des offres de stockage. Il est donc obligatoire d’avoir un groupe d’offres de stockage dites « référente » par
site, servant de source pour ces données, en vue de garantir la reconstruction. De plus pour des raisons de
performance de la reconstruction les données contenues dans ces offres doivent étre disjointes entre les offres.

Note :
Les données nécessaires a la reconstruction des bases de données sont :
¢ les métadonnées des unités archivistiques et groupes d’objets techniques ainsi que leur journal de cycle de
vie,
e les données relatives aux référentiels,

e les journaux d’opérations.

e La procédure de resynchronisation d’une offre permet de remettre en cohérence le contenu d’une offre a partir
d’un autre offre. Pour que ce mécanisme marche il est nécessaire que les offres source et cible de la resynchro-
nisation soient configurées pour étre des copies. Les stratégies utilisées doivent étre configurées pour contenir
qu’une offre aie au moins toujours une autre offre mirroir contenant les méme données.

4.2. Architecture des données & multisite 21

VITAM - Architecture, Version 7.1.5

4.2.4.1 Mode standard : exemple d’architecture mono-stratégie

Il s’agit du mode par défaut de la solution logicielle Vitam. Dans ce cas nous avons uniquement la stratégie de plate-

forme default déclarant deux offres de stockage avec deux sites.

Stratégies du site principal :

Stratégies du site secondaire :

Flux de stockage :

defanlt

Offre 1
(REF)

Offre 2

defanlt

Offre 2
(REF)

22

Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

access-external |

ingest-external |

access-external |

ingest-external |

Zone acces

ingest-internal

Zone acces

M BDO MISC I

laccess-internal

functional-
administration

security-internal

security-internal

laccess-internal

worker

batch-report

functional-
ladministration

Référentiels & métadonnées d'archives

Zone applicativie]

RECONSTRUCTI

mongos

elasticsearch-data

mongos. T

offerl

mongoc

mongoc.

mongod-offer2

mongod-offerl
mongod

mongod

Zone données
VITAM - Site 2 - Reconstruction au fil de I'eau

Zone stockage

Zone données

IZone stockage
VITAM - Site 1 - Actif

participe a la reconstruction | [passif (éteint) stratégie "default" NI

au fil de I'eau

" actif
Etat des composants en régime nominal : |

4.2.4.2 Mode avancé : exemple d’architecture multi-stratégie orienté Qualité de service

Le but d’un déploiement orienté Qualité de service de la solution logicielle Vitam est de fournir la possibilité de
proposer un nombre de copies stockées différemment en fonction des applications utilisatrices de la plateforme VITAM.

Stratégies du site principal :

default strategyAll

Offre 1 Offre 3
(REF) (REF)

Oftre 2 Offre 4

Offre 5

Stratégies du site secondaire :

4.2. Architecture des données & multisite 23

VITAM - Architecture, Version 7.1.5

default

strategyAll

Oftre 2
(REF)

Offre 4
(REF)

Flux de stockage :

ingest-external | access-external | ingest-external | laccess-external |
Zone accés Zone accés
in
access-internal security-internal access-internal security-internal
rol
worl worker
metadata metadata
izt batch-report
functional-
administration logbook
wort
functional-
administration
stor, storage
Traite: S Référentiels & métadonnées d'archives Traitement de: hives Référentiels & métad, d'archives
Zone Zone applicativi
mongos mongos
offerl offer3 offers elasticsearch-data offerd offer2 elasticsearch-data
[Mmongoc mongoc
go-offerl go-offer3 ffers mongo-offerd. mongo-offer2
imongod mongod
Zone stockage Zone données Zone stockage Zone données
VITAM - Site 1 - Actif VITAM - Site 2 - Reconstruction au fil de I'eau

|amf participe a la reconstruction

au fil de I'eau

passif (éteint)

stratégie "default" NI

stratégie "strategyAll” NI

Etat des composants en régime nominal :

4.2.4.3 Mode avancé : exemple d’architecture multi-stratégie orienté Offres objets

Le but d’un déploiement orienté Offres objets de la solution logicielle Vitam est de fournir la possibilité de stocker les
objets numériques uniquement sur des offres séparée dites objets pour certaines ou toutes les applications utilisatrices
de la plateforme VITAM. Ce type de déploiement d’offre peut étre particulierement adapté pour stocker des objets
techniques uniquement sur des offres dites froides (sur bandes magnétiques).

Une offre dite référente peut étre une offre de type synchrone (offre dite chaude) ou asynchrone (offre froide).

24 Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

Stratégies du site principal :

default

strategyALL

Offre 1
(REF)

Offre 3
(REF)

Dffre 2 Offre 4
Stratégies du site secondaire :

default strategy ALL

Dffre 2 Offre 4

(REF) (REF)

Flux de stockage :

4.2. Architecture des données & multisite

25

VITAM - Architecture, Version 7.1.5

laccess-external |

ingest-external |

access-external |

ingest-external |

Zone acces Zone acces

ingest-internal

laccess-internal

functional-
administration

security-internal

laccess-internal security-internal

worker

batch-report

functional-
ladministration

sl

Référentiels & métadonnées d'archives

RECONSTRUCTION

RECONSTRUCTIO!

elasticsearch-data

mongos

mongos.
offerl offer3 -data offerd offer2

mongoc.

mongoc

mongo-offerd. mongo-offer2

mongod

mongod

Zone données
VITAM - Site 2 - Reconstruction au fil de I'eau

Zone stockage

Zone stockage Zone données
VITAM - Site 1 - Actif

participe a la reconstruction | [passif (teint) stratégie "default” NI stratégie “strategyALL NI}

au fil de I'eau

" actif
Etat des composants en régime nominal :

4.3 Services métiers

Les services métiers sont présentés dans les sections suivantes ; pour chaque service, est indiqué son nom commun (en
frangais), ainsi que le nom de service correspondant (en anglais, basé sur les usages OAIS).

4.3.1 API externes (ingest-external et access-external)

Role :
e Exposer les API publiques du systeme
e Sécuriser ’acces aux AP/ de VITAM
Contraintes techniques :
o Authentification forte requise de la part des clients
o WAF
Données gérées :
e Pour ingest-external : SIP dans le sas d’entrée (conservés uniquement pendant leur analyse antivirus)

4.3.2 Moteur d’entrée (ingest-internal)

Role :

e Permettre I’entrée d’une archive SEDA dans le SAE
Fonctions :

e Upload HTTP de fichiers au format SEDA

e Persistance du SEDA dans workspace

e Lancement des workflows de traitements liés a I’entrée dans processing
Données gérées :

e Aucune

26 Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

4.3.3 Moteur d’acces (access-internal)

Role :

e Permettre 1’acces aux données du systeme VITAM
Fonction :

e Exposition des fonctions de recherche d’archives offertes par metadata

e Exposition des fonctions de parcours de journaux offertes par 1ogbook

e Exposition des fonctions d’admnistration métier du systeme offertes par functional-administration
Données gérées :

e Aucune

4.3.4 Gestion des droits & acces (security-internal)

Role :

e Gérer le référentiel d’authentification des applications
Fonctions :

e Gestion des certificats d’acces des applications (S7A)

e Gestion des certificats personnels

e Gestion des endpoints nécessitant le contrdle des certificats personnels
Données gérées :

o Certificats des applications appelant VITAM (SIA)

o Certificats personnels (pour les endpoints nécessitant une authentification personae)

4.3.5 Moteur d’exécution (processing)

Role :
e Exécution massive de processus métiers complexes
o Utilisé notamment lors du versement et de la préservation
Fonctions :
e Découpage en micro taches de processus métier (en fonction d’un référentiel)
e Supervision de I’état d’exécution de chaque « job »
e Reprise sur incident
e Tracabilité de I’ensemble des actions effectuées
Contraintes techniques :
e Grand nombre de taches

e La durée d’exécution d’un ensemble de tiches peut étre longue (ex : une campagne de transformation de docu-
ment peut durer plusieurs semaines, voire plusieurs mois)

e Possibilité de devoir gérer des objets lourds ; cela implique notamment I’usage de 1’espace de travail pour passer
des informations entre taches, et des optimisations (colocalisations ou copies directes) permettant de limiter les
contraintes sur le réseau.

Données gérées :

e FEtat des workflows en cours d’exécution

4.3. Services métiers 27

VITAM - Architecture, Version 7.1.5

4.3.6 Espace de travail (workspace)

Role :
e Fourniture d’un espace pour 1’échange de fichiers (et faire un appel par pointeur lors des appels entre compo-
sants) entre les différents composants de VITAM
Fonctions :

e Utilisation du moteur de stockage dans un mode minimal (opérations CREATE, READ, DELETE sur 1 seule
offre de stockage)

Contraintes techniques :
e FEtre résilient 2 une panne simple
Données gérées :
e Données temporaires en cours de traitement

4.3.7 Worker (worker)

Role :

o Effectuer les traitements de masse sur les archives & paquets d’archive (SIP/...)
Fonction :

e Déclenchement des opérations sur requéte du moteur d’exécution

e Gestion d’un cache local des éléments traités, en interaction avec 1’espace de travail
Données gérées :

e Aucune; il s’agit d’un composant de traitement pur

4.3.8 Moteur de données (metadata)

Role :
e Stocker de maniere requétable et rapide les métadonnées des objets (également stockées mais de maniere pé-
renne dans I’offre de stockage)
Fonctions :
e Fournit une AP/ agrégeant et abstrayant une technologie de base de données et un moteur d’indexation
Données gérées :
e Métadonnées et structures des archives : Archive Units, Object Group

4.3.9 Moteur de journalisation (logbook)

Role :
e Gérer les journaux métiers a fort besoin d’intégrité et potentiellement a valeur probante : journal du cycle de
vie, journal métier (SAE/opérations + écritures)
Fonctions :
e Gestion des journaux (ajout, lecture)
e Sécurisation des journaux
Contraintes techniques :
e Besoin fort de fiabilité
Données gérées :
e Journaux de cycle de vie JCV)
e Journaux d’opérations (JOP)
e Eléments de preuve issus de la sécurisation des journaux précédents

28 Chapitre 4. Architecture applicative

VITAM - Architecture, Version 7.1.5

4.3.10 Gestion des référentiels (functional-administration)

Role :

o Gérer les réfentiels métier de la plate-forme
Fonctions :

o Gestion des référentiels métier VITAM
Données gérées :

e Référentiels techniques et métiers :

e Formats

Regles de gestion

Contrats (d’entrée, d’acces)

Contextes
Profils

Arbre de positionnement

4.3.11 Moteur de stockage (storage)

Role :
e Stockage des données (Métadonnées, Objets Numériques et journaux SAE et de 1’archive)
Fonctions :
e Utilisation de stratégie de stockage (abstraction par rapport aux offres de stockage sous-jacentes)
e Gestion des différentes offres de stockage
Données gérées :
e Journaux d’écriture

e Sécurisation des journaux d’écriture

4.3.12 Offre de stockage par défaut (storage-offer-default)

Role :
e Fournir une offre de stockage par défaut permettant la persistance des données
Fonctions :
e Offre de stockage fournie par défaut
e Plusieurs modes de persistence sont supportés :
e sur systeme de fichiers local
e sur service de stockage objet compatible protocole Swift
e sur service de stockage objet compatible protocole S3
e sur bandes magnétiques (stockage dit froid)
e Log des écritures dans I’ offre en permettant le rejeu
Données gérées :

e Tout ce qui doit étre conservé a long terme (mais uniquement pour la gestion technique de ces données)

4.3. Services métiers 29

VITAM - Architecture, Version 7.1.5

4.3.13 Interface de démonstration (ihm-demo)

Role :
e Permettre une utilisation basique de VITAM, notamment sans S/A
Fonctions :

e Représentation des arborescences et des graphes

Formulaires dynamiques

Suivi des opérations

Gestion des référentiels

Contraintes techniques :
e [HM intuitive (sans workflows métiers), accessible (au sens RGAA), responsive design
e Compatibilité avec les navigateurs actuels
e Pas d’applets/clients lourds

Données gérées :

e Aucune

4.3.14 Scheduler

Role :
e Exécution des taches périodiquement
Fonctions :
e Planifier une tache
e Supervision de 1’état d’exécution de chaque « job »
e Reprise sur incident
Contraintes techniques :
e Toutes les horloges des instances doivent étre synchronisés
Données gérées :

e Aucune

4.3.15 Connecteur générique

Role :

e Permettre aux applications tierces de s’intégrer plus facilement dans Vitam via une API constructive d’un S7P
Fonctions :

e Exposer des API de construction de SIP
Contraintes techniques :

o Référentiels techniques et métiers de VITAM a respecter (Formats, Reégles de gestion, Contrats (d’entrée, d’ac-
ces), Contextes ...)

Données gérées :

e Données temporaires qui devraient servir a construire un S/P ingérable par VITAM

30 Chapitre 4. Architecture applicative

CHAPITRE

Architecture technique / exploitation

5.1 Principes d’architecture technique

Cette section vise a introduire 1’environnement dans lequel s’integrent les composants présentés a la section précédente
et qui permet leur exploitation; elle se concentre principalement sur les contraintes imposées a cet environnement et
les choix d’interfaces techniques exposées et consommées avec 1’écosysteme logiciel d’exploitation.

5.1.1 Principes communs et environnement des services

5.1.1.1 Principes relatifs aux composants délivrés

Prudence : Dans la suite, les composants développés dans le cadre du projet VITAM seront appelés les « services
VITAM » ; les composants intégrés, mais non développés, seront appelés les « COTS ».

5.1.1.1.1 Nommage

Dans la suite, on distinguera les identifiants différents suivants :

e ID de service (ou service_id) : c’est une chalne de caracteres qui nomme de maniere unique un service.
Cette chaine de caractere doit respecter 1’expression réguliere suivante : [a-z] [a—z—] *.

e ID de package (ou package_id) : il est de la forme vitam-<service_id>. C’est le nom du package a
déployer.

e ID d’instance (ou instance_id) : c’est I'ID d’un service instancié dans un environnement; ainsi, pour un
méme service, il peut exister plusieurs instances de maniere concurrente dans un environnement donné. Cet
ID ala forme suivante : <service_id>-<instance_number>, avec <instance_number> respectant
I’expression réguliere suivante : [0-9]{2}.

31

VITAM - Architecture, Version 7.1.5

5.1.1.1.2 Principes relatifs aux services VITAM

Les services développés dans le cadre du projet VITAM interagissent avec un ensemble de composants externes dédiés
a leur exploitation :

http(s)/REST
indicateurs de statut et supervision

monitoring

hitp(s)/REST
tep:${service_port}

$ {Sel’VICE_Id} externalisation des logs technique;

gestionnaire
logs

s
syslog
udp

by | externalisation des métriques

gestionnaire
Lt

métriques

dépot des

I
A A | e -

localisation
des services

service
registry

I ${vitam_root}

i

log/$ {service_id}
sauvegarde des données outils

applicatives
backup

b

accés aux . .
données data/${service_id}

applicatives

i

outils
déploiement

tmp/${service_id}
déploiement des fichiers
de configuration

lecture de |a
configuration démarragefarrét

du service conff${service_id} des services

)

v

installation / mise & jour
des paquets logiciels

o gestionnaire
service unix [F]—stondsinon gt ©on s

téléchargement des

E " paquets gestionnair
)
paquet de déploiement [PREE

dépot
paquets

——————3 flux de commande
=3 flux de données
——@ service exposé
Légende service requis

|:| service applicatif VITAM
:’ service d'exploitation

F1G. 1 — Environnement d’un service VITAM

Les interactions entre ces services et leur environnement se séparent essentiellement en 2 grandes familles :
e Les interactions avec des services externes; on y trouve :
e [’acces aux packages logiciels pour installation (Cf. Packaging (page 37));
e Le déploiement, permettant I’orchestration du déploiement de la solution (Cf. Déploiement de la solution
(page 39));
e [’annuaire de services, permettant a chaque service de localiser les services dont il dépend et d’y accéder
de maniere indépendante de la topologie de déploiement; cette section inteégre ainsi également les prin-

cipes de load-balancing et de haute disponibilité (Cf. Principes sur les communications inter-services et le
clustering (page 35));

32 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e Le monitoring, avec (Cf. Suivi de [’état du systeme (page 42)) :
e [’acces offert au systeme de supervision aux données de monitoring exposées par les services (sur un
port d’administration dédié);
e [’export des logs applicatifs vers le sous-systeme de gestion des logs;
e Les interactions locales au serveur, notamment avec des fichiers (dont la nomenclature est précisée dans une
section dédiée (page 33)) :
e [’installation, avec 1’exécution du gestionnaire de paquets de I’OS (Cf. Packaging (page 37));

e La gestion des fichiers de configuration de I’application via 1’outil de déploiement (Cf. Déploiement de la
solution (page 39));

e Le démarrage / arrét des services (Cf. Administration technique (page 45));

e La sauvegarde / restauration des données applicatives (Cf. Gestion des données du systeme (page 45)).

5.1.1.1.3 Principes relatifs aux COTS

Note : Les COTS correspondent aux éléments intégrés dans VITAM, mais dont le code source n’est pas maitrisé par
VITAM. Ils comprennent notamment les moteurs de base de données (ex : MongoDB, Elasticsearch)

De maniere générale, les distributions binaires utilisées sont celles fournies nativement par les distributions linux, ou
a défaut les paquets fournis par 1’éditeur du logiciel.

Les COTS respectent les principes énoncés ci-dessus dans la mesure de leurs possibilités ; les éléments suivants sont
notamment respectés :

e Le packaging logiciel : la nature des packages et les outils utilisés pour installer ces logiciels doivent étre les
mémes que pour les autres composants VITAM.

e Le déploiement : les outils et principes de déploiement doivent également €tre identiques a ceux utilisés pour
déployer les autres composants VITAM.

e L’arrét / démarrage des services : ces logiciels doivent utiliser le méme gestionnaire de services systeéme que les
autres composants VITAM.

e [’export des logs : les logs de ces logiciels doivent étre envoyés a la chaine de gestion de logs suivant les mémes
protocoles que les autres services ; par contre, le format des messages de logs peut étre différent.

Voir aussi :

Les principes non respectés par les COTS (et qui concernent notamment les problématiques de LB/HA et de monito-
ring) sont détaillées dans les sections de documentation associées (page 77).

5.1.2 Utilisateurs, dossiers & droits
5.1.2.1 Utilisateurs et groupes d’exécution

La segmentation des droits utilisateurs doit permettre de respecter les contraintes suivantes :

e Assurer une séparation des utilisateurs humains du systéme et des utilisateurs systéme sous lesquels tournent les
process systeme VITAM ;

e Séparer les droits des roles d’exploitation différents suivants :
e [es administrateurs systeme (OS);
e Les administrateurs techniques des logiciels VITAM ;

e Les administrateurs des bases de données VITAM.

5.1. Principes d’architecture technique 33

VITAM - Architecture, Version 7.1.5

Les utilisateurs et groupes décrits dans les paragraphes suivants doivent étre ajoutés par les scripts d’installation de la
solution VITAM. En outre, les reégles de sudoer associées aux groupes vitamx—admin doivent également &tre mis
en place par les scripts d’installation.

Les sudoers sont paramétrés en mode NOPASSWD, c’est a dire qu’aucun mot de passe n’est demandé a 1’ utilisateur
faisant partie du groupe vitam*—admin pour lancer les commandes d’arrét relance des applicatifs Vitam.

Note : Les fichiers de regles sudoers des groupes vitam-admin et vitamdb—admin seront systématiquement
écrasés a chaque installation des paquets (rpm / deb) déclarant les utilisateurs VITAM. (Un backup de I’ancien fichier
sera tout de méme effectué).

5.1.2.1.1 Groupes

e vitam (GID : 2000) : il s’agit du groupe primaire des utilisateurs de service

e vitam—admin (GID : 3000) : il s’agit du groupe d’utilisateurs ayant les droits « sudo » permettant le le
lancement des services VITAM

e vitamdb-admin (GID : 3001) : il s’agit du groupe d’utilisateurs ayant les droits « sudo » permettant le
lancement des services VITAM stockant de la donnée.

5.1.2.1.2 Utilisateurs

e utilisateur de service; les processus VITAM tournent sous cet utilisateur. Leur login est désactivé.
e vitam (UID : 2000) : pour les services ne stockant pas les données

e vitamdb (UID : 2001) : pour les services stockant des données (Ex : MongoDB et ElasticSearch)

5.1.2.2 Arborescence de fichiers

5.1.2.2.1 Services VITAM

Pour un service d’id <service_1id>, les fichiers et dossiers impactés par VITAM sont les suivants.

5.1.2.2.1.1 Arborescence VITAM

L’arborescence /vitam héberge les fichiers propres aux différents services; son arborescence interne est normalisée
selon le pattern suivant : /vitam/<folder_type>/<service_id> ou:

e <service_id> est1’id du service auquel appartient les fichiers;
e <folder—-type> estle type de fichiers contenu par le dossier :
e app : fichiers de ressources (non-jar) requis pour 1’application (ex : .war)
e bin : binaires (le cas échéant)
e script : Répertoire des scripts d’exploitation du module (start/stop/status/backup)
e conf : Fichiers de configuration
e 11ib : Fichiers binaires (ex : jar)
e log: Logs du composant
e data : Données du composant

e tmp : Données temporaires produites par 1’application

34 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Les dossiers /vitamet /vitam/<folder_type> ontles droits suivants :
e Owner : root
e Group owner : root
e Droits : 0555
A T’intérieur de ces dossiers, les droits par défaut sont les suivants :
e Fichiers standards :
e Owner : vitam (ou vitamdb)
e Group owner : vitam
e Droits : 0640
e Fichiers exécutables et répertoires :
e Owner : vitam (ou vitamdb)
e Group owner : vitam
e Droits : 0750

Prudence : Cette arborescence ne peut contenir de caractere spécial; les éléments du chemin (notamment le
service_id) doivent respecter I’expression réguliere suivante : [0-9A-Za-z—_]+

Le systeme de déploiement et de gestion de configuration de la solution est responsable de la bonne définition de cette
arborescence (tant dans sa structure que dans les droits utilisateurs associés).

5.1.2.2.1.2 Intégration au systéeme

e /usr/lib/systemd/system/ : répertoire racine des définitions de units systemd de type « service » sur
les distributions Linux type RedHat

e /lib/systemd/system/ : répertoire racine des définitions de units systemd de type « service » sur les
distributions Linux type Debian

e <service_id>.service : fichier de définition du service systemd associé au service VITAM

5.1.2.2.2 COTS

Les COTS utilisent la méme nomenclature de répertoires et utilisateurs que les services VITAM, aux exceptions sui-
vantes :

e Les fichiers binaires et bibliotheques utilisent les dossiers de I’installation du paquet natif.

5.1.3 Principes sur les communications inter-services et le clustering

5.1.3.1 Clusters applicatifs métier

Globalement, les principes de haute disponibilité et d’équilibrage de charge peuvent se diviser en 2 grandes catégories :
e Les principes utilisés par le service worker;
e Les principes utilisés par les autres services (dans le cadre des appels REST).

Prudence : Dans cette version de VITAM, 2 composants ne sont pas déployables a plus d’une seule instance :
workspace et processing. Pour le composant offer, il faut faire trés attention, il peut étre facilement multi-
instancié (pour un type d’offre au sens vitam) avec des offres type swift ou s3, mais pas avec des technologies type
filesystem standard.

5.1. Principes d’architecture technique 35

VITAM - Architecture, Version 7.1.5

5.1.3.1.1 Appels REST des services métier

Chaque cluster de service possede un nom unique de service (le service_id); chaque instance dans ce cluster
possede un identifiant d’instance (instance_id).

Globalement, les services VITAM suivent les principes suivants lors d’un appel entre deux composants :

1. Le composant amont effectue un appel a I’annuaire de services en indiquant le service_id du service qu’il
souhaite appeler;

2. L’annuaire de service lui retourne une liste ordonnée d”instance_1id);c’est de la responsabilité de I’annuaire
de service de trier cette liste dans I’ordre préférentiel d’appel (en fonction de I’état des différents services, et
avec un algorithme d’équilibrage dont il a la charge) ;

3. Le composant amont appelle la premiere instance présente dans la liste. En cas d’échec de cet appel, il recom-
mence depuis le point 1.

Note : Ces principes ont pour but de garantir les deux points suivants :

e Les clients des services doivent étre agnostiques de la topologie de déploiement, et notamment du nombre
d’instances de chaque service dans chaque cluster; la connaissance de cette topologie est déléguée a 1’annuaire
de service.

e Le plan de contrdle (choix de I’instance cible d’un appel) doit étre décorrélé du plan de données (appel effectif),
notamment dans un but de performance du plan de données.

5.1.3.1.2 Workers

Au démarrage, ces workers s’enregistrent aupres du composant processing ; ensuite, les tdches sont distribuées par
le processing aux différents workers. C’est donc processing qui a a sa charge la gestion de la distribution et de la
résilience des workers.

5.1.3.2 COTS & clustering

La gestion de I’équilibrage de charge et de la haute disponibilité doit étre intégrée de maniere native dans le COTS
utilisé.
Voir aussi :

Plus de détails seront apportés dans les chapitres spécifiques présent dans la section (page 77) décrivant en détail les
contraintes techniques des différents services VITAM.

5.1.3.3 Annuaire de services (service registry)

La découverte des services est réalisée via 1’utilisation du protocole DNS.

Note : Les avantages de I’utilisation de ce protocole sont multiples :
e Simple et éprouvé

e Connu des équipes d’exploitation

Le service DNS configuré lors du déploiement doit pouvoir résoudre les noms DNS associés a la fois aux
service_id et aux instance_id. Tout hote portant un service VITAM devra utiliser ce service DNS par dé-
faut.

36 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Linstallation et configuration du service DNS applicatif est intégré a VITAM.
Voir aussi :

La solution de DNS applicatif intégrée a VITAM est présentée plus en détails dans [a section dédiée a Consul (page 74).

5.1.4 Packaging
5.1.4.1 Principes communs

Tout package doit respecter les principes suivants :
e Nom des packages : vitam-<id> du package
e Version du package : Numéro de « release » du projet Vitam

Les dossiers (ainsi que les droits associés) compris dans les packages doivent respecter les principes dictés dans /a
section dédiée (page 33).

Note : Les limitations associés au format de packaging choisi (packaging natif, rpm / deb selon 1’OS cible) sont :
e [’instanciation d’une seule instance d’un méme moteur par machine (il n’est ainsi pas possible d’installer 2
moteurs d’exécution sur le méme OS);

e Laredondance de certains contenus dans les packages (ex : les librairies Java sont embarquées dans les packages,
et non tirées dans les dépendances de package)

Les fichiers de configuration sont gérés par 1’outil de déploiement de maniere externe aux packages; ils ne sont pas
inclus dans les packages.

Les composants de la solution logicielle VITAM sont tous disponibles sous forme de packages natifs aux distributions
supportées (rpm pour CentOS 7, deb pour Debian 10 (buster)) ; ceci inclut notamment :

e [’usage des pré-requis (au sens Require ou Depends) nativement inclus dans la distribution concernée ;

e [’arborescence des répertoires OS de la distribution concernée ;

e [’usage du systeme de démarrage systemd.

Note : Seuls les paquets binaires cibles sont disponibles; les paquets sources (SRPM pour CentOS, par exemple) ne
seront pas fournis, les sources étant disponibles dans le dépdt git public.

5.1.4.2 Dépots

Note : La typologie des dépdts présentée ci-dessous a notamment pour but de permettre 1’installation de VITAM
sur des environnements présentant un acces restreint a Internet (i.e. limité aux miroirs des dépdts d’update standard
des distributions linux). Par conséquent, aucun dépot externe autre que les dépdts natifs des distributions Linux n’est
requis.

L’installation de VITAM s’appuie sur 2 dépdts internes différents :

e vitam-product : ce dépdt héberge les packages des logiciels développés dans le cadre de VITAM; ces
packages sont maintenus par VITAM, et les licences d’utilisations associées sont celles de VITAM.

e vitam—external : ce dépdt héberge les packages des logiciels requis par I’installation de VITAM mais non
présents dans les dépots natifs de la distribution. Ces packages sont fournis par VITAM, mais sont redistribués
sans modifications de la part de VITAM. Ils ne sont en particulier pas maintenus par VITAM, et les licences
d’utilisation restent celles des packages originaux.

5.1. Principes d’architecture technique 37

VITAM - Architecture, Version 7.1.5

Le contenu de ces dépdts est présent dans la distribution de la solution VITAM.

Note : Un dépdt supplémentaire, pour les griffins, permet de déployer également les briques logicielles relatives a la
préservation.

Note : La création, configuration et initialisation des dépots internes a partir des packages livrés est un pré-requis a
I’installation de VITAM; ces taches ne sont pas incluses dans I’installation de la solution logicielle afin de pouvoir
respecter la maniere d’héberger des dépots natifs de distributions Linux qui varie grandement selon les différents
gestionnaires d’infrastructure.

Astuce : En outre, le programme VITAM mettra a disposition un miroir externe accessible sur Internet comportant
les paquets a jour pour les dép6ts internes mentionnés ci-dessus.

En plus des paquets logiciels livrés, 1’installation de la solution VITAM requiert des dép6ts nativement disponibles
dans les distributions cibles.

5.1.4.2.1 CentOS

VITAM s’appuie sur les dépots suivants :
e Centos 7 (Base, Extras) : il s’agit des dépdts standard de la distribution

e EPEL 7 (Extra Packages for Enterprise Linux) : il s’agit d’'un dépdt maintenu par Fedora et fournissant un
ensemble de packages complétant ceux de RHEL/Centos

5.1.4.2.2 Debian

VITAM s’appuie sur les dépots suivants :
e Debian buster (dépdts main dans buster, buster-updates et security) : il s’agit des dépdts standard de la distribu-
tion
e buster-backports : il s’agit d’un backport de paquets plus récents non disponibles au moment de la publication
de la version Debian

Avertissement : Pour I’installation des packages mongoDB, il est nécessaire de mettre a disposition le package
libcurl3 des dépdts stretch (le package 1ibcurl4 sera désinstallé).

Avertissement : Le package curl est installé depuis les dépdts st retch.

5.1.4.3 Prise en compte de la configuration dans le packaging

5.1.4.3.1 CentOS

Conformément aux usages RPM de Centos/RHEL, les packages ne contiennent pas dans les pré/post action d’ar-
rét/démarrage/redémarrage de services.

38 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Note : La configuration de démarrage des services et leur démarrage (a minima initial) est de la responsabilité de
I’outillage de déploiement.

Contrairement aux usages de RPM, les fichiers de configuration ne seront pas gérés dans RPM. En effet, les fichiers de
configuration seront instanciés par 1’outil de déploiement. Pour éviter la génération de fichier .rpmnew ou .rpmsave, il
ne sera pas utilisé la directive %config.

Prudence : A ce jour, les fichiers de configuration ne sont pas listés dans les fichiers de configuration des fichiers
RPM;; par conséquent, ils n’apparaissent pas dans le résultats de commandes telles que rpm —-gl.

5.1.4.3.2 Debian

Tout comme pour CentOS, les paquets Debian n’intégrent pas les fichiers de configuration, et ne sont donc pas connus
de dpkg; en outre, ils ne s’integrent pas dans debconf.

5.1.5 Déploiement de la solution
5.1.5.1 Principes de déploiement

Les principes généraux de déploiement sont les suivants :

e Les packages d’installation (rpm / deb) sont identiques pour tous les environnements ; seule leur configuration
change.

e La configuration des services est externalisée et gérée par 1’outillage de déploiement.

e Le déploiement est décrit intégralement dans un fichier de définition du déploiement. En dehors des pré-requis,
le déploiement initial est automatisé en totalité (sauf exception).

e Les services sont configurés par défaut pour permettre leur colocalisation (dans le sens de la colocalisation de
deux instances de deux moteurs différents) (ex : dossiers d’installation / de fonctionnement différents, ports
d’écoute différents, ...).

Le déploiement s’effectue a partir d’un point central ; les commandes passées sur chaque serveur a partir de ce point
central utilisent le protocole SSH.

Voir aussi :

Pour plus d’informations sur 1’outillage de déploiement, se reporter a la section sur [’outillage de déploiement
(page 73)

5.1.5.2 Contraintes et vue d’ensemble

Les zones logiques présentées dans la section sur [’architecture applicative VITAM (page 26) correspondent également
aux zones de sécurité préconisées pour le déploiement de VITAM :

5.1. Principes d’architecture technique 39

VITAM - Architecture, Version 7.1.5

o
e
ie
s

Applications métier

Zone acces t ‘ |

Outils bases de donnée

Hston des logs techniques

Annuaire de services

Traitement des archiges Référentiels & métadonnées d'aghives Installation des composants
Zone applicative f i

Zone stockage Zone données Zone exploitation et d'administration
VITAM - Service VITAM - Exploitation

F1G. 2 — Déploiement VITAM : zones & principes de communication; les utilisateurs métier archivistes sont présentés
a gauche, et les exploitants technique a droite.

Voir aussi :
Ce découpage est repris dans la présentation de [’architecture technique détaillée (page 49).

Chaque zone héberge des clusters de services; un cluster doit étre présent en entier dans une zone, et ne peut par
conséquent pas étre réparti dans deux zones différentes. Chaque noeud d’un cluster applicatif doit étre installé sur
un hoéte (OS) distinct (la colocalisation de deux instances d’un méme service n’étant pas supportée); dans le cas de
I'utilisation d’un systeme de virtualisation d’OS (type hyperviseur), il est recommandé de placer deux noeuds d’un
méme cluster applicatif sur deux serveurs physiques différents.

Le découpage en zones suit un découpage classique de systéme « n-tiers » ; par conséquent, il est prévu pour respecter
les contraintes de flux inter-zones suivants :
e les systemes externes utilisateurs de VITAM peuvent uniquement communiquer avec les services de la zone
acces;

e les services déployés dans la zone acces peuvent communiquer avec les services de la zone applicative ;

40 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e les services déployés dans la zone applicative peuvent communiquer avec les services des zones stockage et
données ;

e les services déployés dans les zones acces, applicative, stockage et données peuvent communiquer avec les
services déployés dans la zone exploitation et administration ;

e les exploitants techniques peuvent accéder aux services déployés dans la zone exploitation et administration.

Voir aussi :

Un complément plus fin sur la problématique de colocalisation de composants est disponible dans [’architecture tech-
nique détaillée (page 92).

Prudence : Globalement, les connexions réseau associées aux flux métier se font dans le sens externe vers interne.
Une exception a cette regle existe cependant au niveau des flux elasticsearch ; en effet, le fonctionnement des clients
natifs elasticsearch (utilisés notamment dans metadata et functional-administration) impose des flux bidirectionnels
entre les membres du cluster elasticsearch et ses clients natifs, donc entre la zone applicative et la zone données.

VITAM supporte I’installation sur une infrastructure dont les serveurs possedent 2 interfaces réseau disjointes pour le
réseau de service (sur lequel transitent les flux métier, représentés en noir dans les schémas) et le réseau d’administra-
tion/exploitation (sur lequel transitent les flux transverses a toutes les zones et la zone d’administration/exploitation,
représentés en violet dans les schémas).

5.1.5.3 Installation initiale

Le processus de déploiement a les responsabilités suivantes :

e Effectuer une mise en conformité des OS des serveurs cibles pour certains pré-requis a I’installation de VITAM,
notamment :

e les utilisateurs, groupes et dossiers propres a VITAM ;
e certains services systeme utilisés par VITAM (ex : rsyslog).
e Déployer, installer et configurer les composants logiciels VITAM ;

e Déployer certaines configurations de tuning systeéme (ex : sysctl.conf, limits.conf).

Note : La portée des modifications appliquées au systéme sera décrite de maniere plus précise dans la documentation
d’installation livrée avec chaque version.

La portée de la configuration applicative est décrite dans le schéma présenté au paragraphe Contraintes et vue d’en-
semble (page 39).

Voir aussi :
Plus de détails sur I'installation sont disponibles dans le DIN.

5.1.5.4 Principes de mise a jour a chaud

La mise a jour a chaud depuis une version précédente du systeme VITAM n’est pas supportée dans cette version de la
solution VITAM.

5.1.5.5 Multi-site

Les principes de déploiement de VITAM sur plusieurs sites sont décrits dans la section Architecture des données &
multisite (page 17).

5.1. Principes d’architecture technique 41

VITAM - Architecture, Version 7.1.5

5.1.5.6 Support de I'élasticité

Un déploiement de VITAM sur une infrastructure élastique (ex : AWS Auto Scaling, Azure AutoScaling, GCE ma-
naged instance groups , Openstack Heat AutoScalingGroup, ...) n’est pas supporté dans cette version de la solution
VITAM.

5.1.5.7 Validation du déploiement

La validation du déploiement peut étre réalisée a partir d’un ensemble de tests techniques et métier fournis par VI-
TAM et permettant de valider le bon fonctionnement du systeme. A terme, ces tests seront exécutables méme sur des
environnements de production, dans un tenant dédié pour ne pas impacter les autres utilisateurs du systeme.

En particulier, les autotests des composants permettent d’avoir une premiere validation technique d’un déploiement.

5.1.6 Suivi de I’état du systeme

5.1.6.1 API de supervision

Chaque composant VITAM doit exposer en interne de la plate-forme, sur un port dédié, les API REST suivantes :

e /admin/v1/status : statut simple, renvoyant un statut de fonctionnement incluant des informations tech-
niques sur I’état actuel du composant. Un exemple d’utilisation typique est I’intégration a un outil de supervision
ou a un élément actif tiers (ex : load-balancer, . ..) . L’appel doit étre peu coliteux.

e /admin/vl/autotest : autotest du composant, langant un test de présence des différentes ressources re-
quises par le composant et renvoyant un statut d’état de ces resources.

e /admin/vl/version : statut renvoyant les informations relatives a la version.
e /admin/vl/metrics : Expose les métriques applicatives prometheus (techniques et métier).

Chaque VM de I’environnement VITAM doit installer prometheus node exporter. Ce dernier expose des métriques
liées au matériel et au noyau du systeme via I’API suivante : * /metrics : Expose les métriques liées au matériel et
au noyau.

Voir aussi :

D’autres interfaces de statut dédiées aux applications métier sont disponibles sur les composants externes (zone acces) ;
elles sont décrites dans la documentation d’ API de VITAM.

Ces API sont exposées sur un réseau d’administration qui peut étre différent du réseau de service.
Voir aussi :

D’autres API d’administration sont disponibles selon les composants; se reporter au paragraphe idoine dans /a liste
des services (page 77)

5.1.6.2 Métriques

Chaque composant VITAM doit permettre I’envoi ou I’exposition d’un certain nombre de métriques soit dans les logs
de I’application, soit dans une base de données Elasticsearch, soit via des API au format prometheus; ces métriques
sont de 3 types différents :

e Les métriques relatives aux statistiques d’acces des interfaces REST :
e Fréquence d’appel sur les derniere 1, 5 et 15 minutes;
e Nombre de résultats selon le code HTTP renvoyé;
e Avec un sampling des temps de réponses basé sur les 5 derniéres minutes :

e [e minimum

42 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e Le maximum
e La moyenne
e [’écart type
e Le 95 ™ percentile
e Les métriques relatives a I’'usage de la JVM :
e Consommation mémoire des différentes zones mémoire interne de la JVM
o Etat des threads utilisés
o Statistiques d’appels du/des ramasse-miette(s)

e Les métriques métier, relatives a des cas d’utilisation métier (archivistes) du systeme.

Note : VITAM propose un sous-systeme dédié a la collecte et exploitation des métriques qui s’appuie sur les com-
posants également utilisés pour la gestion centralisée des logs; il est décrit plus en détails dans la section dédiée
(page 70).

Note : Chaque service applicatif VITAM dispose d’une documentation sur les différentes métriques exposées.

5.1.6.3 Logs

5.1.6.3.1 Protocoles : syslog

Les protocoles d’émission de logs (entre un émetteur de logs et I’agent syslog local) possibles sont :

e Le format syslog unix (écriture dans /dev/1og), privilégié pour les messages émis par les scripts shell (pro-
tocole par défaut de la commande logger) .

e Le format syslog udp (sans garantie d’acheminement, vers I’adresse 1ocalhost), privilégié pour les messages
émis par les applications.

Dans les deux cas, et en se basant sur la RFC 5424, les parametres imposés sur les messages syslog sont les suivants :

e Facility : 1ocal0 (id 21); Vitam n’utilise pas les facilités « systeéme » mais seulement les facilités local0 a
local3.

e Message Severity : dans le cas des applications Java, le mapping de sévérité suit le mapping imposé par 1’ap-
pender logback SyslogAppender '? (DEBUG 7, INFO 6, WARN 4 et ERROR 3).

e Le positionnement du champ APP-NAME correspondant a I’application; pour les applications VITAM, ce
champ doit étre égal a 1’id du composant vitam (devant respecter le pattern vitam-—. x). Pour les scripts, il
doit étre égal au nom du script (comportement par défaut pour un logger unix).

Note : A noter que I’instance de 1’application n’est pas mise dans le champ APP-NAME car du fait des principes de
packaging, il ne peut y avoir qu’une seule instance d’application par hote et le tuple (HOSTNAME, APPNAME) identifie
bien I’application.

5.1.6.3.2 Types de log

Les logs se divisent en plusieurs catégories :

12. http://logback.qos.ch/manual/appenders.html#SyslogAppender

5.1. Principes d’architecture technique 43

http://logback.qos.ch/manual/appenders.html#SyslogAppender
http://logback.qos.ch/manual/appenders.html#SyslogAppender

VITAM - Architecture, Version 7.1.5

5.1.6.3.2.1 Logs applicatifs

Les logs applicatifs couvrent les logs produits par le code des applications ; ils permettent de suivre un certain nombre
d’événements techniques et métiers remontés par les applications.

Leur format est imposé par VITAM (se reporter au DEX pour le format exact des logs).

Par défaut, ces logs sont déposés de deux manieres différentes :

e des fichiers de logs (dans le répertoire de log dédié pour chaque composant (Cf. la section dédiée (page 33))).
IIs sont configurés pour rouler quotidiennement, avec une taille globale maximale; le pattern des fichiers est
<service_id>.%d.log (%d étant remplacé par yyyy—-MM—dd).

e le service syslog local, en utilisant le protocole syslog UDP (port 514 ; format défini dans la RFC3164).

Note : VITAM propose un sous-systeme dédié a la collecte et exploitation des logs qui s’appuie sur ce service syslog
local pour I’acquisition des logs; il est décrit plus en détails dans la section dédiée (page 65).

La corrélation des logs afférents a la méme requéte métier mais distribuée au sein des différents composants du
systeme est réalisée grice au positionnement d’un identifiant de requéte au niveau des briques externes. Cet iden-
tifiant se retrouve dans tous les logs applicatifs, et est propagé entre les composants via 1’'usage du header HTTP
X-REQUEST-ID.

Enfin, ces logs applicatifs transportent également les alertes émises par les composants VITAM, et notamment les
alertes de sécurité.

5.1.6.3.2.2 Logs du garbage collector Java

Ces logs permettent de faire une analyse fine du fonctionnement interne de la JVM a travers les informations d’exécu-
tion des différents garbage collectors.

Leur format est imposé par I’'implémentation de la JVM.

Ils sont déposés dans des fichiers (dans le répertoire de log dédié pour chaque composant (Cf. la section dédiée
(page 33))) : gc/gc. log pour le fichier courant, gc. log.<n> pour les fichiers roulés (avec <n> le numéro du
fichier, sur base 0). Le roulement est basé€ sur une limite de taille unitaire des fichiers, avec un nombre maximal de
fichiers.

5.1.6.3.2.3 Logs d’acces

Les logs d’acces sont placés sur tous les services métiers VITAM; ils permettent de tracer de maniere fine (avec une
granularité a la requéte) les appels de ces services.

Leur format est imposé par VITAM (se reporter au DEX pour le format exact des logs).

Ces logs sont déposés dans des fichiers (dans le répertoire de log dédié pour chaque composant (Cf. la section dédiée
(page 33))). Ils sont configurés pour rouler quotidiennement, avec une taille globale maximale ; le pattern des fichiers
estaccesslog-<service_id>.%d.log (%d étant remplacé par yyyy-MM-dd).

5.1.6.4 Suivi de I’état de déploiement

Le suivi de 1’état de déploiement se fait au travers de 1’outil de déploiement utilisé.

44 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.1.6.5 Intégration a un systéme de monitoring tiers

L’intégration a un systeme de monitoring tiers est possible via les points d’extension suivants :
e Les API REST de monitoring des composants Java
e [utilisation des composants standards de monitoring des COTS utilisés

5.1.7 Administration technique

5.1.7.1 Démarrage / arrét des services

Les services VITAM s’integrent a systemd pour la gestion de leur cycle de vie (start / status / stop).

Le nom d’un service VITAM dans le gestionnaire de service de 1’OS est par défaut son package_1id.

Note : Le principe de lancement est de permettre le lancement des commandes de démarrage et d’arrét des serices
via sudo pour tous les utilisateurs membres du groupe vitam—admin (ou vitamdb—admin). La configuration
sudoers des groupes vitam-admin et vitamdb-admin est fournie par VITAM. Les fichiers sudoers des groupes
vitam-admin et vitamdb-admin seront systématiquement écrasés a chaque nouvelle installation (avec sauve-
garde du fichier précédent dans le méme répertoire). Le fichier sudoers est configuré en mode NOPASSWD, c’est a
dire que le mot de passe de I’utilisateur ne sera pas demandé lors de 1’utilisation des sudoers vitam.

5.1.7.2 Taches régulieres

Les taches techniques devant étre lancées a intervalles réguliers et ne nécessitant pas de coordination entre plusieurs
serveurs sont implémentées de préférence a 1’aide de units timer systemd 3.

5.1.8 Gestion des données du systeme

Dans VITAM, les principes de sauvegarde / restauration utilisés de maniere classique ne peuvent étre appliqués; en
effet, ils ne peuvent pas convenir dans le cadre de déploiements gérant une quantité massive d’archives. Par conséquent,
des principes de sauvegarde et restauration applicatives particuliers sont mis en place dans le cadre de la solution,
principalement basés sur I’utilisation des offres de stockage afin d’assurer la pérennisation des données.

VITAM doit étre reconstructible a partir de 2 éléments qui sont :
e Les données persistées dans les offres de stockage;

e La configuration & les données (notamment les secrets) de déploiement. Ces secrets incluent notamment les
certificats (et notamment les certificats clients des applications externes et des personae).

Voir aussi :

La reconstruction et la vision applicative des données est abordée a la section Architecture des données & multisite
(page 17).

5.1.8.1 Cas des déploiements de petite taille

Dans le cas de déploiement de petite taille, il est possible d’effectuer une sauvegarde classique du systeme, a froid.

13. https://www.freedesktop.org/software/systemd/man/systemd.timer.html

5.1. Principes d’architecture technique 45

https://www.freedesktop.org/software/systemd/man/systemd.timer.html

VITAM - Architecture, Version 7.1.5

5.1.8.1.1 Dossiers

Les dossiers suivants sont éligibles aux processus de sauvegarde (dans I’ordre décroissant de criticité) :
e /vitam/data : ce répertoire contenant les données des applications, sa sauvegarde est vitale.

e /vitam/tmp : la sauvegarde de ce répertoire est optionnelle; elle peut permettre de diminuer le temps de
reprise apres incident.

e /vitam/conf : la sauvegarde de la configuration est normalement peu utile, car tous les fichiers de configu-
ration sont gérés par ansible, donc facilement réinstanciables.

Les autres répertoires sont intégralement fournis par les packages d’installation ; leur sauvegarde n’est donc pas indis-
pensable.

5.1.8.1.2 Sauvegarde

La sauvegarde s’effectue pendant la nuit, avec globalement 5 phases :

1. Une phase initiale de suppression des possibilités d’écritures externes dans les bases de données (arrét des
composants frontaux) ;

2. Une phase d’attente de la fin des processus internes en cours (workflow d’entrée et sécurisation des journaux);
cette phase se clot par I’arrét ordonné de tous les services VITAM;

3. Une phase d’export des bases de données sous forme de fichiers ;

4. Une phase de sauvegarde des fichiers (avec a minima les fichiers d’archives et fichiers d’export des bases de
données) ;

5. Une phase de redémarrage ordonné des services VITAM.

5.1.8.2 Restauration

La procédure de restauration s’appuie sur le postulat que le systtme VITAM est dans un état incohérent au début de
celle-ci.

1. S’assurer que tous les services VITAM sont arrétés.
2. Restaurer les dossiers précédemment sauvegardés a leur emplacement respectif.

3. Démarrer les services suivant la procédure de démarrage VITAM.

Note : La sauvegarde / restauration des bases MongoDB et Elasticsearch (data et logs) n’est pas indispensable. A
contrario, la sauvegarde / restauration des bases MongoDB des offres, et notamment les offres froides (stockage sur
bande) est fortement recommandée ; des détails sont fournis dans le DEX.

5.2 Services techniques fournis par la solution

5.2.1 Moteur de déploiement et de configuration

Role :

e Faciliter et centraliser la configuration, le déploiement et la mise a jour de VITAM
Fonctions :

e Gestion des binaires d’installations (version, intégrité)

e Gestion des éléments de configuration spécifiques a chaque plate-forme (y compris les secrets)

46 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e Pilotage de I’installation des services sur les éléments d’infrastructure (VM/containers) de maniere cohérente
Données gérées :
e Configuration technique du systeme VITAM

e Certificats x509 : le moteur de déploiement et de configuration doit posséder la référence des certificats tech-
niques déployés sur la plate-forme (car il doit entre autres assurer la cohérence de ces certificats entre les diffé-
rentes instances des composants VITAM déployés)

5.2.2 Chaine de traitement de logs et de métriques

Role :

e Agréger, mettre en forme et exploiter les logs techniques du systéme

e Agréger, mettre en forme et exploiter les métriques techniques du systeme
Fonctions :

e Récupérer les éléments de logs provenant des composants du systéme

e Structurer les logs techniques

e Stocker les logs et métriques techniques

Présenter des dashboards d’analyse et de recherche des logs et métriques techniques
Données gérées :
e Logs techniques

e Meétriques techniques

5.2.3 Service registry

Role :

o Identifier la localisation et 1’état (disponible / indisponible) des services VITAM
Fonctions :

e Maintenir une vision cohérente de I’état des services

e Fournir des interfaces de requétage de la localisation des services
Données gérées :

e Etat et localisation des composants en cours d’exécution

5.3 Composants logiciels utilisés

Voir aussi :

La liste des dépendances logicielles exactes est décrite dans les release-notes de chaque version de VITAM.

5.3. Composants logiciels utilisés 47

VITAM - Architecture, Version 7.1.5

5.3.1 Fournis

5.3.1.1 COTS

e MongoDB '* : base de données orientée documents

o Elasticsearch ' (+ plugins) : base d’indexation

e Cerebro '° : THM d’administration d’Elasticsearch

e Curator ' : maintenance des index d’Elasticsearch

e Logstash '® (+ plugins) : agrégation et traitement des logs

e Kibana '” : dashboards et recherche des logs techniques et métier

e Consul ? : annuaire de services

e Siegfried?' : identification des formats de fichiers

e Prometheus node exporter *> : Exposition des métriques liées au matériel et au noyau du systéme

e Prometheus Elasticsearch Exporter >* : Exposition des métriques liées i Elasticsearch

Dans les extras, les outils supplémentaires suivants sont également fournis, sans garantie de bon fonctionnement :
e Metricbeat ** pour réaliser notamment le monitoring de MongoDB.
e Head > : interface alternative pour les index d’Elasticsearch
e mongo-express > : interface d’acces au contenu de la base MongoDB
e Prometheus server >’ : Supervision
e Prometheus alertmanager °® : Envoi des alertes
e Grafana? : Visualisation des données elasticsearch et prometheus

o restic?” : Outil de sauvegarde

5.3.1.2 Bibliothéques structurantes

e Jetty ’! : moteur de servlet

Note : Jetty est utilisé en mode « embedded », et n’est par conséquent pas remplagable par un autre moteur de servlet.

14. https://www.mongodb.com/fr

15. https://www.elastic.co/products/elasticsearch

16. https://github.com/lmenezes/cerebro

17. https://www.elastic.co/guide/en/elasticsearch/client/curator/current/index.html
18. https://www.elastic.co/fr/products/logstash

19. https://www.elastic.co/fr/products/kibana

20. https://www.consul.io/

21. http://www.itforarchivists.com/siegfried

22. https://prometheus.io/docs/guides/node-exporter/

23. https://github.com/prometheus-community/elasticsearch_exporter
24. https://www.elastic.co/guide/en/beats/metricbeat/current/index.html
25. https://github.com/mobz/elasticsearch-head

26. https://github.com/mongo-express

27. https://prometheus.io/

28. https://prometheus.io/docs/alerting/latest/alertmanager/

29. https://grafana.com/

30. https://restic.net/

31. https://eclipse.org/jetty/

48 Chapitre 5. Architecture technique / exploitation

https://www.mongodb.com/fr
https://www.elastic.co/products/elasticsearch
https://github.com/lmenezes/cerebro
https://www.elastic.co/guide/en/elasticsearch/client/curator/current/index.html
https://www.elastic.co/fr/products/logstash
https://www.elastic.co/fr/products/kibana
https://www.consul.io/
http://www.itforarchivists.com/siegfried
https://prometheus.io/docs/guides/node-exporter/
https://github.com/prometheus-community/elasticsearch_exporter
https://www.elastic.co/guide/en/beats/metricbeat/current/index.html
https://github.com/mobz/elasticsearch-head
https://github.com/mongo-express
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://grafana.com/
https://restic.net/
https://eclipse.org/jetty/

VITAM - Architecture, Version 7.1.5

5.3.2 Requis
e Java (JRE) 11

Voir aussi :

Pour chaque version du systeme VITAM * les composant fournis ou installés par dépendance sont précisés dans la
documentation d’installation (DIN); * la liste des bibliotheques et COTS opensources inclus (ainsi que leur version)
sont précisés dans les release-notes.

5.4 Architecture technique détaillée

L’architecture technique s’appuie sur la vision des flux d’information entre les composants d’une part, et le dia-
gramme de déploiement applicatif d’autre part. Les schémas suivants décrivent les connexions réseau établies entre
les différents clusters de composants (connexion tcp ou udp); on différenciera les flux de service (acces aux services,
communication entre les services métier d’'un méme systeme) des flux d’administration (acces entre les services métier
VITAM et les services d’infrastructure et d’exploitation).

Les détails sur les communications intra-cluster sont abordés plus en détail dans les paragraphes dédiés aux différents
composants.

5.4. Architecture technique détaillée 49

VITAM - Architecture, Version 7.1.5

Légende

Services & zoning

| .

<instance_id>

<nom du paguet logiciel>

<service id>

[~ <protocole>:<port p

Service applicatif

Cluster applicatif

<nom de zone>

Zone logique

<nom du systéme>

Systéme

Flux réseau (sens de connexion) :
réseau de service

Origine des composants logiciels

réseau d'administration

—
—]
—

Cardinalité de déploiement

Paquet applicatif fourni par VITAM
Configuration fournie par VITAM

Paquet applicatif externe
Configuration fournie par VITAM

Paquet applicatif externe
Configuration non fournie

E Service multi-instanciable
Iil Service mono-instancié

Utilisateurs externes

Fes
O

Utilisateur archiviste

Utilisateur exploitant technique

FI1G. 3 — Architecture technique : 1égende

5.4.1 Flux métier

Les flux réseaux « métier » sont divisés en 3 schémas pour plus de clarté ; tout d’abord, les flux généraux :

50

Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

ihm-demo-(0-91(2}

Applications métier mss

Ingest-extemal {0-912)
vitam-ingest external

access-extemal(0-91(2)
vitam-access-external

hitp:9000

(]
cerebro-{0-91{2)
vitam-cerebro

cerebro
Outils bases de donnée

hitp

L
security-internal-[0-91(2} r hitp:5601
accessintemal-{0-91(2) vitam-security-internal L
s internal Kibana{0-91{2)
kibana

hitp

ingest-internal {0-91(2)
vitam-ingest.internal

vitan-scheduler0-1]
hedule

logstash (0-91{2)
security-internal logstash

rnal

logstash kibana

hitp

processing-01
vitam-processing

[phutp:9201
Lk

http
M
functional-administration-(0-91(2)
vitam-functional-administration

functional-administration

elasticsearch{iog10-91(2)
vitam-elasticsearch-log _| curator

elasticsearch-lo
Gestion des logs techniques

@ o o
18300 5301 53 18500
H o Cl] dns:53
consul{0.912}log
vitam-consul ans infral
[s/o]

consul
Annuaire de services

hutpihtips
MHh— M
[dépot rpm/deb]
(s/o]

batch-reps worker{0-91¢2)

logbook 091(2)

vitam-logbook

it

storage-(0-9){2)
vitam-storage

workspace storage
raitement des archives Référentiels & M Installation des composants
icative
tcp:9300 W tep:27017
{}

elasticsearch-data-[0-91(2}
vitam-elasticsearch-data

mongos-(0-91(2}
vitam-mongos

mongos

offer-swift

tep:27019 tcp:27018
M

mongoc (09142}

M
mongod-swift{0-91{2}
vitam-mongod

vitam-mongoc

mongod-file

mongoc
Hiparore
‘mongoc-file-[0-91{2} mongoc-swift-[0-91{2}
vitam-mongoc vitam-mongoc
mongoc-file mongoc-swift
Zone stockage Zone données Zone exploitation et d'administration

VITAM - Service

VITAM - Exploitation

Hutpihups

[swift storage API]
[swift object storage]

FIG. 4 — Architecture technique : flux (1/5 : flux métiers généraux)

Ensuite, les flux dédiés au dépdt des journaux dans le composant « logbook » :

5.4. Architecture technique détaillée 51

VITAM - Architecture, Version 7.1.5

Applications métier

(e
vitam-ingest-external
ingest-external

Zone accés

hitps
]
access-extemal(0-91(2}
vitam-access-external

access-external

hitp

hitp
(]
ingest-internal{0-91(2)
vitam-ingest.internal

ingest-internal

b

(1
access-intemal {0-91(2)
vitam-access-intemnal

access-internal

[
security-nternal{0-9)(2)
vitam security-internal

security-internal

e
processing 01
vitam.processing
Erocessin?

hitp

(]
worker-(0-91{2)
vitam-worker

worker

|batch-report

(e
workspace-01
vitam-workspace

workspace

htp ttp
L
storage-(0-9142) metadata-{0-91(2}
vitam-storage itam-metadata

Traitement des archives

storage

http
(]
functional-administration-[0-9](2)
vitam-functional-administration

functional-administration

it
M
logbaok-(0-91(2)
vitam-logbook

nées d'archives

hitp:9000
(]
cerebro-(0-91(2}
vitam-cerebro

cerebro
Outils bases de donnée

r hiip:5601
LF
logstash (0912} Kibana {0-9142)
h kibana

logstas!
kibana

logstash

9201
L}
clasticsearci{og 091{2)
vitam-elasticsearch-log_| curator

elasticsearch-los

Gestion des logs techniques

tp: tp dns hup:
18300 (18301 (15318500
(o B e B e
consuk{0-9}{2}log
vitam-consul

consul

Annuaire de services

hitprhittps.
L}
[dépot rpm/deb]
(3]

Installation des composants

Zone applicative

[jtcpi27017
i,

mongos-{0-9}2}

ttps
vitam

offer-swift

tep:27017

mongoc-swift

mongoc-file

vitam-mongos

mongos

tcp:27019
mongod-{0-9142)
vitam-mon

mongod

tcp:27018
L
mongoc(0-91{2}
vitam-mongoc

mongoc

Zone exploitation et d'administration

Zone données

VITAM - Exploitation

Zone stockage

VITAM - Service

htto/https
[swift storage API]
[swift object storage]

FIG. 5 — Architecture technique : flux (2/5 : flux métiers de dépdt des journaux)

Enfin, les flux dédiés a la lecture des référentiels en interne de VITAM :

Chapitre 5. Architecture technique / exploitation

52

VITAM - Architecture, Version 7.1.5

Applications métier

s s
vitam.ingest-external vitam-access-external jremaoo0
ingest-external access-external CETADATED
vitam-cerebro
Zone acce;
cerebro
Outils bases de donnée
nitp
hip ity
Cl] security-internal-[0-9]{2} r http:5601
ingest-internal-{0-91{2} access-internal-{0-91{2} vitam-security-internal bl
vitam-ingest-internal vitam-access-internal logstash-{0-91{2} kibana-[0-9]{2)
security-internal jogstash jdbana
logstash kibana

access-internal

ingest-internal
p
(1 [htp:9201
processing 01 nitp Lt
vitam-processing elasticsearcrylog-[0-9]{2)
functional-adminstration 10-9)(2) vitam.elasticsearch-log_| curator
vitam functional-administration
elasticsearch-los
ues

Erocessin?
functional-administration n P
Gestion des logs techni

tp: tp dns hup:
18300 (18301 (15318500
(o B e B e
consuk{0-9}{2}log
vitam-consul

n e
vitam-batch-report vitam-worker
worker
consul
Annuaire de services

|batch-report
e e 5
workspace.01 storage-0-9142) metadata-091(2)
e— i ——
workspace storage [s/0]
éfé i es d'archives Installation des composants
vitam-mongos

Traitement des archives
Zone applicative
ttps.
vitam.
offer-swift mongos
ez 27019
vitam-mongos vitam:mon

mongod

mongos-swift
tcp27019 tep:27018
M L
mongod-swit10-91(2} mongoc(0-91(2)
vitam-mongod vitam-mongoc
mongoc

mongod-swift

[jtcpi27017
i,

mongos-{0-9}2}

Zone exploitation et d'administration

mongoc-swift
Zone données
VITAM - Exploitation

htto/https
[swift storage API]
[swift object storage]

FI1G. 6 — Architecture technique : flux (3/5 : flux métiers de lecture des référentiels métier)

mongoc-file

Zone stockage
VITAM - Service

5.4.2 Flux exploitation

Les flux réseau « exploitation » correspondent aux flux des utilisateurs exploitants vers les outils d’exploitation fournis

par VITAM

53

5.4. Architecture technique détaillée

VITAM - Architecture, Version 7.1.5

)

Applications métier

hitp:7000
(1]
ihm-demo-(0-91(2}
vitam ihm-demo

...‘

[Joes
vitam-ingest-external

ingest-external

Zone acces

https

]
access-extemal(0-91(2)
vitam-access-external

access-external

hitp
(]
ingestinternal{0-91(2}
vitam-ingest.internal

ingest-internal

hitp
(1
access-intemal {0-91(2)
vitam-access-intemnal

access-internal

h

vitam-scheduler-0-1]
vitam-scheduler

hitp:9000
cerebro-{0-9{2)
vitam-cerebro

cerebro

hitp
(]
security-intemal-(0-9](2}
vitam-security-interal

security-internal

i
processing-01
vitam-processing

scheduler

processing

hetp
L}
batch-report-(0-91{2)
vitam-batch-report

|batch-report

http
(]
worker-(0-91{2)
vitam-worker

worker

logbook

nttp
(]
workspace-01
vitam-workspace

workspace
Traitement des archives

htp http
L (]
storage-(0-9142) metadata-{0-91(2}
vitam-storage vitam-metadata

metadata
Référentiels & méta

storage

Zone applicative

données d'archives

http
L]
functional-administration-(0-91(2)
vitam-functional-administration

functional-administration

hitp
L1
logbook 091(2)
vitam-logbook

offer-file

tep:27017
M

mongos-file-(0-91(2)
vitam-mongos

mongos-file

tcp:27019
M
mongod-ile-(0-91{2}
vitam-mongod

mongod-file

tep:27018
M

mongocile(0-91{2)
vitam-mongoc

mongoc-file
Zone stockage

storage-off
vitam-storage-offer

offer-swift

tcpi27017
M
mongos-swift-{0-91{2}
vitam-mongos

mongos-swift

tcp:27019
M
mongod-swift{0-91{2}
vitam-mongod

mongod-swift

tep:27018
M
mongoc swift(0-91(2}
vitam-mongoc

mongoc-swift

tcp:9300 http:9200)
elasticsearch-data-[0-91(2}
vitam-elasticsearch-data

elasticsearch-data

Zone données

[Jicp27017
Lt

mongos-(0-91(2}
vitam-mongos

mongos

tcp:27019
e
mongod-{0-9142)
vitam-mongod

mongod

tcp:27018
(1

mongoc (09142}
vitam-mongoc

mongoc

VITAM - Service

Outils bases de donnée

r Y hutp:seo1
Lt
logstash[0-91{(2) Kibana (0912}
logstash kibana

logstash

kibana

LA
{1

elasticsearcryi0g-10-91(2)
vitam-elasticsearch-log _| curator

elasticsearch-lo
Gestion des logs techniques

p:

301
consuk{0-9](2}log

vitam-consul

[onsss
[s/o]
Annuaire de services

htpihttps
L]
[dépot rpm/deb] [serveur de déplojement]
[s/o] ansible

Installation des composants

Zone exploitation et d'administration

VITAM - Exploitation

hitpihiips
(]
[swift storage API]
[swift object storage]

FIG. 7 — Architecture technique : flux (4/5 : flux des outils d’exploitation)

5.4.3 Flux techniques

A D'inverse des flux métier qui relient les composants instanciés de maniere indépendante de leur topologie de déploie-
ment (et notamment de leur colocalisation possible), les flux réseaux techniques sont centrés sur la communication
entre des composants techniques d’exploitation li€s a un hdte (OS) et des composants d’administration ; par consé-

quent, le schéma ci-dessous se répete pour tout serveur hébergeant un ou plusieurs composant(s) VITAM :

54

Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Exploitation technique

["] http: <port admin>

syslog:udp:514

rsyslog

syslog:tcp:

10514

logstash-01
vitam-elasticsearch-log

logstash
¥4 http:9201
J
elasticsearchtlog-[0-9]{2}
vitam-elasticsearch-log | curator

consul

vitam-consul

elasticsearch-log

Gestion des logs technigues

tcp: tcp: dns:

http:

C|
8300 8301 5 8500
J-ldn5153
consul-[0-9]{2} Ll
vitam-consul [dns infra]

consul

[s/o]

Annuaire de services

/ serjeurs de nom

yum/apt
£tc;:22

sshd

4 http/https

o
[dépot rpm/deb]

[s/o]

[s/o]

ansible

VITAM - Service

NsStallation des composants

VITAM - Exploitation

F1G. 8 — Architecture technique : flux (5/5 : flux du socle technique). Seul le port exposant les services d’administra-
tion/exploitation est représenté sur le composant VITAM présenté dans cette figure.

5.4.4 Découpage en zones

Le schéma ci-dessous reprend les composants applicatifs, en les regroupant par zones.

5.4. Architecture technique détaillée

55

VITAM - Architecture, Version 7.1.5

Applications métier

_A0
M

ihm-demo(0-91(2}
vitam-ihm-demo

.’..

est-exter
vitam-ingest-external

nitps

nak0-91(2}

Zone a

ingest-external

access-extemal0:9](2)

collect externa{0-9)(2)
vitam-collect-external

collect-external

ttp:9000
cerebro-{091(2)
vitam-cerebro

cerebro

ingest-internal

nttp
M
access intemal0-91(2)
vitam-access-internal

access-internal

I—_l

hoe
pracessing-01
vitam-processing
ing

baffch-rej

batch-repdt 10912}
vitam-batch]report

htp

hitp
M
security-intemal{0-91(2)
vitam-security-internal

security-internal

hitp

collectinternal-10-91(2)
vitam-collect-internal

collect-internal

Outils bases de donnée

Jessosteposa
ogstash (0.91(2)
logstash

logstash

worker{0.91(2)
er

rt

b
o
functional-administration-10-9)(2}
vitam-functional-administration

functional-a

ministration

hitp

1ogb0ok{0-91(2}
vitam-logbook

logbook
]

workspace-01 storage-{0-9142)
vitam-workspace - storag

workspace

nitp ntto

vitam-storage

ntto
metadata0.9](2)
vitam-metadata

metadata

hitp
workspace-01
vitam-workspace

workspace

nttp
metadata (0-9){(2)
vitam-metadata

metadata

onec o

Réfé*ntié‘f?&r*rémd‘m

Collecte d'archives |

[lraitement des archixges
P pplic
itps

mongosfile-(0.91(2}
vitam-mongos

mongos-file

ttps
M
storage-offer-swift{0-91(2)
vitam-storage-offer

offer-swift

tep27017
e

mongod-He(0-91(2)
vitam-mongod

mongod-file

mongos swit (0912}
vitam-mongos

mongos-swift

tepi27017
¥

Hep2rots

mongoc fle-(0.9](2)
vitam-mongoc

mongoc-file

mongod-swift10-91(2)
vitam-mongod

mongod-swift

Hepzrots

27018
M

Zone stockage

mongoc-swit{0-9)(2)
vitam-mongoc

mongoc-swift

tcpi27018
M,

tep27017

M
vitam-elasticsearch-data

elasticsearch-data

Zone données

VITAM - Service

hitp:9201
M
elasticsearcttiog{0-91{2}
vitam-elasticsearch-log_| curator

lasticsearch-los

el

hitphitps
[hene:

[d6pot rpmden] serve
(s/o] ansible

Installation des composants

Zone exploitation et d'administra

VITAM - Exploitation

5.5 Stockage des données

Voir au

nttphtps

[swit storage API]
[swift object storagel

ssi :

FIG. 9 — Architecture technique : délimitation par zones

Cette section s’appuie fortement sur la description de [’architecture des données (page 17), en particulier en ce qui
concerne les données d’archive.

Les offres de stockage VITAM portent la référence des données concernant les archives hébergées par le systeme
VITAM : leur contenu binaire (BDO), mais également les métadonnées associées au sens large (AU, GOT, journaux).

VITAM possede trois implémentations possibles d’offres de stockage « classiques » : I’implémentation basée sur un
systeme de fichiers, I’'implémentation Swift et I'implémentation S3. En complément, une implémentation Tape-library,
aussi désignée Offre froide, permet I’'usage de robotique de cartouches magnétiques.

VITAM peut stocker les données dans plusieurs offres de stockage en parallele afin de se parer contre la perte de
données. Les deux types d’offres peuvent étre utilisées seuls ou ensemble sur des offres de stockage différentes : ainsi,

56

Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

on peut configurer VITAM pour déposer les données dans 2 offres de stockage filesystem disjointes, ou dans une offre
de stockage filesystem et une offre Swift, ou encore dans une offre de stockage filesystem et 2 offres Swift différentes
(se basant sur 2 clusters Swift distincts); tout dépend des contraintes de non-perte de données, de scalabilité et de
résilience a la panne qui sont abordés dans la description des types d’offres ci-dessous. C’est la configuration des
stratégies qui permet de définir les offres sur lesquelles vont étre stockées les données.

Note : Un mécanisme de resynchronisation d’une offre de stockage avec une autre, migrant de fait les données entre
offres, est disponible en mode complet (la procédure est décrite dans le DEX).

Important : Dans le but d’assurer au maximum la pérennité des données conservées dans le systeme VITAM, il est tres
fortement conseillé de stocker les données dans au moins 2 technologies de stockage différentes (ex : 2 stockages objets
de constructeurs et technologies différentes, un stockage objet et un stockage bloc, 2 stockages bloc de constructeurs
et technologies différentes, . ..)

5.5.1 Stratégies de stockage

VITAM permet de définir plusieurs stratégies de stockage sur une plateforme VITAM.

Plusieurs regles :
e une stratégie de plateforme VITAM est obligatoire
e la stratégie de plateforme VITAM est utilisée par défaut

e la définition d’une stratégie sur une donnée est immutable : on ne peut changer la stratégie d’un objet stocké

5.5.2 Offre filesystem

L offre filesystem permet de stocker les données sur un systeme de fichiers accessible localement par le composant
« storage-offer ».
Points positifs :
e facile a mettre en place
e facile a exploiter
e facile a sauvegarder
Points négatifs :

e pour une offre de stockage, seule une seule instance du service storage-offer peut étre active a un instant donné,
ce qui implique que cette offre :

e n’est pas scalable par multi-instanciation (i.e. horizontalement) ;
e ne possede pas de solution de haute disponibilité portée par la solution logicielle.

Par conséquent, elle est particulierement adaptée pour les déploiements de test ou de petite taille (ordre de grandeur :
< 10 To), mais est a déconseiller pour les déploiements sur des volumétries importantes.

Prudence : L’offre filesystem nécessite un systeme de fichiers acceptant les attributs étendus (ex : XFS); en
particulier, il n’est donc pas possible d’héberger les données sur un montage NFS (NFS ne supportant pas les
attributs étendus).

5.5. Stockage des données 57

VITAM - Architecture, Version 7.1.5

5.5.3 Offre Swift

L’ offre Swift permet de stocker les données sur un stockage objet implémentant I”API Swift.
Points positifs :

e scalable : storage-offer se comporte dans ce scénario comme une passerelle vers 1”API Swift; il est donc multi-
instanciable au sein d’une offre de stockage.

e consomme une AP/ normalisée : elle est donc compatible avec un grand nombre d’implémentations différentes
de Swift.
Points négatifs :

e nécessite la mise en place et I’exploitation d’un stockage objet, ce qui est potentiellement plus complexe et
moins courant que la mise a disposition d’un simple stockage bloc ou fichier.

Par conséquent, elle est particulierement adaptée pour les déploiements en production de forte volumétrie.

Note : Dans cette version de la solution logicielle VITAM, I’implémentation Swift n’est en théorie pas obligée de
permettre I”upload de fichiers de taille non connue par avance (mode chunk encoding) ; cependant, aucun test pertinent
n’a pu étre effectué faute d’implémentation disponible. Merci de remonter a I’équipe support tout bug associé a ce
comportement.

Avertissement : Seule 1”AP/ d’authentification keystone v3 est aujourd’hui officiellement supportées par la solu-
tion logicielle VITAM. Les API d’authentification keystone v1 et v2 sont dépréciées.

Note : L’activation de la configuration de headers spécifiques Vitam lors des appels vers le stockage Swift est gérée
par la variable enableCustomHeaders (boolean). Si activé, il faut éditer la variable customHeaders avec une liste de
clé/valeur pour définir la liste des headers & envoyer au niveau des appels HTTP de I’ offre vers le serveur de stockage
Swift.

Note : VITAM utilise par défaut des connections HTTP persistantes (keep-alive) vers le serveur de stockage Swift
si ce dernier les supporte. Si I’infrastructure réseau ou des Reverse-Proxy intermédiaires sont susceptibles de couper
occasionnellement les connexions réseau, ceci peut causer des erreurs d’acces au serveur Swift distant. Il peut alors
étre pertinent de désactiver la persistance des connexions HTTP via le parametre swiftDisableKeepAlive (peut avoir
des impacts sur les performances d’acces a 1’ offre).

Note : Par tenant VITAM utilisé, jusqu’a 17 containers sont créés.

La liste des containers est :

"units"

"objects"
"objectgroups"
"logbooks™"
"reports"
"manifests"
"profiles"
"storagelog"
"storageaccesslog"

(suite sur Ta page suivante)

58 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

(suite de la page précédente)

"storagetraceability"
"rules"

"dip"

"agencies"

"backup"
"backupoperations™"
"unitgraph"
"objectgroupgraph"
"distributionreports"
"accessionregistersdetail"
"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

5.5.4 Offre S3

L’offre S3 permet de stocker les données sur un stockage objet implémentant 1”AP/ S3.
Les points positifs et négatifs sont les mémes que pour 1’offre Swift.

L offre S3 utilise le client java S3 du SDK Amazon V1. De ce fait la compatibilité du stockage avec I”’API S3 sera
limitée a sa compatibilité avec le client logiciel sélectionné. Pour que VITAM soit compatible avec I”’API S3 les noms
de conteneurs sont transformés pour obtenir des noms de bucket valides :

TR

e remplacement de tous les caracteres non alphanumériques par des “.
(1341

e suppression des “.” au début et a la fin

e passage de tous les caracteres en minuscule

Note : Dans le cas ou I'implémentation S3 sous-jacente supporte le versioning des buckets ou la suppression logique
des fichiers (aussi connue sous les appellations « soft delete » ou « delete markers »), ces fonctionnalités doivent alors
étre désactivées. En effet, I’activation des ces fonctionnalités cause une démultiplication de I’espace de stockage et la
non suppression des données éliminées.

Note : Dans cette version de la solution logicielle VITAM, I’'implémentation S3 fournie par VITAM nécessite la taille
du fichier pour I’envoyer dans le stockage S3.

Note : Par tenant VITAM utilisé, jusqu’a 17 containers (et donc buckets) sont créés.

La liste des containers est :

"units"

"objects"
"objectgroups"
"logbooks™"

"reports"

"manifests"
"profiles"
"storagelog"
"storageaccesslog"
"storagetraceability"

(suite sur Ja page suivante)

5.5. Stockage des données 59

VITAM - Architecture, Version 7.1.5

(suite de la page précédente)

"rules"

Hdip n

"agencies"

"backup"
"backupoperations"
"unitgraph"
"objectgroupgraph"
"distributionreports"
"accessionregistersdetail"
"accessionregisterssymbolic"
"tmp"
"archivaltransferreply"

Avertissement : Par défaut, le fournisseur Amazon définit une limite a 100 buckets; il convient de revoir ce
paramétrage dans le cas ou la solution logicielle VITAM doit gérer plus de S fenants.

La liste des API S3 utilisées par VITAM est :

Buckets
e API : GET Bucket acl
Exemple :

[REQUEST (objectAPIHandlers) .GetBucketACLHandler-fm] [160087199.728184] [2020-09-23
—14:39:57 +0000]

GET /5.dbxuwfvoes/?acl

Host: 127.0.0.1:9999

X-Amz-Content-Sha256: e3b0c44298fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855
X-Amz-Date: 20200923T143957Z

Content-Length: 0

Connection: Keep-Alive

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HWIK9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—~Signature=640458e964fd2caaldb0ffb4808ee99fdf5d232808a4a8e397cl2lea77b00a74
User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_ VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu

Amz-Sdk-Retry: 0/0/500

Content-Type: application/octet-stream

Amz-Sdk-Invocation-Id: 8db9bb54-6dcf-c5d8-57%a-c3dbd293£165

e API: PUT Bucket

Exemple :

[REQUEST (objectAPIHandlers) .PutBucketHandler—fm] [160087200.043971] [2020-09-23
—14:40:00 +0000]

PUT /5.dbxuwfvoes/

Host: 127.0.0.1:9999

Amz-Sdk-Invocation—-Id: 9d77b44d-8d52-7065-1872-ac9975a63425

Amz-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HW1K9HSST78MDY3T/20200923//s3/aws4d_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,

—signature=e03a2feaaff4538887a0tcas3arcdcoo09effcodbd34d919Tecsd O IT 3B oCtsatelsur [a page suivante)

60 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

(suite de la page précédente)

Connection: Keep-Alive

Content-Type: application/octet-stream

User-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu
X-Amz-Content-Sha256: e3b0c44298fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855
X-Amz-Date: 20200923T144000%2

Content-Length: 0

e API : GET Bucket (List Objects)Version 2

Exemple 1 :

[REQUEST (objectAPIHandlers) .ListObjectsV2Handler-fm] [160087204.792921] [2020-09-23
—14:40:47 +0000]

GET /7.hvybpdxfsm/?list-type=2&max-keys=1000&fetch-owner=false

Host: 127.0.0.1:9999

Content-Type: application/octet-stream

Amz-Sdk-Invocation—-Id: df03b558-11b5-1ceb6-a69c-£f1086718eelb

Amz-Sdk-Retry: 0/0/500

User—-Agent: aws—-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu
X-Amz-Content-Sha256: e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934cad495991b7852b855
X-Amz-Date: 20200923T1440472

Content-Length: 0

Connection: Keep-Alive

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HW1K9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—Signature=3331501246aee47854132b6d9%deec6dce68468e6c70363d2901434£7753673c3

Exemple 2 :

[REQUEST (objectAPIHandlers) .ListObjectsV2Handler—-fm] [160087204.796455] [2020-09-23
—14:40:47 +0000]

GET /7.hvybpdxfsm/?list-type=2&continuation-—
—token=aeaaaaaaaabebit7abvtgaluxnunfjgaaaagl88&max—-keys=1000&fetch-owner=false

Host: 127.0.0.1:9999

Amz-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HWI1K9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—Signature=c482925c51ldcaadfa8ab65ade329fcle968726edb2c2fe0313345aeced2ealeb
Content-Type: application/octet-stream

User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpendJDK_64-Bit_Server_ VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu

Content-Length: 0

Amz-Sdk-Invocation-Id: 8£f314f3e-fde9-b341-6bcl-8c0b3a830ef3

X-Amz-Content-Sha256: e3b0c44298fclcl49afbf4c8996£fb92427ae41e46490934ca495991b7852b855
X-Amz-Date: 20200923T1440477Z

Connection: Keep-Alive

Objects
e API: HEAD Object

Exemple :

5.5. Stockage des données 61

VITAM - Architecture, Version 7.1.5

[REQUEST (objectAPIHandlers) .HeadObjectHandler—-fm] [160087199.737232] [2020-09-23
—14:39:57 +0000]

HEAD /5.dbxuwfvoes/aecaaaaaaaabebit7abud4daluxnubyjiaaaaq

Host: 127.0.0.1:9999

Content-Type: application/octet-stream

User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0ubuntull8.04.1 java/11.0.8 vendor/Ubuntu

X-Amz-Date: 20200923T1439572Z

Connection: Keep-Alive

X-Amz-Content-Sha256: e3b0c44298fclcl49afbfdc8996fb92427ae41e4649b934cad495991b7852b855
Amz-Sdk-Invocation—-Id: 3b849433-402b-blfe-dal3-d6d7ed267f£f5

Amz-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HWI1K9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—Signature=4a465630ac0523e27bb3dfaa6a573ee3a3516cc884f£f037b11£947b309095041

e API : Delete Object

Exemple :

[REQUEST (objectAPIHandlers) .DeleteObjectHandler-fm] [160087199.737773] [2020-09-23_,
—14:39:57 +0000]

DELETE /5.dbxuwfvoes/aecaaaaaaaabebit7abuddaluxnubyjiaaaaq

Host: 127.0.0.1:9999

Amz-Sdk-Invocation-Id: 7920dbea-9ac8-8928-8f48-b0a587738f24

X-Amz-Content-Sha256: e3b0c44298fclcl49afbf4c8996fb92427ae41e46490934cad495991b7852b855
X-Amz-Date: 20200923T1439577Z

Connection: Keep-Alive

Amz-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HWI1K9HSST78MDY3T/20200923//s3/aws4d_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—Signature=1b5243ccfc2£43518d70a0a71£fdc96971b8b16ab4ff2721648ad38b77ea48048
Content-Type: application/octet-stream

User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0ubuntull8.04.1 java/11.0.8 vendor/Ubuntu

e API: GET Object

Exemple :

[REQUEST (objectAPIHandlers) .GetObjectHandler—-fm] [160087200.042941] [2020-09-23,
—14:40:00 +0000]

GET /5.dbxuwfvoes/aeaaaaaaaabeb6it7abud4daluxnubyjiaaaaq

Host: 127.0.0.1:9999

X-Amz-Date: 20200923T1440002Z

Content-Length: 0

Amz-Sdk-Invocation-Id: el46fb12-0283-af0d-83ef-fbcf01lad589d

Amz—-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HW1K9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-type;host;user-
—agent; x—amz-content-sha256; x—amz-date,
—Signature=687b0e4098bced5f3fb99bf9a7bbla994532f65bb66a101889892fala55ed925
Content-Type: application/octet-stream

(suite sur Ta page suivante)

62 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

(suite de la page précédente)

User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpendJDK_64-Bit_Server_ VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu
X-Amz-Content-Sha256: e3b0c44298fclcl49afbfd4c8996£fb92427ae41e46490934ca495991b7852b855
Connection: Keep-Alive

<BODY>

e API: PUT Object

Exemple :

[REQUEST (objectAPIHandlers) .PutObjectHandler—-fm] [160087199.739414] [2020-09-23,
—14:39:57 +0000]

PUT /5.dbxuwfvoes/aecaaaaaaaabeb6it7abud4daluxnubyjiaaaaq

Host: 127.0.0.1:9999

Amz-Sdk-Retry: 0/0/500

X-Amz-Content-Sha256: STREAMING-AWS4-HMAC-SHA256-PAYLOAD

X-Amz-Date: 20200923T1439572Z

Content-Length: 7081

Connection: Keep-Alive

Expect: 100-continue

Amz-Sdk-Invocation-Id: f£7ce7617-0563-19ea-1187-33811dc527ac

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HWIK9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-length;content-
—type;host;user-agent; x—amz-content-sha256; x-amz-date; x—amz-decoded-content-length,
—Signature=02cl10a4598ae8804e416c69249c6e214a100e145b9ec02£3££3925a73£6b085F
Content-Type: application/octet-stream

User—-Agent: aws—-sdk-java/1.11.720 Linux/4.15.0-117-generic OpenJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu
X-Amz-Decoded-Content—-Length: 6906

<BODY>

e API: PUT Object - Copy

Exemple :

[REQUEST (objectAPIHandlers) .CopyObjectHandler—-fm] [160087200.056875] [2020-09-23_
—14:40:00 +0000]

PUT /5.dbxuwfvoes/aecaaaaaaaabe6it7abud4daluxnubyjiaaaaq

Host: 127.0.0.1:9999

X-Amz-Meta-Digest: |,
—90a9%ef903b46798c83d46bcbd42805eb69adlb6a8b72e929£87d72£5263a05aded7d8e2£f860aece8b9e3aq
X-Amz-Date: 20200923T144000%

Content-Length: 0

Content-Type: application/octet-stream

Amz-Sdk-Invocation-Id: a3delf75-d08d-b7d6-ad23-7cl6e23c4dedf

User—-Agent: aws-sdk-java/1.11.720 Linux/4.15.0-117-generic OpendJDK_64-Bit_Server_VM/
—11.0.8+10-post-Ubuntu-0Oubuntull8.04.1 java/11.0.8 vendor/Ubuntu
X-Amz-Content-Sha256: e3b0c44298fclcl49afbfdc8996fb92427ae41e4649b934ca495991b7852b855
X-Amz-Copy-Source: /5.dbxuwfvoes/aeaaaaaaaabebit7abud44aluxnubyjiaaaaq
X-Amz-Meta-Digest-Type: SHA-512

X-Amz-Metadata-Directive: REPLACE

Connection: Keep-Alive

(suite sur Ta page suivante)

5.5. Stockage des données 63

b948364fedf!

VITAM - Architecture, Version 7.1.5

(suite de la page précédente)

Amz-Sdk-Retry: 0/0/500

Authorization: AWS4-HMAC-SHA256 Credential=MKU4HW1K9HSST78MDY3T/20200923//s3/aws4_
—request, SignedHeaders=amz-sdk-invocation-id;amz-sdk-retry;content-length;content-
—type;host;user-agent;x—amz-content-sha256; x—amz—-copy-source; x—amz-date; x—amz-meta-
—digest; x—amz-meta-digest-type; x—amz-metadata-directive,
—Signature=6a366171c7£83a9fed12402e9984aaab8148bb7£438cbf43465ee7edB8ae7b7dc

5.5.5 Offre Tape-library

L oftre Tape-library, aussi désignée Offre Froide, permet de stocker les données sur des librairies de cartouches
magnétiques.

Elle s’appuie sur des commandes linux standard pour manipuler les éléments robotiques. Elle est donc a priori com-
patible avec tous les matériels compatibles Linux.
Points positifs :

e Froide : a contrario des offres disques déja utilisables dans VITAM (FS ou Objet), I’acces aux données sur les car-
touches n’est pas immédiat. I nécessite le montage des cartouches dans des lecteurs, qui sont en nombre limités.
En cas de corruption des données des offres disques (par exemple, attaque de type ransomware), sa répercussion
vers les données archivées sur cartouches serait tres lente. C’est une garantie de sécurité supplémentaire.

e Peu onéreuse pour le stockage des grands volumes : comparée a un stockage disque, un stockage bande est
moins onéreux : 1 To de stockage sur LTO revient a 10€ HT.

e Durabilit¢ des bandes : 15-30 ans contre 5 ans pour les HDD/SSD, avec 20000 cycles de charge-
ments/déchargements.

e Possibilité de blocage physique des réécritures (WORM), de compression et de chiffrement natifs des données.

e Externalisable : les cartouches peuvent étre extraites de la librairie une fois les données inscrites, et stockées
dans un local sécurisé tiers.

Note : Dans sa version actuelle, VITAM ne prend pas en charge les opérations d’externalisation. Ce process ne peut
étre réalisé que manuellement.

Points négatifs :

e N’est pas multi-instantiable : Pour une offre de stockage, seule une seule instance du service storage-offer peut
étre active a un instant donné (i.e. ne peut étre déployée en haute disponibilité)

e Nécessite une infrastructure lourde (hardware, hébergement. . .), coliteuse a installer et compliquée a exploiter.

e Nécessite un espace de stockage disque local /vitam/data/offer conséquent (espace « tampon » pour
écriture rapide + espace « cache » pour relecture des données).

L offre Tape-library utilise les commandes standard mt, mt x et dd pour manipuler les lecteurs de bandes et la librairie.
Ces outils sont installés sur le serveur ou est déployée I’ offre froide. Cette méme machine doit également avoir acces
a la librairie soit par attachement direct, soit par le biais d’un acces distant (ex : iscsi)

Note : L'usage des commandes mt et mtx nécessite des droits spécifiques. L utilisateur vitam est automatiquement
ajouté au groupe unix « tape » sur le serveur ou est déployée I’ offre froide.

Note : Le dossier /vitam/data/offer/ doit correspondre a une seule partition de systeme de fichiers (i.e. tout
le contenu du dossier /vitam/data/offer doit appartenir au méme point de montage). Le systeme de fichiers

64 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

doit supporter les opérations de atomiques (type atomic rename / move) et la création de liens symboliques (ex. XFS,
EXT4...)

Voir aussi :

Les principes de fonctionnement de I’offre froide sont décrits dans la documentation externe dédiée (« Archivage sur
Offre Froide »).

5.6 Concentration et exploitation des logs applicatifs

5.6.1 Besoins

Contrairement aux journaux applicatifs, les logs techniques générés par les applications ne participent pas a la valeur
probante et a la preuve systémique du SAE. Il n’y a donc pas de besoin métier sur la non perte de logs. Cependant,
étant donné la présence notable des alertes de sécurité, un effort est fait pour réduire au maximum les risques de perte
de logs.

5.6.2 Modele générique

On peut noter les composants suivants :
e Emetteur du log : il s’ agit de I’application qui est 2 I’ origine du log

e Agent de transport du log : il s’agit d’un composant recevant tous les logs associés a un serveur/VM (mais pas
container)

e Concentrateur du log : il s’agit de la cible de réception du log .

e Stockage des logs : il s’agit du composant stockant les logs (de maniere plus ou moins requétable)

e Visualisation des logs : il s’agit du composant (souvent /HM) qui permet la recherche et la visualisation des logs
Les échanges doivent se faire selon des protocoles données :

e Protocole d’émission du log (entre émetteur et agent de transport)

e Protocole de transport du log (entre agent de transport et concentrateur)

L architecture générique peut étre vue de la maniere suivante :

5.6. Concentration et exploitation des logs applicatifs 65

VITAM - Architecture, Version 7.1.5

WITAM

Wmuaksation des logs

Consoks de Supanisicn

F1G. 10 — Architecture générique d’un systeme de gestion de logs.

VITAM n’implémente qu’une sous partie de cette architecture générique (la centralisation / stockage / visualisation),
mais permet I’intégration d’un composant externe de gestion de logs.

5.6.3 Choix des implémentations

De maniere générale, I’'implémentation s’appuie fortement sur une architecture syslog.

66 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Exploitation technique

syslog:tcp:10514

Ejhtte: port admi
<port admin=> logstash-01

vitam-elasticsearch-log

logstash
syslog:udp:514 ¥ http:9201
J
elasticsearchtlog-[0-9]{2}
rsyslog | vitam-elasticsearch-log | curator
elasticsearch-log

Gestion des logs technigues

consul

vitam-consul

I tcp: tcp: dns: http:
8300 (18301 =153 8500
dns:53
consul-{0-9]{2} L=
vitam-consul [dns infra]
yum/apt I = [s/o]
| consul
Annuaire de services / serieurs de nom
£tc;:22
sshd A http/https
J
[dépot rpm/deb] [sfo]
[s/o] ansible
Nstallation des composants
VITAM - Service VITAM - Exploitation

FI1G. 11 — Architecture du sous-systéme de centralisation des logs

Cette implémentation vise a éviter au maximum les pertes de logs; cela implique notamment 1’utilisation de buffers
stockant temporairement les logs en cas de déconnexion réseau, et 1’utilisation de protocole non reliables (ex : UDP)
uniquement sur des liens réseaux locaux a une instance (ex : boucle locale).

5.6.3.1 Emetteur de logs

Dans le systeme VITAM, I’émetteur des logs peut étre :
e Pour les composants logiciels Java VITAM : I’appender logback SyslogAppender *;
e Pour les script unix : la commande 1ogger.

Un émetteur de logs a les responsabilités suivantes :

o [e formatage du message selon le format de log préconisé pour 1’application;;

32. http://logback.qos.ch/manual/appenders.html#SyslogAppender

5.6. Concentration et exploitation des logs applicatifs 67

http://logback.qos.ch/manual/appenders.html#SyslogAppender

VITAM - Architecture, Version 7.1.5

e L’envoi des logs a I’agent de transport de logs selon le protocole défini dans la section présentant les principes
de log (page 42).

5.6.3.2 Agent de transport de log

L’agent de transport de log est rsyslog. Il est installé localement sur chaque serveur hébergeant des composants
logiciels du systeme VITAM.

I1 a les responsabilités suivantes :

e [’acquisition des logs au format syslog UDP (sur le port par défaut 514) et syslog unix (/dev/1og);

e Le buffering des logs (utilisation d’une action queue rsyslog de type « Disk-Assisted Memory Queue » *?)

)

e La transmission des logs au concentrateur.

Note : Rationale : il s’agit de I’agent syslog par défaut sur les distributions supportées par VITAM, et il présente une
consommation mémoire limitée (notamment par rapport a d’autres solutions en Java ou Ruby).

Le protocole de transport du log (entre agent de transport et concentrateur) doit étre conforme au format syslog tcp
(RFC 3195, basé sur la RFC 3164).

Note : Ce format est privilégié car il est un bon compromis entre fiabilité (sécurité d’acheminement de TCP) et
exploitabilité . Il n’y a en effet pas de contraintes imposant des protocoles plus “reliable” comme RLTP ou RELP.

En se basant sur la RFC 5424, les parametres imposés sur les messages syslog sont identiques aux parametres décrits
dans la section présentant les principes de log (page 42).

5.6.3.3 Concentration de logs

Le concentrateur de logs est 1logstash. Il est instancié de maniere unique ou en cluster, et a les responsabilités
suivantes :

e Acquisition des logs au format syslog TCP (RFC 3164);
e Parsing des logs pour en extraire la structure ;

e Dépot des logs dans le stockage de logs.

5.6.3.4 Stockage des logs

Le stockage des logs se fait dans le moteur d’indexation ElasticSearch, dans un cluster dédi¢ au stockage des logs
(pour séparer les données de logs et les données métier d’archives).

La configuration de ce cluster dépend de la taille du déploiement VITAM envisagé. Des dimensionnements indicatifs
sont disponibles dans une section dédiée (page 92). Le paramétrage par défaut des shards et replicas est le suivant :
e Nombre nominal de shards primaires par index : 4;

e Nombre nominal de replicas : 1;

Note : Les abaques proposées correspondent a un compromis en terme d’usage des ressources VS résilience du
systeme. Ces parametres peuvent &tre changés si un besoin plus fort de résilience était identifié. Dans ce cas, on peut
augmenter le nombre de noeuds ainsi que le nombre de replicas, en veillant a ce que le nombre de shards primaires ne

33. http://www.rsyslog.com/doc/v8-stable/concepts/queues.html

68 Chapitre 5. Architecture technique / exploitation

http://www.rsyslog.com/doc/v8-stable/concepts/queues.html

VITAM - Architecture, Version 7.1.5

soit jamais inférieur au nombre de noeuds du cluster, et que le nombre de replicas ne soit jamais supérieur au nombre
de noeuds du cluster - 1.

Prudence : Une modification du nombre de shards primaires d’un index est une opération cofiteuse a réaliser
sur un cluster en cours de fonctionnement et qui doit dans la mesure du possible étre évitée (indisponibilité du
cluster et/ou risque de corruption et de perte de données en cas de probleme au cours de 1’opération); le bon
dimensionnement de cette valeur doit étre réalisé deés I’installation du cluster.

e Index : chaque index stockant des données de logs correspond a 1 jour de logs (déterminé a partir du timestamp
du log). Les index définis sont les suivants :

e logstash-vitam-YYYY.MM.dd pour les messages concernant les composants de la solution VITAM,
avec un type de données par format de logs, i.e. :

e type logback pour les logs issus des applications Java;

e type scripts pour logs issus des scripts;

e type mongo pour les logs de mongodb;

e type elastic pour les logs d’elasticsearch (cluster métier).

e logstash-logs—YYYY.MM.dd pour les logs issus du sous-systeme de logs, avec un type de données
par format de logs, i.e. :

e type elastic pour les logs d’elasticsearch (cluster de logs);

e type logstash pour les logs de logstash (WARN ou plus);

type kibana pour les logs issus de Kibana.
e type curator pour les logs issus de Curator.

e logstash-failure-YYYY.MM.dd (1 par jour; le jour correspond au jour de I’horodatage des mes-
sages), pour les messages correspondant a un échec de parsing.

e .kibana pour le stockage des parametres (et notamment des dashboards) Kibana.

Prudence : Dans le cadre de cette version de la solution VITAM, cette réflexion n’integre pas la problématique des
traces associées aux actions utilisateur (par exemple : acces au systeme, lancement d’une opération sur les archives,
consultations d’archives, échec d’authentification, refus d’acces, ...); cette problématique est encore en cours
d’étude, notamment pour en définir les besoins en terme de criticité (et notamment la non-perte d’information, leur
degré de confidentialité et d’intégrité), et sera potentiellement prise en compte par un autre sous-systeme.

5.6.3.4.1 Gestion des index

La création des templates d’index et des index doit étre réalisée par 1’application a I’ origine de I’écriture dans Elastic-
search (kibana pour I’index .kibana, logstash pour les autres index). La gestion des index est réalisée par I’applica-
tion Curator **. Le paramétrage est réalisable par I’exploitant (cf. DIN). Les valeurs suivantes sont recommandées :

e Durée de maintien des index « online » : 30 jours; cela signifie qu’au bout de 30 jours, les index seront fermés,
et n’apparaitront donc plus dans 1”/HM de suivi des logs. Cependant, ils sont conservés, et pourront donc étre
réouverts en cas de besoin.

e Durée de conservation des index : 365 jours; au bout de cette durée, les index seront supprimés.

34. https://www.elastic.co/guide/en/elasticsearch/client/curator/4.0/index.html

5.6. Concentration et exploitation des logs applicatifs 69

https://www.elastic.co/guide/en/elasticsearch/client/curator/4.0/index.html

VITAM - Architecture, Version 7.1.5

5.6.3.5 Visualisation des logs

La visualisation des logs se fait par le composant Kibana. Il est instancié de maniere unique et persiste sa configuration
dans ElasticSearch (dans I’index .kibana).

Aucun mécanisme d’authentification n’est mis en place pour sécuriser 1’acces a Kibana.

Indication : La version opensource de Kibana, utilisée dans VITAM, ne supporte pas nativement 1’authentification
des clients ; d’autres solutions peuvent étre mises en place (ex : I'utilisation du composant Security *°), sous réserve
d’une étude de compatibilité de la solution choisie.

5.6.4 Intégration a un systéme de gestion de logs existants

L’intégration a un autre systeme de logs (pour y dupliquer les logs) est possible; deux points d’ancrage sont envisa-
geables :

e au niveau de logback; ce point d’extension ne permet que d’obtenir les logs en provenance des applicatifs métier
(java) ; ce point d’extension est par conséquent déconseillé;

e au niveau de rsyslog; ce point d’extension permet d’agir sur les logs provenant de tous les composants déployés
(y compris les bases de données et d’autres composants d’infrastructure déployés dans le cadre de VITAM).
C’est le point d’extension conseillé en cas d’intégration avec un systeme de gestion de logs externe.

Astuce : Les regles de grok fournies avec le composant logstash (disponibles dans le répertoire de configuration de
composant) sont un bon point de départ pour intégrer le format des différents logs dans un systeéme de gestion de logs
tiers.

5.6.5 Limites

La solution implémentée dans VITAM possede les limites connues suivantes :

o Cette solution réutilise les principes de centralisation de logs basés sur les systémes syslog ; par conséquent, elle
en hérite certaines de leurs limites, et notamment 1’absence de sécurité dans les protocoles syslog (udp ou tcp)
(absence d’authentification, de vérification d’intégrité ou de confidentialité des informations).

e Aucune brique d’alerting n’est intégrée dans cette version de la solution logicielle VITAM.

Astuce : Il est a noter que les logs ne sont pas complétement perdus en cas de perte du systeme de centralisation des
logs ; en effet, ils sont dans tous les cas déposés dans des fichiers locaux aux noeuds.

5.7 Métriques applicatives

5.7.1 Besoins

A des fins de monitoring des composants logiciels Java VITAM et de I’ utilisation des ressources systéme par ceux-ci,
VITAM integre un reporting et une gestion de métriques applicatives.

35. https://www.elastic.co/products/x-pack/security

70 Chapitre 5. Architecture technique / exploitation

https://www.elastic.co/products/x-pack/security

VITAM - Architecture, Version 7.1.5

5.7.2 Modéle générique

On peut noter les composants suivants :
e Enregistreur de métriques : il s’agit de la librairie en charge de 1’enregistrement d’une métrique.

e Reporters de métriques : il s’agit de librairies en charge de collecter les métriques enregistrées et d’en faire un
reporting.

e Endpoint des métriques : Il s’agit d’une API depuis laquelle des outils de monitoring peuvent récupérer des
métriques en mode pull au format prometheus

e Stockage des métriques : il s’agit du composant stockant les métriques (de maniere plus ou moins requétable).

e Visualisation des métriques : il s’agit du composant (souvent :term :/HM) qui permet la recherche et la visuali-
sation des métriques.

5.7.3 Choix des implémentations
5.7.3.1 Enregistreur de métriques

Dans le systeme VITAM, I’enregistrement de métriques s’effectue uniquement dans les composants logiciels Java a
I’aide du librairie Prometheus metrics *°.
Les plugins suivants sont utilisés pour leur métriques respectives :
e Prometheus simpleclient_common et simpleclient *” pour développer de nouvelles métriques.
e Prometheus simpleclient_hotspot ** pour les métriques JVM.
e Prometheus simpleclient_dropwizard *° pour envelopper les métriques Dropwizard.
L’enregistreur de métriques posséde un registre interne qui peut stocker différentes métriques :
e Prometheus : Gauges, Counter, Summary ou Histograms. Ces métriques seront exposée via une API.
A la différence des Counter dans Dropwizard, ceux de prometheus ne se décrémente pas, il faut privilégier une Gauge

dans ce das de figure

Les métriques RESTEasy sont automatiquement générées par 1’application VITAM. Elles représentent un jeu de 3
métriques, Meter, Timer et ExceptionMeter pour chaque end-point des ressources de I’application.

Les métriques JVM sont aussi uniques par application. Elles représentent plusieurs types de métriques sur la consom-
mation de ressources systéme.

Note : Une description fonctionnelle des métriques est disponible dans le manuel utilisateur dropwizard metrics *°.

Veuillez vous référer au document d’architecture de chaque composant VITAM qui doit documenter ses propres mé-
triques, si des métriques spécifiques sont ajoutées.

5.7.3.2 Reporters de métriques

Dans le systeme VITAM, un ou plusieurs reporters de métriques peuvent étre utilisés. A ce jour, il existe deux reporters
différents :

e Un reporter logback ;

36. https://prometheus.io/docs/instrumenting/clientlibs/

37. https://github.com/prometheus/client_java/tree/master/simpleclient

38. https://github.com/prometheus/client_java/tree/master/simpleclient_hotspot
39. https://github.com/prometheus/client_java/tree/master/simpleclient_dropwizard
40. https://metrics.dropwizard.io/4.1.2/manual/core.html

5.7. Métriques applicatives 71

https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/prometheus/client_java/tree/master/simpleclient
https://github.com/prometheus/client_java/tree/master/simpleclient_hotspot
https://github.com/prometheus/client_java/tree/master/simpleclient_dropwizard
https://metrics.dropwizard.io/4.1.2/manual/core.html

VITAM - Architecture, Version 7.1.5

e Un reporter ElasticSearch issue de la librairie metrics elasticsearch reporter *'.

Les reporters sont utilisés dans les composants logiciels Java. Ils sont en charge de récupérer les valeurs de toutes les
métriques enregistrées et de les transmettre sur différents canaux, ici soit un logger logback ou une base de données
ElasticSearch.

5.7.3.3 Endpoint des métriques

A partir de la release R14, le systéme VITAM permet d’exposer des métriques au format prometheus. Ces métriques
sont exposées via une API dédiée. Un serveur prometheus, ou une autre solution de monitoring compatible avec le
format prometheus, peut récupérer les métriques en mode pull depuis cette API. Un avantage du mode “pull” est de
donner I’information sur I’état de la disponibilité du service en question. Ce mode est aussi plus économe en ressource
qu’un mode “push” depuis le service lui-méme vers 1’outil de monitoring.

5.7.3.4 Stockage des métriques

Si un reporter de métriques ElasticSearch est utilisé, celles-ci seront stockées dans le moteur d’indexation Elastic-
Search, dans un cluster dédié¢ au stockage des logs/métriques (pour séparer les données de logs/métriques et les
données métier d’archives). La description de ce cluster commun logs/métriques, incluant la gestion des index et
la visualisation, se trouve dans la section précédente (page 65).

e Index : chaque index stockant des données de métriques correspond a 1 jour de métriques (déterminé a partir du
timestamp de la métrique). Les index définis sont les suivants :

e metrics-vitam-rest-YYYY.MM.dd pour les métriques de RESTEasy, avec un champ name auto-
matiquement généré sous la forme :

uri :http_method :consumed_types :produced_types :metric_type Exemple : _of-
fer_v1__bulk_objects__type_ :PUT :application_octet_stream :application_json :me-
ter_total _offer_v1__bulk_objects__type_ :PUT :application_octet_stream :applica-
tion_json :timer

e metrics-vitam—jvm-YYYY.MM.dd pour les métriques JVM.

e metrics-vitam-business-YYYY.MM.dd pour les métriques métier.

e .kibana pour le stockage des parametres (et notamment des dashboards) Kibana.

A partir de la release R14 de la solution Vitam expose ses métriques au format prometheus. Il est possible de configurer
un serveur prometheus pour récupérer ces métriques et un Grafana pour les visualiser. Ces deux outils sont largement
utilisés, a ce jour, dans la communauté open source.

Note : Veuillez vous référer a la documentation d’exploitation pour savoir comment fonctionne 1’intégration et la
configuration du serveur prometheus dans Vitam

5.7.4 Limites

La solution implémentée dans Vitam posseéde les limites connues suivantes :

e Du fait que la librairie Dropwizard Metrics fait une agrégation des métriques et que le systeme de visualisation
Kibana fonctionne lui aussi a 1’aide d’agrégations, les résultats visualisés sont corrects dans la limite d’une
certaine précision (certaines données deviennent non-représentatives de la réalité).

41. https://github.com/Programme Vitam/elasticsearch- metrics-reporter-java

72 Chapitre 5. Architecture technique / exploitation

https://github.com/ProgrammeVitam/elasticsearch-metrics-reporter-java

VITAM - Architecture, Version 7.1.5

5.8 Outillage de déploiement

5.8.1 Outil

Loutil de déploiement utilisé sur VITAM est ansible. Cette solution de déploiement a les caractéristiques suivantes :
e Agent-less : la propagation des ordres de déploiement utilise SSH et nécessite sur les serveurs un interpréteur
Python 2.6+. (Cf. la documentation officielle ** pour la liste exhaustive des dépendances requises).
e Centralisation des actions : I’intégralité des actions d’administration technique et d’exploitation de la plate-
forme est réalisée par cet outil de déploiement (sauf exception mentionnée le cas échéant dans le DEX).
e Méthode d’authentification : I’authentification est faite par un utilisateur habilité a se connecter 2 SSH et devant
pouvoir avoir les élévations de privileges nécessaires pour faire les actions (via su ou sudo) :

e Le choix de la méthode d’authentification (mot de passe, clé publique sans passphrase ou clé publique avec
passphrase) peut étre choisi en fonction des contraintes d’hébergement. Cependant, certaines méthodes
limiteront 1’automatisation du déploiement.

e La mise en place de cet utilisateur est un pré-requis a la mise en oeuvre de Vitam.

Indication : Sur Centos et Debian, I’interpréteur Python et les packages python requis pour I’exécution d’ansible sur
les noeuds gérés sont inclus dans les packages logiciels du systeme, et généralement déja installés dans les systemes
de base.

L’outil de déploiement prend en entrée :
e Latopologie de I’environnement (quel composant est installé sur quel serveur)
e [’ensemble des parametres de 1’environnement
Ces 2 entrées sont définies par I’utilisateur sous la forme de fichiers ansible (fichier d’inventaire et de variables).

Prudence : L’utilisation d’ansible nécessite les droits root sur 1’environnement cible (soit en tant qu’utilisateur
root, soit en sudoer) par I'utilisateur linux faisant le déploiement. Le DIN contiendra les informations requises
pour prendre en compte cet utilisateur.

Avertissement : L’utilisation d’'une méthode de déploiement autre n’est pas supportée par le projet VITAM.

5.8.2 Architecture de I'outil

On dispose de 3 types de playbooks principaux :
e 1 playbook de déploiement (ansible-vitam) qui est le coeur du déploiement;

e 1 playbook de déploiement (ansible-vitam-extra) qui contient des éléments potentiellement utiles, mais
non nécessaires au fonctionnement du systéme ;

e N playbooks d’exploitation (ansible-vitam-exploitation) pour I’automatisation des actes d’exploi-
tation (décrits dans le DEX).
On dispose de 2 types de rdles :
e role « helper » qui est appelé par les autres roles et qui n’est pas contenu dans les playbooks ;
e rdle « service » : 1 rOle par service déployé.
L’ensemble des fichiers de configuration (devant étre instanciés) sera géré par I’outil de déploiement (via le langage
de templating Jinja2).

42. https://docs.ansible.com/ansible/intro_installation.html

5.8. Outillage de déploiement 73

https://docs.ansible.com/ansible/intro_installation.html

VITAM - Architecture, Version 7.1.5

5.8.3 Gestion des secrets

Pour les variables ayant une criticité (au sens de la sécurité - par exemple : les mots de passe de connexion aux bases
de données), le déploiement VITAM est compatible avec I’utilisation du module Ansible Vault : celui-ci permet de
chiffrer de maniere symétrique les variables sensibles.

Avertissement : Cette fonctionnalité nécessite d’entrer la passphrase du fichier chiffré et donc est difficilement
compatible avec une automatisation forte.

Les certificats (notamment CA et certificats serveur) devront étre fournis au préalable et étre placés dans les répertoires
d’installation mentionnés dans le DIN.
Les composants nécessitant un certificat sont :

e ceux exposés a I’extérieur du systeme, a savoir les frontaux (i.e. faisant partie de la zone Acces) et storage ;

e ceux qui réalisent un horodatage sécurisé, a savoir logbook, worker et storage.

Pour chacun de ces certificats, I’intégralité des certificats des CA de la chalne de certification devra également étre
fournie, ainsi que 'URL des CRL associées.

Avertissement : Les systemes front-office en interface avec la solution Viram doivent également mettre a disposi-
tion leurs certificats et chaines de certification systeme, ainsi que les certificats individuels en cas d’utilisation des
Personae.

Voir aussi :

La liste des secrets nécessaires au bon fonctionnement de VITAM est décrite dans la section dédiée (page 108).

5.9 Service registry

Le service registry est le composant permettant a chaque service de localiser les services dont il dépend; par consé-
quent, son bon fonctionnement est particulierement critique pour le bon fonctionnement de la solution logicielle VI-
TAM. L’ outil de service registry utilisé par VITAM est Consul .

5.9.1 Architecture

Un déploiement Consul est composé de 2 types de noeuds différents :

e Les noeuds serveurs : ils persistent 1’état des données stockées dans Consul ; les données sont répliquées entre
eux, et eux seuls participent a 1’élection du maitre (ils forment un cluster Raft). Un quorum de ces noeuds doit
toujours étre déclaré ; dans le cas contraire, on entre dans un cas de désastre de cluster (Cf. la documentation sur
1“« outage recovery » **); le nombre de serveurs doit étre impair, avec un minimum conseillé de 3 noeuds (pour
des problématiques de maintien de quorum).

e Les noeuds client : ils exposent les AP/ d’acces aux structures de données Consul, et réalisent les healthchecks
des services dont ils ont la définition. Ils communiquent avec les serveurs.

Un noeud Consul est également appelé un agent.

Note : Les noeuds serveurs sont en fait des noeuds clients réifiés, i.e. ils ont également les capacités des clients.

43. https://www.consul.io
44. https://www.consul.io/docs/guides/outage.html

74 Chapitre 5. Architecture technique / exploitation

https://www.consul.io
https://www.consul.io/docs/guides/outage.html
https://www.consul.io/docs/guides/outage.html

VITAM - Architecture, Version 7.1.5

Dans le cadre de VITAM, le déploiement des noeuds Consul doit correspondre aux principes suivants :

e Un cluster de serveurs Consul sur un nombre impair de noeuds dédiés, chacun d’entre eux étant configuré pour
exposer I”THM de suivi;

e | client par serveur hébergeant un service VITAM.

Indication : Préconisation : Le fonctionnement de Consul via trois noeuds master au minimum nous prémunit de la
perte d’un de ces noeuds sans perturbation du service. Un seul noeud Consul est vivement déconseillé.

5.9.2 Résolution DNS

Les résolutions de noms de service se font via I’API DNS de Consul; un resolver externe doit étre configuré pour les
requétes externes.

Chaque client agit comme serveur DNS local; il écoute sur le port udp 53 (sur la boucle locale - 127.0.0.1), et est
configuré comme serveur DNS de 1”OS (typiquement dans le fichier /etc/resolv.conf).

Prudence : Cela rend Consul incompatible avec d’autres implémentations de serveur DNS qui seraient lancées
sur 1”08, et en particulier les caches DNS installés par défaut dans certaines distributions linux (ex : dnsmasq). En
outre, il faut prendre garde a I’écrasement de la configuration du resolv.conf, qui doit garder 127.0.0.1
comme premier serveur DNS.

Note : Pour pouvoir écouter sur le port 53, Consul nécessite la capacité CAP_NET_BIND_SERVICE (Cf. la section
suivante).

Lorsque le systeme fait une requéte DNS, cette derniere arrive a 1’agent Consul local et la séquence suivante est
exécutée :

e Sile nom a résoudre appartient au domaine réservé pour Consul (par défaut consul), il est résolu en tant que
nom de service ou de noeud (Cf. la documentation officielle concernant I’interface DNS %) ;

e Dans le cas contraire, la requéte est transmise aux serveurs DNS configurés dans la liste des recursors *°).

Note : Consul a pour I’instant été configuré en mode allow_stale = false (cf.ladirective de configuration*’),
ce qui signifie que chaque requéte DNS se traduit par un appel RPC au noeud leader des serveurs Consul. Cela
permet d’assurer la consistance des réponses DNS, mais peut potentiellement poser des problemes de performance
sur des larges déploiements. Il est possible de changer ce comportement (clés de configuration allow_stale et
max_stale - qui permettent de préciser la durée maximum pendant laquelle le noeud répond aux requétes DNS sans
interroger le leader), et également de changer le 77L des réponses DNS (qui est par défaut gardé a 0).

5.9.3 Multi-site

En multi-site, la solution logicielle VITAM exploite les datacenters consul. Un datacenter consul est créé par site.

Chagque site doit posséder au moins 3 serveurs consul, qui ne supervisent que les services dans le datacenter auquel ils
sont rattachés.

45. https://www.consul.io/docs/agent/dns.html
46. https://www.consul.io/docs/agent/options.html#recursors
47. https://www.consul.io/docs/agent/options.html#allow_stale

5.9. Service registry 75

https://www.consul.io/docs/agent/dns.html
https://www.consul.io/docs/agent/options.html#recursors
https://www.consul.io/docs/agent/options.html#allow_stale

VITAM - Architecture, Version 7.1.5

5.9.4 Packaging

La solution logicielle VITAM integre des packages OS (rpm & deb) dédiés pour Consul; ces packages permettent
essentiellement :

e De configurer Consul en tant que service systemd;
e De permettre le lancement de Consul sous 1'utilisateur vitam;

e Enfin, ils integrent une directive set cap de post-install pour attribuer la capacité CAP_NET_BIND_SERVICE
au binaire /vitam/bin/consul/consul afin de permettre a ce dernier d’exposer une interface DNS sur le
port 53 sans pour autant nécessiter les droits root.

5.9.5 Monitoring

Chaque instance de service doit étre déclarée dans Consul ; cette déclaration se fait en déposant un fichier de configu-
ration dans le répertoire de configuration de Consul. Ce fichier contient notamment I’identifiant du service ainsi que
son port d’écoute, ainsi qu’une liste de healthchecks qui permettent 2 Consul de connaitre 1’état du service. Pour les
services VITAM, ces healthchecks s’appuient sur les AP/ de supervision qui ont été décrites dans la section dédiée

(page 42).

Consul permet d’exposer une /HM Web permettant d’accéder a la topologie des services déployés (i.e. quel service
sur quel noeud) et a leur état instantané.

5.10 Dépendances aux services d’infrastructures

5.10.1 Ordonnanceurs techniques / batchs

L’ ordonnancement technique se fait par le biais de timers systemd, dont la liste est donnée dans le DAT.

5.10.1.1 Curator

Curator permet d’effectuer des opérations périodiques de maintenance sur les index elasticsearch. Les jobs Curator
sont initiés automatiquement au déploiement de VITAM et sont lancés via un timer systemd *® sur chaque serveur.

Voir aussi :
Plus de détails sont disponibles dans [a présentation de curator (page 79).

5.10.1.2 Sécurisation des journaux d’opérations

Job de sécurisation du logbook : lancé toutes les nuits peu apres minuit sur une des machines (la derniére dans la liste
de déploiement) hébergeant le composant vitam-logbook.

5.10.1.3 Sécurisation des journaux d’écriture

La sécurisation des journaux d’écriture est un processus local & chaque serveur hébergeant une instance du moteur de
stockage.

48. https://www.freedesktop.org/software/systemd/man/systemd.timer.html

76 Chapitre 5. Architecture technique / exploitation

https://www.freedesktop.org/software/systemd/man/systemd.timer.html

VITAM - Architecture, Version 7.1.5

5.10.1.4 Sécurisation des cycles de vie

Job de sécurisation des cycles de vie des Unit et objectGroup : lancé sur une des machines (la derniere dans la liste de
déploiement) hébergeant le composant vitam—1logbook.

5.10.1.5 Cas de la sauvegarde

Se référer au DEX.

5.10.2 Socles d’exécution
5.10.2.1 Middlewares

e Java: JRE 11; les versions suivantes ont été testées :
e OpenJDK 11, dans la version présente dans les dépots officiels au moment de la parution cette release de
Vitam (Centos et Debian en 11.0.5)

5.11 Composants déployés

Cette section vise a décrire les particularités des différents composants déployés dans le cadre d’une solution VITAM ;
chaque service est nommé suivant son service_id.

Les estimations de consommation de ressources sont données pour un systeme équilibré en ingest, audit et
access; elles sont a adapter pour chaque composant en fonction des cas d’utilisation des systémes (ex : archivage
définitif VS archivage courant) (Cf. les guidelines de dimensionnement (page 92)).

5.11.1 Access-external

Type : Composant VITAM Java
Données stockées :
e Cache d’authentification M2M (mémoire) ;
e Certificats x509 d’authentification clients
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas de sortie massive d’archives (sortant)
e Disque : faible (logs)

5.11.2 Access-internal

Type : Composant VITAM Java
Données stockées :
e Aucune
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas de sortie massive d’archives (sortant)
e Disque : faible (logs)

5.11. Composants déployés 77

VITAM - Architecture, Version 7.1.5

5.11.3 Batch-report

Type : Composant VITAM Java
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas de sortie massive d’archives (sortant)

e Disque : faible (logs)

5.11.4 Collect-external

Type : Composant VITAM Java
Données stockées :
e Cache d’authentification M2M (mémoire) ;
e Certificats x509 d’authentification clients
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas d’entrées massive d’archives (entrant)

e Disque : faible (logs)

5.11.5 Collect-internal

Type : Composant VITAM Java
Données stockées :
e Aucune
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas d’entrées massive d’archives (entrant)

e Disque : faible (logs)

5.11.6 Consul

Type : COTS
Données stockées :
e Etat du cluster et localisation des services
Typologie de consommation de ressources :
e Serveurs :
e CPU : faible
e Mémoire : faible
e Réseau : faible

e Disque : tres faible

78 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e Agents:
e CPU : faible
e Mémoire : faible
e Réseau : faible

e Disque : tres faible

Prudence : Consul est un service critique d’infrastructure ! Un dysfonctionnement de ce service peut rapidement
entrafner une panne générale du systeme.

5.11.6.1 Architecture de déploiement

L’architecture de déploiement conseillée correspond aux principes présentés dans la section d’introduction a Consul
(page 74) :
e 2n + 1 noeuds pour les serveurs; chaque noeud serveur doit répondre aux requétes RPC des agents et expose
I’THM de suivi de I’état du cluster consul. Un déploiement typique comporte 3 noeuds serveur. Les données sont
répliquées sur tous les serveurs.

e 1 noeud agent par serveur hébergeant des services VITAM ; chaque noeud agent agit comme serveur DNS local.
Les ports utilisés par Consul sont les suivants :
e tcp:8300 : Port RPC; il permet aux agents d’exécuter des requétes vers les serveurs.

e tcp:8301 : Portde « gossip »; il permet la découverte automatique des agents entre eux, et la propagation des
événements du cluster vers tous les noeuds.

e tcp:8400 : Port RPC local; il est utilisé par la console consul locale (CLI).

e tcp:8500 : Port HTTP; il est notamment utilisé par les noeuds serveur pour servir I’interface de monitoring
et d’administration.

e udp:53 & tcp:53: Port d’écoute DNS

5.11.7 Curator

Curator permet de gérer les index d’Elasticsearch des logs techniques et d’en assurer la maintenance (fermeture des
index non utilisés, suppression des index obsolétes, . ..)

Curator est colocalisé avec les noeuds Elasticsearch de log. Il est lancé sur chaque noeud par un timer systemd avec le
flag ——master—only. Ce mode de fonctionnement permet d’avoir un service Curator possédant le méme degré de
résilience que le cluster Elasticsearch dont il assure la maintenance des index.

Voir aussi :

Plus d’information est disponible dans la documentation officielle *°.

Type : COTS
Données stockées :
e Aucune
Typologie de consommation de ressources :
e CPU : tres faible
e Mémoire : tres faible
e Réseau : tres faible
e Disque : tres faible

49. https://www.elastic.co/guide/en/elasticsearch/client/curator/3.5/master-only.html

5.11. Composants déployés 79

https://www.elastic.co/guide/en/elasticsearch/client/curator/3.5/master-only.html

VITAM - Architecture, Version 7.1.5

5.11.8 Elasticsearch-data

Cluster d’indexation dédié aux données métier.
Type : COTS
Données stockées :
e Index de recherche des données d’archive
Typologie de consommation de ressources :
e CPU : forte
e Mémoire : forte
e Réseau : forte

e Disque : forte

5.11.8.1 Architecture de déploiement

Dans le paramétrage par défaut du déploiement, tous les noeuds sont considérés comme des noeuds « master » et
« data »; par conséquent, le nombre de noeuds du cluster doit étre impair (i.e. 2n + 1 noeuds, n > 0).
2 types de clients sont utilisés dans VITAM :

e les clients « transports » : ils sont utilisés par les composants développés dans le cadre de la solution logicielle
(notamment les composants metadata, functional-administration, logbook). Ils sont considérés par le cluster
elasticsearch comme membres du cluster, de type « client »;

e les clients « http » : ils sont utilisés par les composants d’administration (cerebro, curator).

5.11.8.2 Monitoring

Le monitoring d’elasticsearch est possible :

e soit A partir des API http (notamment les “cat APIs”*°, les API de gestion des index ' ou les API de gestion du
cluster>?);

e soit en utilisant le composant Cerebro (Cf. la page officielle) installé dans le cadre de la solution logicielle
VITAM.

5.11.9 Elasticsearch-log

Cluster dédié a la centralisation des logs applicatifs.
Type : COTS
Données stockées :

e Logs techniques des composants déployés dans le cadre de VITAM (services java, bases de données,
composants de support (logstash, curator))

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte
e Réseau : forte

e Disque : forte

50. https://www.elastic.co/guide/en/elasticsearch/reference/S.6/cat.html
51. https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices.html
52. https://www.elastic.co/guide/en/elasticsearch/reference/5.6/cluster.html
53. https://github.com/lmenezes/cerebro

80 Chapitre 5. Architecture technique / exploitation

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/cat.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/cluster.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/cluster.html
https://github.com/lmenezes/cerebro

VITAM - Architecture, Version 7.1.5

5.11.9.1 Architecture de déploiement

Voir aussi :
Se reporter a Elasticsearch-data (page 80) pour les informations générales concernant elasticsearch.

Dans le paramétrage par défaut du déploiement, tous les noeuds sont considérés comme des noeuds « master » et
« data » ; par conséquent, le nombre de noeuds du cluster doit étre impair (i.e. 2n + 1 noeuds, n > 0).

5.11.10 Functional-administration

Type : Composant VITAM Java
Données stockées :

e Fichiers temporaires : fichiers de chargement des référentiels
Typologie de consommation de ressources :

e CPU : faible

e Mémoire : faible

e Réseau : faible

e Disque : moyenne (utilisation du répertoire temporaire pour des chargements de fichiers de référentiel)

5.11.11 Grafana

Visualisation des données ElasticSearch et Prometheus.
Type : COTS EXTRA
Données stockées :

e Dashboards

5.11.11.1 Architecture de déploiement

Pour plus d’informations, veuillez vous référer a la documentation officielle : https://grafana.com/docs/

5.11.11.1.1 Ports utilisés

Le port utilisé par le serveur Grafana est le suivant :

e tcp:3000 : Port d’écoute modifiable via la variable grafana.http_port dans le fichier
environments/group_vars/all/advanced/cots_vars.yml.

5.11.12 Ingest-external

Type : Composant VITAM Java
Données stockées :

e Cache d’authentification M2M (mémoire) ;

e Certificats x509 d’authentification clients;

e Fichiers SEDA (sas de validation de conformité et sanity checks)
Typologie de consommation de ressources :

e CPU : faible

5.11. Composants déployés 81

https://grafana.com/docs/

VITAM - Architecture, Version 7.1.5

e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas d’entrées massive d’archives (entrant)
e Disque : important (stockage temporaire des fichiers SEDA entrants)

Voir aussi :

Ce composant fait également appel au composant Siegfried (page 89) pour I’identification des formats de fichier.

5.11.12.1 Antivirus

Lors de I’entrée d’un fichier SEDA, ce dernier est soumis a un scan antivirus. L’antivirus utilisé est configurable;
la configuration du service ingest-external (effectuée dans le fichier ingest—-external.conf) permet de
définir un exécutable (ou script shell) qui est lancé pour réaliser I’analyse antivirale. Cet exécutable doit respecter le
contrat suivant :
e Sémantique des codes de retour
e 0 : Analyse terminée - aucun virus trouvé
e | : Analyse terminée - virus trouvé et corrigé
e 2 : Analyse terminée - virus trouvé mais non corrigé
e 3 : Analyse en échec
e Arguments
e Argument 1 : chemin absolu du fichier a analyser
e Streams de sortie
e stdout :
e Sil’analyse se termine : nom des virus trouvés, un par ligne
e Sil’analyse échoue : raison de 1’échec
e stderr :
o Messages de log de I’ antivirus

5.11.13 Ingest-internal

Type : Composant VITAM Java
Données stockées : Aucune
Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : généralement faible, sauf dans le cas d’entrées massive d’archives (entrant)
e Disque : faible (logs)

5.11.14 Kibana

Kibana est une application web permettant de faire des recherches et de construire des dashboards a partir des données
des logs, techniques ou métier.

Type : COTS
Données stockées : Aucune
Typologie de consommation de ressources :
e CPU : tres faible
e Mémoire : tres faible
e Réseau : faible
e Disque : tres faible

82 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.11.14.1 Déploiement

Kibana (a partir de sa version 4) se présente sous la forme d’un serveur web qui a deux fonctions :
e servir les ressources nécessaires a 1’application web qui s’exécute dans le navigateur internet client;

e agir comme proxy pour les requétes émises par le navigateur internet a destination de la base d’index de logs
(elasticsearch-log ou elasticsearch-data).

Ainsi, aucun acces direct entre un navigateur client et les serveurs elasticsearch n’est requis pour la visualisation des
données des logs.

5.11.15 Logbook

Type : Composant VITAM Java
Données stockées :
o Certificat d’horodatage
Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : moyenne
e Réseau : moyenne

e Disque : faible (logs)

5.11.16 Logstash

Type : COTS

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : moyenne
e Réseau : forte

e Disque : faible (logs)

5.11.17 Metadata

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : moyenne
e Réseau : moyenne

e Disque : faible (logs)

5.11. Composants déployés 83

VITAM - Architecture, Version 7.1.5

5.11.18 Metadata Collect

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : moyenne
e Réseau : moyenne

e Disque : faible (logs)

5.11.19 Mongodb

5.11.19.1 Base mongo-data

Base de données dédiée de type documents, utilisée pour le stockage des données métier (un cluster mongodb par
site).

Type : COTS
Données stockées :
e Données d’archives
e Journaux métier
e Référentiels métier
Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte
e Réseau : forte

e Disque : forte

5.11.19.2 Base mongo-offer

Base de données dédiée a chaque offre de stockage utilisée pour la persistence des données techniques des offres (un
cluster mongodb par offre de stockage).

Type : COTS
Données stockées :
e Offset d’écriture dans les offres

e Catalogue technique pour les offres froides : Listing des bandes magnétiques, des objets archivés sur
bandes. ..

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte (en particulier pour une offre froide)
e Réseau : forte (en particulier pour une offre froide)

e Disque : forte (en particulier pour une offre froide)

84 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.11.19.3 Architecture de déploiement

5.11.19.3.1 Architecture 1 noeud

L’architecture a 1 noeud est uniquement constituée d’un noeud mongod; elle n’est pas supportée par VITAM.

5.11.19.3.2 Architecture distribuée

Une architecture MongoDB distribuée utilise les notions suivantes :
e Sharding
e Mongodb utilise le sharding pour scaler la base de données (scalabilité horizontale)

e Le sharding distribue les données a travers les n partitions physiques (shards) dont le cluster est com-
posé

e Bien choisir la clé de sharding est primordial pour une répartition égale des documents insérés dans
les différents shards

e Chaque shard est composé d’un Replica Set
e Replica Set (RS)
e Les Replica Sets assurent la haute disponibilité de Mongodb

e Un Replica Set est (regles Mongodb de production) composé de 2 x n + 1 noeuds,avecn >= 1
(1 noeud primaire, les autres étant des noeuds secondaires) ; le noeud primaire est choisi de maniere
arbitraire par MongoDB dans la liste des noeuds du Replica Set

e [Ecriture se fait obligatoirement sur le noeud primaire
e Replica Set de config
e Un Replica Set est dédié pour le stockage de la configuration du cluster

o Comme tous les autres Replica Sets, il est recommandé de le peuplerde 2 x n + 1 noeuds, avec n
>= 1

¢ Routeur de requétes

e e routeur mongos permet de rediriger une requéte sur le ou les shards requis, en fonction de la clé de
sharding ; il agit comme coordinateur de requéte

Une architecture MongoDB distribuée comprend 3 types de noeuds différents :
e mongod : stockent les données des Replica Sets métier;
e mongos : routent les requétes ;

e mongoc : stockent les données d’état et de configuration du cluster (ces noeuds utilisent en fait un moteur
mongod, mais pour un Replica Set particulier : le Replica Set de configuration).

‘ mongos 1 H mongos 2 H mongos 3 ‘

Rout

teurs de requétes
mongoc 1 /
~~
ongod s1 v mongod s2 r1

Configuration du cluster

F1G. 12 — Déploiement d’un cluster Mongo DB avec sharding.

5.11. Composants déployés 85

VITAM - Architecture, Version 7.1.5

L’architecture proposée dans le cadre de VITAM consiste a séparer les noeuds liés au routage des requétes et de gestion
du cluster d’une part (donc de colocaliser mongos et mongoc), avec les noeuds de stockage des données (mongod)

d’autre part.

Ainsi, avec n shards et r noeuds par Replica Set (cluster), on obtient le déploiement suivant :

e au moins 3 serveurs config / service, chacun hébergeant :

e | noeud mongos (service)

¢ 1 noeud mongoc (Replica Set de configuration)

e n X r serveurs, chacun hébergeant :

e | noeud mongod

Note : Une typologie de cluster complete (mongos, mongoc, mongod) est systématiquement déployée dans le cadre
de la solution logicielle VITAM, cela afin de permettre une extension ultérieure du cluster par le rajout d’un nouveau
shard et le rééquilibrage du cluster, et ce méme si un seul shard est instancié au démarrage.

selon les recommandations précédentes.

Prudence : Une colocalisation des composants (mongos, mongoc & mongod) reste possible dans un déploiement
avec un seul shard; cette colocalisation n’est plus possible dans le cas d’un déploiement multi-shardé et il sera
nécessaire d’avoir des noeuds dédiées (mongos & mongoc) et des noeuds dédiés pour chacun des shards (mongod)

5.11.19.3.3 Ports utilisés

Les ports utilisés par mongodb sont les suivants :

e tcp:27017 : Port de communication pour les noeuds mongos

e tcp:27018 : Port d’écoute des noeuds du Replica Set de config (mongoc)

e tcp:27019 : Port d’écoute des noeuds du/des Replica Set(s) de données (mongod)

5.11.20 Processing

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :

e CPU : faible
e Mémoire : moyenne
e Réseau : faible

e Disque : faible (logs)

5.11.21 Prometheus server

Supervision des événements et des alertes
Type : COTS EXTRA
Données stockées :

e Métriques techniques

o Métriques métier

86

Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.11.21.1 Architecture de déploiement

Veuillez vous référer a la documentation officielle.

5.11.21.1.1 Ports utilisés

Le port utilisé par le serveur prometheus est le suivant :

e tcp:9090 : Port d’écoute modifiable via la variable prometheus.server.port dans le fichier
environments/group_vars/all/advanced/cots_vars.yml.

5.11.22 Prometheus alertmanager

Envoi des alertes.
Type : COTS EXTRA

5.11.22.1 Architecture de déploiement

Veuillez vous référer a la documentation officielle.

5.11.22.1.1 Ports utilisés

Les ports utilisés par Prometheus alertmanager sont les suivants :

e tcp:9093 : Port d’API modifiable via la variable prometheus.alertmanager.api_port dans le fi-
chier environments/group_vars/all/advanced/cots_vars.yml

e tcp:9094 : Port de cluster modifiable via la variable prometheus.alertmanager.cluster_port
dans le fichier environments/group_vars/all/advanced/cots_vars.yml

5.11.23 Prometheus node_exporter

Exposition des métriques liées au matériel et au noyau du systeme.
Type : COTS

5.11.23.1 Architecture de déploiement
Ce composant est a installer sur chacune des VMs ou matériels a superviser.
5.11.23.1.1 Ports utilisés

Le port utilisé par Prometheus node_exporter est le suivant :

e tcp:9101 : Port d’écoute modifiable via la variable prometheus .node_exporter.port dans le fichier
environments/group_vars/all/advanced/cots_vars.yml

5.11.23.1.2 API exposées

Prometheus node_exporter expose 1’ API suivant :

e /metrics : API sur laquelle les métriques sont exposées.

5.11. Composants déployés 87

VITAM - Architecture, Version 7.1.5

5.11.24 Prometheus Elasticsearch Exporter

Exposition des métriques liées a Elasticsearch.
Type : COTS

5.11.24.1 Architecture de déploiement

Ce composant est a installer sur chacune des VMs ou des services Elasticsearch sont a superviser.
5.11.24.1.1 Ports utilisés

Le port utilisé par Prometheus Elasticsearch Exporter est le suivant :

e tcp:9114 : Portd’écoute modifiable via la variable prometheus.node_exporter.port dans le fichier
environments/group_vars/all/advanced/cots_vars.yml

5.11.24.1.2 API exposées

Prometheus Elasticsearch Exporter expose I’ API suivant :

e /metrics : API sur laquelle les métriques sont exposées.

5.11.25 restic

Outil de sauvegarde opensource. Utilisé pour le backup des bases mongo-offer.

Supporte les différents providers suivants : filesystem, filesystem-hash, openstack-swift-v3 et amazon-s3-vl.

Note : La sauvegarde des bases pour les offres froides est détaillée dans le DEX.

Type : COTS EXTRA (beta)
Données stockées :

e Sauvegarde des bases mongodb.

5.11.25.1 Architecture de déploiement

restic sera déployé sur I’ensemble des machines renseignées dans le groupe
[hosts_storage_offer_default] de votre fichier d’inventaire qui possédent le parametre
restic_enabled=true. Attention a ne mettre ce parametre que pour l’'une des machines pour chacun des
offer_conf.

Afin de permettre aux machines du groupe [hosts_storage_offer_default] de faire les backups, elles
doivent pouvoir accéder aux bases de données afin de pouvoir effectuer la commande mongodump. Ainsi, les flux
réseaux doivent permettre d’atteindre les bases configurées ({ { restic.backup.host }}).

Pour des raisons de sécurité, restic est déployé sur ces machines afin d’éviter de diffuser les parametres d’acces aux
offres de stockage (notamment dans le cas des offres objet).

De plus, en cas de défaillance critique du systeéme Vitam, tant que les offres de stockage sont intactes, il sera plus facile
de ressortir les snapshots des bases de données associées aux données de 1’offre sous-jacente.

88 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.11.26 Scheduler

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : faible
e Mémoire : moyenne
e Réseau : faible

e Disque : faible (logs)

5.11.27 Security-internal

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : faible
e Mémoire : faible
e Réseau : faible

e Disque : faible (logs)

5.11.27.1 API d’administration

Ce composant possede des API REST d’administration permettant de réaliser 1’ajout et la consultation des pro-
fils de sécurité dans la base des contextes (endpoint : http://<ip_admin>:<port_admin>/vl/admin/

securityprofiles)

5.11.28 Siegfried

Type : Composant binaire d’identification de format de fichiers

Données stockées :
e Aucune

Typologie de consommation de ressources :
e CPU : faible

e Mémoire : faible

e Réseau : tres faible, et sur localhost uniquement

e Disque : faible (logs)

dans VITAM n’est effectuée.

Avertissement : Dans cette version du systeme VITAM, le référentiel des formats utilisé par Siegfried ne peut pas
étre mis a jour facilement, et aucune validation automatique de cohérence avec le référentiel des formats chargé

5.11. Composants déployés

89

VITAM - Architecture, Version 7.1.5

5.11.28.1 Mode de fonctionnement dans VITAM

Dans VITAM, Siegfried est utilisé dans son mode serveur accédant a des fichiers locaux; dans ce cadre, le serveur
Siegfried est uniquement bindé sur 1localhost, et donc uniquement accessible a des processus locaux a ce serveur.

L’utilisation typique de Siegfried par un composant est donc la suivante :

e Appel du serveur siegfried sur localhost; cet appel contient uniquement une demande de traitement, et contient
le chemin d’un fichier local a analyser;

e Siegfried réalise 1’analyse du fichier local ;

e Siegfried répond a la requéte en indiquant le format du fichier analysé.

5.11.29 Storage

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : forte
e Mémoire : moyenne
e Réseau : forte

e Disque : moyenne (logs & traces d’écriture)

5.11.30 Storage-offer

Type : Composant VITAM Java
Données stockées :
e Cache d’authentification M2M (mémoire) ;
e Certificats x509 d’authentification clients
Données gérées :
e Données d’archives
Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte (principalement pour le cache 1/0)
e Réseau : forte

e Disque : forte (notamment pour les offres de systeme de fichiers et les offres froides)

5.11.30.1 Types d’offre de stockage

Par le biais du composant storage-offer, la solution VITAM permet d’utiliser les types d’offre de stockage décrits dans
Stockage des données (page 56).

Dans les offres Systeme de fichiers, les données sont stockées selon une arborescence a 4 niveaux de profondeur qui
est déterminée par le hash du nom de fichier. Cette arborescence est dans une structure de fichiers composée par un
numéro de tenant et un élément identifiant (ex. : O_objectGroup/), elle-méme dans I’emplacement /vitam/
data/offer/container/.

Dans les offres froides, un stockage local dans /vitam/data/offer est nécessaire. Il est utilisé comme espace
« tampon » pour 1’écriture rapide et comme espace « cache » pour la relecture des données.

920 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.11.30.1.1 Cas des containers objet

Dans le cas d’utilisation de stockage objet, il faut prévoir, par tenant VITAM, la création de 17 containers. Se référer
au DEX pour plus d’informations.

5.11.31 Worker

Type : Composant VITAM Java
Données stockées :
e Certificat d’horodatage
Typologie de consommation de ressources :
e CPU : forte
e Mémoire : forte
e Réseau : forte (entrant et sortant)

e Disque : moyenne (logs + fichiers temporaires de travail)

Voir aussi :

Ce composant fait également appel au composant Siegfried (page 89) pour I’identification des formats de fichier.

5.11.31.1 Particularités

Les workers utilisent des outils externes pouvant avoir des pré-requis importants sur les OS utilisés; pour réduire
I’impact sur les systemes, ces outils pourront étre a terme packagés dans des conteneurs Docker. Cependant, aucun
conteneur Docker n’est fourni ni supporté dans cette version de la solution VITAM.

5.11.32 Workspace

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte (notamment pour le cache d’I/O systeme)
e Réseau : forte

e Disque : forte (zone d’échange des données de travail entre tous les composants)

5.11.33 Workspace Collect

Type : Composant VITAM Java

Données stockées : Aucune

Typologie de consommation de ressources :
e CPU : moyenne
e Mémoire : forte (notamment pour le cache d’I/O systeme)
e Réseau : forte

e Disque : forte (zone d’échange des données de travail entre tous les composants)

5.11. Composants déployés 91

VITAM - Architecture, Version 7.1.5

5.12 Guidelines de déploiement

Les principes de zoning associés a I’architecture de la solution logicielle VITAM ont été présentés [ors de la description
des principes de déploiement (page 39); cette section a pour but de compléter ces principes par des recommandations
concernant la colocalisation des composants.

De maniere générale, pour des raisons de sécurité, il est déconseillé de colocaliser des composants appartenant a des
zones différentes. Il est par contre possible de colocaliser des composants appartenant a des sous-zones différentes
dans la zone des services internes ; ainsi, les colocalisations des composants suivants sont relativement pertinentes :

e ingest-external, access-external et administration-external, hors contraintes particulieres de sécurité;
e ingest-internal et access-internal ;

e clasticsearch-data et mongod;

e mongos et mongoc;

e logstash, elasticsearch-log (mono-instance), kibana (pour les déploiements de tests) ; elasticsearch-log et consul
(serveur) (pour des déploiements de taille moyenne)

e workspace et storage ;

e prometheus-server, prometheus-alertmanager, grafana-server

Prudence : 1l est recommandé de ne pas colocaliser les composants restants :
e storage-offer-default, étant dans une zone logique particuliere ;

e worker, ayant une consommation de ressources systeéme potentiellement importante.

5.13 Eléments de dimensionnement

Prudence : Les abaques de dimensionnement sont étroitement liés a la nature de I’infrastructure sous-jacente et a
I’usage qui est fait de la solution logicielle VITAM. Par conséquent, les indications de volumétrie qui sont présen-
tées dans la suite de ce document sont purement indicatives et relatives au systeme VI/TAM dans sa version actuelle,
installé sur les environnements de tests de la solution logicielle (qui sont opérés en environnement complétement
virtualisé).

Prudence : Réaliser un benchmarking sur un environnement de test de charge (avec des jeux de données et une
infrastructure similaires a celle de production) est fortement recommandé pour valider le bon dimensionnement de
la plateforme.

Note : Sauf mention contraire, les enveloppes de ressources ci-dessous comprennent notamment les composants
associés a I’exploitation de la solution logicielle VITAM et fournis dans le cadre de la solution (traitement et stockage
des logs et des métriques, gestion des bases de données, .. .)

Important : Les configurations de référence ci-dessous sont données pour un seul site primaire comportant une seule
offre de stockage. VITAM préconise tres fortement un déploiement comportant a minima 2 offres de stockage. En
fonction des contraintes de disponibilité du systeme, il sera donc nécessaire :

92 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

e Soit d’ajouter une autre offre de stockage (i.e. les composants storage-offer et mongo*-offer) dans le cas d’un
déploiement mono-site ;

e Soit d’ajouter un site secondaire comportant sa propre offre de stockage.

Important : Un monitoring régulier de la plateforme (via prometheus par exemple) est nécessaire. En plus de per-
mettre la vérification du bon fonctionnement de la solution, il permet également de valider son dimensionnement, et
de le réadapter si besoin.

Important : Les composants workspace et processing sont mono-instantiables uniquement. De méme, pour
les composants storage—offer de type « Systeéme de fichier » ou « Bandes magnétiques » (offre froide), une
seule instance peut étre déployée par offre. Les composants storage-offer de type « S3 » ou « Swift » sont
multi-instantiables.

5.13.1 Compute
5.13.1.1 « xsmall » : développement local

Adapté a un poste de développement; ce déploiement ne comprend pas les composants d’exploitation de la solution
VITAM. La chaine de traitement de logs n’est pas déployée, et le méme cluster mongodb est utilisé pour I’offre de
stockage et les métadonnées.

Ce déploiement n’est pas adapté pour un fonctionnement en production.

5.13. Eléments de dimensionnement 93

VITAM - Architecture, Version 7.1.5

TABLEAU 1 — Dimensionnement XSmall

Zone Composants # instances vCPU /instance RAM / instance
1 4 16 Go
e zone_access °
e zone_external hosts_ihm_demo
° [)
zone_applicativie hosts_ihm_recefte
e zone data e hosts_cerebro
e zone_storage *)
. hosts_ingest_external
e zone_admin
[)
hosts_access_external
[)
hosts_ingest_internal
[)
hosts_access_internal
[)
hosts_storage_engine
[)
hosts_workspade
[)
hosts_processing

e hosts_worker

hosts_functiond

hosts_logbook

hosts_security_

hosts_batch_rej

hosts_scheduler

hosts_metadata

hosts_mongoc_|

hosts_mongos_

hosts_mongod_|

hosts_elasticsed

hosts_storage_d
(file)

hosts_consul_sg

| _administration

internal

Dort

data

data

data

rch_data

ffer_default

Prver

04
N

TOTAL GLOBAL
ENV

vitam

16 Go

VITAM - Architecture, Version 7.1.5

Note : Pour ce type d’environnement, il est recommandé de définir un parametre elasticsearch_memory (pour
les composants elasticsearch-log et elasticsearch-data) avec une taille faible et compatible avec les
ressources disponibles, afin de ne pas rencontrer de phénomenes de OOM.

Voir aussi :
Se reporter au DIN pour plus d’informations.
5.13.1.2 « small » : recette simple métier

Adapté a un environnement de recette simple d’application métier utilisant VITAM.

Ce déploiement n’est pas adapté pour un fonctionnement en production.

5.13. Eléments de dimensionnement 95

VITAM - Architecture, Version 7.1.5

TABLEAU 2 — Dimensionnement Small

Zone

Composants

instances

vCPU / instance

RAM / instance

e zone_external

[]
zone_applicativ

[¢)

1

hosts_ingest_external

hosts_access_ex

hosts_ingest_in|

xternal

ternal

hosts_access_internal

hosts_storage_engine

hosts_workspad

hosts_processing

e hosts_worker

[¢]

6

12 Go

® 7Z0one_access

[]
zone_applicativ

e zone_data

[¢)

hosts_ihm_demo

hosts_ihm_rece]

tte

hosts_functiondl_administration

hosts_security_

hosts_logbook

internal

hosts_batch_report

hosts_scheduler

hosts_metadata

hosts_mongoc_|

hosts_mongos_|

data

data

hosts_mongod_|data

hosts_elasticsedrch_data

12 Go

® zone_storage

e zone_admin

1

hosts_storage_oaffer_default

(file)

12 Go

96

hosts_mongoc_pffer

hosts_mongos_

Chapitre

offer

5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

S’agissant d’un environnement de recette, 1’utilisation de 2 offres de stockages ou de 2 sites est possible, mais non
préconisée (il s’agit d’un environnement de recette métier, et non technique).

Note : Pour ce type d’environnement, il est recommandé de définir un parametre elasticsearch_memory (pour
les composants elasticsearch—-log et elasticsearch-data) avec une taille faible et compatible avec les
ressources disponibles, afin de ne pas rencontrer de phénomenes de OOM.

Voir aussi :

Se reporter au DIN pour plus d’informations.

5.13.1.3 « medium » : production pour volumétries moyennes

Adapté a un déploiement simple pour des volumétries moyennes (quelques To / an) ; seuls le worker et les composants
stockant des données sont multi-instanciés (i.e. les bases de données et les offres de stockage). L’offre de stockage
proposée est une offre de stockage « file », plus simple a exploiter et compatible avec une volumétrie moyenne.

Sur les 3 serveurs mongod et mongoc pour 1’offre de stockage, ’'un d’eux est déployé en tant qu’arbitre (participe au
quorum du replica set, mais ne stocke pas de données).

5.13. Eléments de dimensionnement 97

VITAM - Architecture, Version 7.1.5

TABLEAU 3 — Dimensionnement Medium

Zone

Composants

instances

vCPU / instance

RAM / instance

Z0one_access

[]
hosts_ihm_dem

1

1

2 Go

zone_external

hosts_ingest_ex

hosts_access_ex

1

ternal

xternal

2 Go

zone_applicative

hosts_ingest_in|

hosts_access_in

hosts_functiond

hosts_logbook

hosts_security_

hosts_metadata

1

ternal

ternal

| _administration

internal

4 Go

zone_applicative

hosts_storage_¢

hosts_workspad

hosts_batch_rej

hosts_scheduler

hosts_processin

1

ngine

[¢]

Dort

4 Go

zone_applicative

e hosts_worker

4 Go

zone_storage

hosts_storage_d
(file)

hosts_mongoc_|
(arbitre)

hosts_mongod_|
(arbitre)

1

ffer default

offer

offer

4 Go

98one_storage

hosts_mongoc_|

2 Chapitre

offer

52 Architecture technidiee / exploitation

VITAM - Architecture, Version 7.1.5

Comme précisé précédemment, ce dimensionnement ne contient qu’une seule offre de stockage ; il devra étre complété
de préférence par un deuxieme site (avec le méme dimensionnement), ou bien par une offre de stockage supplémentaire
sur le site principal (en doublant les ressources allouées a la zone storage).

5.13.1.4 «large » : production pour volumétries moyennes avec besoin de résilience

Adapté a un déploiement résilient pour des volumétries plus importantes (10 a 20 To / an) ; ce déploiement comprend
au moins deux instances pour tous les composants le supportant, et passe a une offre de stockage objet Swift ou S3
(pour une meilleure scalabilité de 1’ offre).

5.13. Eléments de dimensionnement 99

VITAM - Architecture, Version 7.1.5

TABLEAU 4 — Dimensionnement Large

Zone Composants # instances vCPU /instance RAM / instance
ZOne_access 1 2 4 Go
[)
hosts_ihm_demo
zone_external 2 1 4 Go
[)
hosts_ingest_external
[)
hosts_access_external
zone_applicative 2 1 4 Go
[)
hosts_ingest_internal
[)
hosts_access_irnternal
[)
hosts_functiondl_administration
zone_applicative 2 4 4 Go
[)
hosts_logbook
[)
hosts_batch_report
[)
hosts_security_internal
[)
hosts_metadata
[)
hosts_storage_gngine
zone_applicative 3 4 4 Go
e hosts_worker
zone_applicative 1 4 6 Go
[)
hosts_workspade
[)
hosts_batch_report
[)
hosts_schedulet
[]
hosts_processing
zone_storage 3 4 8 Go

hosts_storage_d
(swift/s3)

hosts_mongoc_|

ffer_default

offer

100

hosts_mongos_

hosts_mongod_|

offer

Chapitre

offer

5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

Comme précisé précédemment, ce dimensionnement ne contient qu’une seule offre de stockage ; il devra étre complété
de préférence par un deuxieme site (avec le méme dimensionnement), ou bien par une offre de stockage supplémentaire
sur le site principal (en doublant les ressources allouées a la zone storage).

Note : Le composant batch—-report est multi-instanciable et peut donc étre colocalisé avec les composants mono-
instanciables suivants : workspace et processing. L’alternative est de colocaliser avec la zone applicative com-
prenant 1logbook, security—-internal, metadata et storage—-engine.

5.13.1.5 « xlarge » : production pour fortes volumétries

Adapté a un déploiement pour de fortes volumétries (ordre de grandeur des capacités d’ingest : > 50 To / an, >
100.1076 objets / an). Ce déploiement implique la multi-instanciation de tous les composants le supportant et ’'usage
d’un stockage objet Swift ou S3.

5.13. Eléments de dimensionnement 101

VITAM - Architecture, Version 7.1.5

TABLEAU 5 — Dimensionnement XLarge

Zone Composants # instances vCPU /instance RAM / instance
ZOne_access 1 2 4 Go
[]
hosts_ihm_demo
zone_external 2 2 4 Go
[]
hosts_ingest_external
[]
hosts_access_external
zone_applicative 2 2 4 Go
[]
hosts_ingest_internal
[]
hosts_access_irnternal
zone_applicative 3 4 4 Go
[]
hosts_logbook
[]
hosts_security_internal
zone_applicative 3 4 4 Go
[]
hosts_metadata
[]
hosts_functiondl_administration
zone_applicative 1 2 4 Go
[]
hosts_processing
zone_applicative 10 4 6 Go
e hosts_worker
zone_applicative 1 8 8 Go
[]
hosts_workspade
zone_applicative 2 8 4 Go
[]
hosts_batch_report
zone_applicative 2 8 4 Go
[]
hosts_scheduler
zone_applicative 4 4 4 Go
[]
hosts_storage_gngine
zone_storage 2 4 4 Go
[]
102 hosts_storage_gffer_default chapitre|5. Architecture technique / exploitation
(swift/s3)
zone_storage 3 2 4 Go
[)

VITAM - Architecture, Version 7.1.5

Comme précisé précédemment, ce dimensionnement ne contient qu’une seule offre de stockage ; il devra étre complété
de préférence par un deuxieme site (avec le méme dimensionnement), ou bien par une offre de stockage supplémentaire
sur le site principal (en doublant les ressources allouées a la zone storage).

5.13.2 Stockage

Plus que tout autre, le calcul du dimensionnement du stockage dépend étroitement de la nature des archives qui doivent
étre conservées dans la solution logicielle.

Les drivers principaux de dimensionnement des différents emplacements de stockage sont les suivants :

e Répertoire « tmp » du composant ingest-external : ce répertoire doit pouvoir stocker les SIP en cours
d’analyse antivirus avant leur dépdt dans workspace ; sa taille dépend donc de la taille maximale des S7P présents
en entrée et du nombre d’ingest initiés en parallele.

e Répertoire « data » du composant workspace : ce répertoire doit pouvoir stocker les données en cours de
traitement (contenu décompressé des S/P en cours d’ingest, des objets binaires en cours de préservation, ainsi
que les exports de données DIP en cours...); sa taille dépend donc de la taille maximale des S/P présents en
entrée et du nombre d’ingest et de préservation simultanés (en attente ou en cours de traitement) ainsi que du
volume et de la durée de rétention des DIP (par défault 7 jours, paramétrables dans la configuration du module
metadata).

e Répertoire « tmp » du composant worker : ce répertoire doit pouvoir stocker les objets binaires en cours
de traitement par le worker; il s’agit généralement du produit "capacité du worker" x "taille
maximale d’un objet binaire".

e Répertoire « data » du composant elasticsearch-data : ce cluster stocke les métadonnées associées aux
archives (GOT et AU) ainsi que les journaux d’opération. Pour ces éléments :

e Lataille et la quantité des AU et des GOT dépend des données entrées dans VITAM (facteur métier) ;

e Le nombre d’opérations dépend de ’'usage du systéme (et notamment de la granularité des S/P en entrée).
En ordre de grandeur, le journal d’une opération d’ingest a une taille brute de 50 Ko; le journal d’une
opération d’update, 5 Ko (d’apres des mesures effectuées sur des environnements de tests de la solution
logicielle);

e Au niveau global du cluster, le rapport entre la donnée brute (entrée dans elasticsearch) et la donnée per-
sistée est le produit "facteur de réplication" x 2 (le facteur 2 provient du champ _source
qui contient le document original conservé par elasticsearch a coté des index) ;

e La taille unitaire d’un répertoire « data » sur une instance se calcule ensuite en fonction du nombre de
noeuds disponibles dans le cluster (I’hypothese d’une répartition uniforme peut étre retenue).

e Répertoire « data » du composant mongod-data : ce cluster stocke les métadonnées associées aux archives
(GOT, AU et LFC associé) ainsi que les journaux d’opération. Pour ces éléments :

e Lataille et la quantité des AU et des GOT dépend du métier;

e Les LFC associés a une AU sont estimés a un peu moins de 5 Ko (d’apres des mesures effectuées sur des
environnements de tests de la solution logicielle);

e Le nombre d’opérations dépend de ’'usage du systéme (et notamment de la granularité des S/P en entrée).
En ordre de grandeur, le journal d’une opération d’ingest a une taille moyenne brute de 50 Ko; le journal
d’une opération d’update ou audit, 5 Ko (d’apres des mesures effectuées sur des environnements de tests
de la solution logicielle);

e Au niveau global du cluster, le rapport entre la donnée brute (entrée dans MongoDB) et 1a donnée persistée
estle produit "facteur de réplication" x "facteur d’expansion".Lefacteurd’expan-
sion dépend de la base de données impactée, et il est fonction du taux d’indexation et de sa capacité de
compression. D’apres des mesures effectuées sur des environnements de tests de la solution logicielle, ce
facteur prend les valeurs suivantes :

e 1.2 pour la base de données des métadonnées d’archive (AU & GOT)

e (0,4 pour les journaux d’opération

5.13. Eléments de dimensionnement 103

VITAM - Architecture, Version 7.1.5

e La taille unitaire d’un répertoire « data » sur une instance se calcule ensuite en fonction du nombre de
noeuds disponibles dans le cluster (I’hypotheése d’une répartition uniforme peut étre retenue, MongoDB
opérant un rééquilibrage progressif des shards).

e Répertoire « log » du composant storage : chaque écriture vers le stockage implique la création d’une entrée
dans le journal des écritures du composant storage. Ainsi :

e La taille de ce répertoire dépend du nombre d’éléments écrits, et notamment : AU, GOT, BDO, journaux
d’opérations;;

e Pour les journaux d’opération : chaque journal implique au moins deux écritures a cause de sa sécurisation ;

e Chaque entrée du journal des écritures a une taille moyenne de 500 octets (d’apres des mesures effectuées
sur des environnements de tests de la solution logicielle).

e Espace de stockage du composant storage—-offer pour le stockage pérenne des données conservées dans
VITAM, qui comprend notamment :

e les AU, GOT et BDO;

e les journaux d’opération, de cycle de vie, d’écritures et d’acces;;

e les autres données techniques persistées par Vitam (sécurisations des journaux, ATRs, rapports d’opéra-
tions. ..)

Cette capacité doit étre allouée selon le type de I’ offre de cible :

e Systeme de fichiers : Répertoire « data » du composant storage-offer;

e Object store S3 ou Swift : Capacité de stockage dans I’object store « S3 » ou « Swift » cible;

e Archivage sur bandes magnétiques : Capacité de stockage sur bibliothéque de bandes

e Répertoire « tmp » du composant storage—offer : ce répertoire doit pouvoir stocker les rapports li€s a
I’audit comparatif des offres ; sa taille dépends du nombre de fichiers présents dans les conteneurs a comparer.
Pour un conteneur contenant plus de 1 million de fichiers, prévoir environs 300 Mo d’espace disque.

e Répertoire « data » du composant mongod—-offer : chaque écriture dans une offre de stockage implique
la journalisation de cette écriture dans 1’archivelog d’écriture. Le nombre d’entrées est le nombre de données
écrites via storage (cf. point précédent); la taille unitaire d’une entrée dans ce log est 260 octets (d’apres des
mesures effectuées sur des environnements de tests de la solution logicielle).

e Répertoire « data » du composant elasticsearch-1log : ce cluster stocke les logs techniques issus de
I’application. Il est assez difficile de donner un dimensionnement analytique réaliste de ce composant (trop
d’éléments entrant en jeu). Pour donner un ordre de grandeur purement indicatif, pour un systéme en ingest pur
(i.e. sans acces), il a été observé une moyenne de 20 Ko de log brut par triplet (AU, GOT, BDO) entré dans le
systeéme.

Note : Pour le stockage sur bandes magnétiques (offre froide), il est a noter que :

e L’offre froide de Vitam ne supporte actuellement PAS 1’élimination physique des données (seule une élimination
logique est réalisée). De ce fait, la capacité de stockage allouée sur bandes & cache disque doit contenir toutes
les versions des données écrites (écritures + MAJ), et sur la totalité de la durée de vie de la solution déployée.

e En plus du stockage sur bande, le répertoire « data » du composant storage—offer est également utilisé :

e Comme espace « tampon » pour le stockage temporaire des objets a archiver. Il doit disposer de suffisam-
ment d’espace pour contenir les données en cours d’archivage a I’instant T, le temps qu’elles soient écrites
sur bande sur bande.

e Comme espace « cache » pour le stockage des données a lire. Il doit disposer suffisamment d’espace pour
contenir sur la durée de vie de la solution déployée :

e I’ensemble des métadonnées et leur journaux de cycle de vie (environs 10 Ko par AU ou GOT, pour
chaque version écrite)
e ’ensemble des données techniques (journaux de sécurisation, ATRs, rapports. . .)
e suffisamment d’espace pour la mise & disposition des binaires en cours de lecture (binaires en cours
d’export de données DIP ou de transfert, en cours de préservation. . .)
Pour une plateforme large de production, prévoir a minima 10 To de stockage disque pour le répertoire « data »
du composant storage—-offer.

104 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.13.3 Réseau : inter-site

Un lien réseau /P doit exister entre les deux sites et respecter les flux décrits dans la matrice de flux externes (se
reporter a Matrice des flux (page 105)).

Le routage niveau 3 est permis sur ce lien, par translation d’adresse, mais pas par translation de port (i.e. chaque
serveur devant étre exposé sur le site 2 au site 1 peut exposer une adresse /P WAN visible depuis le site 1 différente de
son adresse /P LAN locale).

Concernant ce lien intersite, les éléments permettant son dimensionnement sont les suivants :

e La latence est peu critique (elle joue principalement sur la performance des batchs, et pas des acces utilisa-
teurs ; I’optimisation des performances se fera dans ce cas par I’augmentation des pools de threads de storage et
I’augmentation de la capacité des workers) ;

e Par contre, un débit adapté est requis; dans cette version de VITAM, ce dernier peut se calculer a partir de la
somme des débits d’ingest des AU + GOT + BDO + journaux.

5.13.4 Scalabilité

De maniere générale, la consommation en ressources (CPU/RAM/réseau/stockage) de VITAM dépend de 3 grands cas
d’utilisation :
e La quantité d’archives versées (ingest) : supporter plus d’ingest nécessite de renforcer les ressources disponibles
pour les composants actifs lors d’un ingest : ingest-external, ingest-internal, processing, worker, workspace,
logbook, metadata, storage, storage-offer, elasticsearch-data, mongodb;

e La quantité d’archives gérées (audit & pérennisation) : dans cette version de VITAM, les fonctions liées a ces
deux domaines sont limitées ; par conséquent, la quantité de données gérées a uniquement une influence sur les
dépots de données : storage, storage-offer, elasticsearch-data, mongodb;

e La quantité d’archives consultées (access) : supporter plus de requétes concurrentes nécessite de renforcer les
ressources disponibles pour les composants actifs lors d’une consultation : access-external, access-internal, log-
book, metadata, storage, storage-offer, elasticsearch-data, mongodb.

5.14 Matrice des flux

Voir aussi :

La matrice complete des flux s’appuie sur les schémas présentés dans la description de [’architecture technique
(page 49).

Les matrices de flux ne contiennent que les flux dans le sens de I’établissement des connexions. Les flux retours
correspondant a des connexions établies doivent par conséquent également étre autorisés.

En cas de probléme avec les ports utilisés par Consul, il est recommandé de se reporter 4 la documentation officielle >*;
en particulier, il pourra étre requis d’ouvrir les ports UDP associés aux Gossip Consul dans certains cas.

5.14.1 Matrice des flux intra-site

Cette matrice des flux décrit les flux inter-zones pour la configuration par défaut des ports d’écoute des différents
composants.

54. https://www.consul.io/docs/agent/options.html#ports

5.14. Matrice des flux 105

https://www.consul.io/docs/agent/options.html#ports

VITAM - Architecture, Version 7.1.5

TABLEAU 6: Matrice des flt

Zone source Zone cible Protocole
Externe Acces https
Externe Acces https
Externe Acces https
Acces Applicative http
Acces Applicative http
Acces Applicative http
Acces Applicative http
Acces Applicative http
Applicative Stockage http(s)
Applicative Données tcp
Applicative Données http
Applicative Données tcp
Acces / Applicative / Stockage / Données Administration syslog/tcp
Acces / Applicative / Stockage / Données Administration tcp
Acces / Applicative / Stockage / Données / Administration | Acces / Applicative / Stockage / Données / Administration | tcp/udp
Acces / Applicative / Stockage / Données Administration http
Administration Acces / Applicative / Stockage / Données ssh
Administration Acces / Applicative / Stockage / Données http
Administration Données http
Administration Données http
Acces / Applicative / Stockage / Données Administration http(s)
Exploitation technique Administration http
Exploitation technique Administration http
Exploitation technique Administration http
Exploitation technique Administration http
Exploitation technique Administration http
Exploitation technique Administration http
Exploitation technique Administration ssh
Acces / Applicative / Stockage / Données Administration dns/udp
Administration Acces / Applicative / Stockage http
106 Chapitre 5. Architecture technique / exploitation

VITAM - Architecture, Version 7.1.5

5.14.2 Matrice des flux inter-site

TABLEAU 7 — Matrice des flux inter-sites

Site Zone Site Zone Pro- Port Interface Description
source | source | cible | cible to- cible
cole

Site 1 Admi- Site 2 | Admi- tep 8300 | default = admin (cf. | Appels RPC consul
nistra- nistra- consul.network)
tion tion

Site 2 Admi- Site 1 | Admi- tcp 8300 | default = admin (cf. | Appels RPC consul
nistra- nistra- consul.network)
tion tion

Site 1 Admi- Site 2 | Admi- tcp/udp| 8302 | default = admin (cf. | Gossip WAN Consul
nistra- nistra- consul.network)
tion tion

Site 2 Admi- Site 1 | Admi- tep/udp| 8302 | default = admin (cf. | Gossip WAN Consul
nistra- nistra- consul.network)
tion tion

Site 1 Applica- | Site 2 | Sto- http(s) | 9900 service Acces a storage-offer
tive ckage

Site 2 Applica- | Site 1 | Sto- http(s) | 9900 | service Acces a storage-offer (se-
tive ckage lon stratégie site 2)

5.14. Matrice des flux

107

CHAPITRE O

Sécurité

6.1 Principes

Les principes de sécurité de la solution logicielle VITAM suivent les directives suivantes :

o Authentification et autorisation systématique des systemes clients de VITAM basées sur une authentification 7S
mutuelle utilisant des certificats (pour les composants de la couche acces);

e Validation systématique des entrées du systéme :
e Détection et suppression de codes malveillants dans les archives déposées dans VITAM ;
e Robustesse contre les failles du Top Ten OWASP pour toutes les interfaces REST ;

e Validation périodique des listes de CRL pour toutes les CA trustées par VITAM (non implémentée dans cette
version de VITAM, cf. ci-dessous).

6.1.1 Principes de cloisonnement

Les principes de cloisonnement en zones, et notamment les implications en termes de communication entre ces zones
ont été décrits dans la section dédiée aux principes de déploiement (page 39).

Avertissement : Le principe de cloisonnement des flux ne peut étre mené que par une équipe d’infrastructure.
L’implémentation du filtrage des flux inter-zones doit etre effectuée lors du déploiement de la solution VITAM,
conformément a la matrice de flux, en annexe du document. Il est aussi indispensable de ne pas donner un acces
internet aux machines dans les zones applicative, stockage, et donnée.

6.1.2 Principes de sécurisation des acces externes

Les services logiciels en contact direct avec les clients du SAE (i.e. les services x—external) implémentent les
mesures de sécurité suivantes :

e Chiffrement du transport des données entre les applications externes et VITAM via HTTPS ; par défaut, la confi-
guration suivante est appliquée :

108

VITAM - Architecture, Version 7.1.5

e Protocoles exclus par défaut : SSLv2, SSLv3, TLSv1.0, TLSv1.1

e Ciphers exclus par défaut : .xNULL. *, .xRC4 . *, .*xMD5. %,
*DES . *, .xDSS. %, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_ CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Note : Les ciphers recommandés sont : TLS_ECDHE. , TLS_DHE_RSA. *

Fichier déployé :

Use Bouncy Castle Provider when it is available
security.provider.9=org.bouncycastle. jce.provider.BouncyCastleProvider

Override the default list of Centos 7 that disable Elliptic Curved Based Algorithms
jdk.tls.disabledAlgorithms="SSLv3, TLSvl, TLSvl.1l, RC4, MD5SwithRSA, DH keySize < 768,
—RSA keySize < 2048"

o Authentification par certificat x509 requise des applications externes (authentification M2M) basée sur une liste
blanche de certificats valides :

e Lors d’une connexion, la vérification synchrone confirme que le certificat proposé n’est pas expiré (not
before, not after) et qu’il est validé par une Autorité de Certification connue (liste des CA portée par un
fichier truststore)

e Avant de valider tout appel d”API, I’applicatif vérifie que le certificat proposé est bien présent dans le
référentiel d’authentification des certificats valides (un des référentiels métier portés par la base des méta-
données).

Prudence : La révocation des certificats se fait par leur suppression dans les différents magasins et référentiels.
Se reporter au DEX pour plus d’informations.

o Filtrage exhaustif des données et requétes entrant dans le systeme basé sur :

e Un WAF applicatif permettant le filtrage d’entrées pouvant &tre une menace pour le systeme (intégration
de la bibliotheéque ESAPI > dans les composants *—external protégeant notamment contre les attaques
de type XSS);

e Support de I'utilisation d’un ou plusieurs antivirus (configurables et extensibles) dans le composant d’en-
trée (ingest—external) permettant de valider I’innocuité des données entrantes.

Note : Dans cette version du systeme, le paramétrage de 1’antivirus est supporté lors de 1’installation, mais pas le
paramétrage d’ESAPI (notamment les filtres appliqués).

6.1.3 Principes de sécurisation des communications internes au systeme

Le secret de plateforme permet de se protéger contre des erreurs de manipulation et de configuration en séparant les
environnements de maniere logique (secret partagé par I’ensemble de la plateforme mais différent entre plateformes).

55. https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_ API

6.1. Principes 109

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

VITAM - Architecture, Version 7.1.5

Ce secret (chalne de caracteres) est positionné dans la configuration des composants lors de I’installation de la solution
logicielle VITAM.
Dans chaque requéte, les deux headers suivants sont positionnés :
e X-Request-Timestamp : il contient le timestamp de la requéte sous forme epoch (secondes depuis 1970)
e X-Platform—-ID : il contient la valeur suivante : SHA256 ("<methode>; <URL>; <Valeur du
header X-Request-Timestamp>;<Secret partagé de plateforme>")
Du c6té du composant cible de la requéte, le controle est alors le suivant :
e Existence des deux headers précédents; Dans le cas contraire, la requéte est refusée.

e Vérification que timestamp envoyé est distant de 1’heure actuelle sur le serveur requété de moins de x secondes
(I Timestamp - temps local | < x s).Siladifférence de temps est supérieure au seuil acceptable
(10s par défaut), alors des erreurs sont tracées dans les logs et des alertes sont remontées dans le dashboard
Kibana « Alertes de sécurité ». Au dela d’un seuil critique (60s par défaut), la requéte est refusée.

e Validation du hash transmis via la réalisation du méme calcul sur le serveur cible et de la comparaison des
résultats ; En cas d’échec de validation, la requéte est refusée.

Note : Les headers et le body de la requéte ne sont pas inclus dans le calcul du X-Plat form-ID pour des raisons
de performances.

6.1.4 Principes de sécurisation des bases de données

Les bases de données sont sécurisées via un cloisonnement physique et/ou logique des différentes bases de données
qui les constituent.

6.1.4.1 MongoDB

Dans le cas de MongoDB, le cloisonnement est logique. Chaque service hébergeant des données dans MongoDB se
voit attribuer une base et un utilisateur dédié. Cet utilisateur a uniquement les droits de lecture / écriture dans les
collections de cette base de données, mais ne peut notamment pas modifier la structure des collections de sa base de
données ni accéder aux collections d’une autre base de données.

Un utilisateur technique root est également créé pour les besoins de I’installation et de la configuration de MongoDB.

Chaque base de données ne doit étre accédée que par les instances d’un seul service (ex : le service logbook est le seul
a accéder a la base de données logbook).

Enfin, I’accés anonyme a MongoDB est désactivé, et les utilisateurs sont authentifiés par le couple utilisateur / mot de
passe.

6.1.4.2 Elasticsearch

Dans le cas d’Elasticsearch, le cloisonnement est principalement physique, dans le sens ou le cluster hébergeant les
données métier est disjoint du cluster hébergeant les données techniques.

Prudence : L’acces au cluster Elasticsearch est anonyme sans authentification requise ;

110 Chapitre 6. Sécurité

VITAM - Architecture, Version 7.1.5

6.1.5 Principes de sécurisation des secrets de déploiement

Les secrets de I’intégralité de la solution VITAM déployée sont tous présents sur le serveur de déploiement; par
conséquent, ils doivent y étre stockés de maniere sécurisée, avec les principes suivants :

6.2

Les mots de passe et fokens utilisés par ansible doivent étre stockés dans des fichiers d’inventaire chiffrés par
ansible-vault;

Les clés privées des certificats doivent étre protégées par des mots de passe complexes; ces derniers doivent
suivre la regle précédente.

Liste des secrets

Les secrets nécessaires au bon déploiement de VITAM sont les suivants :

Certificat ou mot de passe de connexion SSH a un compte sudoer sur les serveurs cibles (pour le déploiement) ;

Certificats x509 serveur (comprenant la clé privée) pour les modules de la zone d’acces (services x—external)
et pour le module storage, ainsi que les CA (finales et intermédiaires) ;

Certificats x509 client d’horodatage, pour les modules appliquant I’horodatage sécurisé, ainsi que les CA (finales
et intermédiaires) ;

Certificats x509 client pour les clients du SAE (ex. : les applications métier, le service 1hm—demo), ainsi que
les CA (finales et intermédiaires) ;

CA (finales et intermédiaires) éventuels des offres de stockage utilisées (ex. : CA d’une offre de stockage objet
swift ou s3).

Note

: Ces certificats x509 seront déployés dans des keystores java®® en tant qu’éléments de configuration de ces

services (se rapporter au DI/N pour plus d’informations).

Les secrets définis lors de I’installation de VITAM sont les suivants :

Mots de passe des keystores;

Mots de passe des administrateurs fonctionnels de 1’application VITAM ;

e Mots de passe d’administration de base de données MongoDB ;

e Mots de passe des comptes d’acces aux bases de données MongoDB.

Le détail de I’'usage des certificats pour le déploiement est donné dans le DIN.

6.3

Certificats

Les magasins de certificats utilisés par le systeme VITAM sont les suivants :

56. https://docs.oracle.com/cd/E19509-01/820-3503/ggffo/index.html

6.2. Liste des secrets 111

https://docs.oracle.com/cd/E19509-01/820-3503/ggffo/index.html

VITAM - Architecture, Version 7.1.5

client truststore client truststore
o sia-client.key @ sia-ca.cer o ihm-client.key @ sia-ca.cer
@ sia-client.cer Q vitam-ca-srv.cer @ ihm-client.cer @ vitam-ca-ext.cer
SIA ihm-demo
keystore truststore keystore truststore . .
security-internal _ seco1
o ieOl-server.key @ sia-ca.cer o aeOl-server.key @ sia-ca.cer
@ ieol-server.cer | @ vitam-ca-ext.cer @ ac0l-server.cer | @ vitam-ca-ext.cer certificate personalCertificate
A ia-client. -admin.
ingest-external 01| |access-external aegn| | |¥ secienteer @ persadmincer
@ ihm-client.cer
client truststore timestamp MOI’]QODB

o offerclient.key | @& vitam-ca-sto.cer | off storage-ts.key

3; offer-client.cer @ vitam-ca-ts.cer @ storage-ts.cer

timestamp truststore
storage
o logbook-ts.key @ vitam-ca-ts.cer
@ logbook-ts.cer
server truststore grantedstore
‘ logbook / worker
o off01-serverkey | vitam-ca-sto.cer | @ offer-client.cer

@ off0l-server.cer | @ swift-ca.cer

storage-offer off01

FI1G. 1 — Vue d’ensemble des magasins de certificats déployés dans un systeme VITAM ; chaque couleur correspond a
une chaine de certification potentiellement disjointe des autres.

6.4 SELinux

Vitam peut fonctionner avec SELinux en mode enforcing Le support de SELinux a été pensé pour faire fonctionner
tous les services utilisés par Vitam dans des domaines confinés (mode de sécurité le plus élevé). Le fonctionnement
des services Vitam dans le domaine non confiné n’a jamais été testé.

6.5 Documentation de sécurité

Le développement de la solution logicielle VITAM suit une méthodologie d’analyse des risques de sécurité basée
sur ’adaptation de la méthode EBIOS aux projets agiles. Le document d’analyse de risque associé ainsi que le dos-
sier d’homologation de la solution logicielle ne sont pas publiquement disponibles pour des raisons de sécurité; en
revanche, ils peuvent é&tre communiqués sur simple demande aupres de la direction du programme VITAM.

112 Chapitre 6. Sécurité

CHAPITRE /

Architecture détaillée

Les sections qui suivent donnent une description plus fine de 1’architecture interne des services VITAM.

7.1 Access

7.1.1 Généralités

Le role d”access est de :
e Rechercher les Unités d’archives via des mots-clés.
o Afficher la liste des résultats par rapport aux criteres de recherche renseignés.
e Consulter les détails d’une Unité d’archive.

e Modifier les métadonnées d’une Unité d’archive.

7.1.2 Architecture Technique

7.1.2.1 Introduction

7.1.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.access

7.1.2.1.2 Itération 4

5 sous-modules pour le module access. Dans access (parent).

- vitam-access-common : Classes contenant les exceptions, les objets réponses.

113

VITAM - Architecture, Version 7.1.5

- vitam-access-api : Interfaces pour les api publiques.

- vitam-access-client : Classes communes pour les clients.

- vitam-access-core : Classes impléméntant les API publiques.
- vitam-access-rest : module pour les api REST.

7.1.2.1.3 Modules - packages

access

/access-common
fr.gouv.vitam.access.common.exception
fr.gouv.vitam.access.common.model
fr.gouv.vitam.access.config
fr.gouv.vitam.common.model

/access-api
fr.gouv.vitam.access.api
fr.gouv.vitam.api.exception

/access-client
fr.gouv.vitam.access.client

/access-core
fr.gouv.vitam.core

/access-rest
fr.gouv.vitam.access.config
fr.gouv.vitam.access.model
fr.gouv.vitam.acces.rest

7.1.2.2 Access-api

7.1.2.2.1 Présentation

e Package parent :
fr.gouv.vitam.access

e Proposition de package
fr.gouv.vitam.access.api
fr.gouv.vitam.access.exception

term API REST appelées par le client access interne.

Dans le package fr.gouv.vitam.access.core ’interface utilisée :
AccessModule pour les méthodes implementées par le module (access-core)
Dans le package fr.gouv.vitam.access.rest I’interface utilisée :

AccessResource pour les méthodes implémentées par le controlleur REST (access-rest)

7.1.2.3 Access-client

Ce module est utilisé par le module ihm-demo(package fr.gouv.vitam.ihmdemo.core).

114 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.1.2.4 Utilisation

e La factory : Afin de récupérer le client-access , une factory a été mise en place.

// Récupération du client
final AccessClient client = AccessClientFactory.getInstance().
—getAccessOperationClient () ;

e Le Mock Si les parametres de productions sont introuvables, le client passe en mode Mock par défaut. Il est
possible de récupérer directement le mock :

// Changer la configuration du Factory client
AccessClientFactory.setConfiguration (AccessClientType.MOCK) ;
// Récupération explicite du client mock

final AccessClient client = AccessClientFactory.getInstance().
—getAccessOperationClient ();

e Pour instancier son client en mode Production :

// Changer la configuration du Factory
AccessClientFactory.setConfiguration (AccessClientType.PRODUCTION) ;
// Récupération explicite du client
AccessClient client = AccessClientFactory.getlInstance().getAccessOperationClient ();

7.1.2.5 Le client

Le client propose actuellement plusieurs méthodes :

selectUnits(String dslQuery) ; selectUnitbyld(String sqlQuery, String id) ; updateUnitbyld(String update-
Query, String unitld) ; selectObjectbyld(String selectObjectQuery, String objectld) ; getObjectAsInputS-
tream(String selectObjectQuery, String objectGroupld, String usage, int version);

Parametre de la fonction : String ds, String Identification

Le client récupere une réponse au format Json ou au format InputStream.

7.1.2.6 Access-common

7.1.2.6.1 Présentation

Package parent : fr.gouv.vitam.access
Proposition de package : fr.gouv.vitam.access.common

Module utilisé pour les objets communs :
e modeles reponse
e exceptions
e params
e configuration

e autres...

7.1. Access 115

VITAM - Architecture, Version 7.1.5

7.1.2.7 Access-core

7.1.2.7.1 Présentation

Ce module permet d’implémenter les AP/ publiques du module access-api

7.1.2.7.2 Packages :

fr.gouv.vitam.access.core

Classes utilisées
AccessModuleImpl

Classe qui dialogue avec le module métadata. Elle transmet au métadata client d’une requéte dsl.

public JsonNode selectUnit (String selectRequest) {

// Récupération du client métadata

metaDataClientFactory = new MetaDataClientFactory();

metaDataClient = metaDataClientFactory.create (accessConfiguration.
—getUrlMetaDatal());

// appel du client métadata
try {
jsonNode = metaDataClient.selectUnits (
accessModuleBean != null ? accessModuleBean.getRequestDsl() : "");

7.1.2.7.2.1 Récupération d’un objet spécifique

11 faut utiliser la méthode getOneObjectFromObjectGroup() pour récupérer un objet binaire.

Exemple :
try {

InputStream objectData getOneObjectFromObjectGroup ("idObjectGroup",
—queryAsJsonNode, "BinaryMaster", 0, "0");

} catch (MetaDataNotFoundException exc) {
// Handle objectGroup not found
} catch (StorageNotFoundException exc) {
// Object with given qualifier and version was not found in storage offer
} catch (InvalidParseOperationException exc) {
// Handle badly formatted json query
} catch (AccessExecutionException exc) {
// Technical exception that should not happen. The message give details on the error

116 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.1.2.8 Access-rest

7.1.2.8.1 Présentation

API REST appelées par le client access interne. Il y a un controle des parametres (SanityChecker.checkJsonAll) trans-
mis avec ESAPL

7.1.2.8.2 Packages :

fr.gouv.vitam.access.external.config : contient les paramétres de configurations du service web d’application.
fr.gouv.vitam.access.external.model : classes métiers, classes implémentant le pattern DTO... .

fr.gouv.vitam.access.external.rest : classes de lancement du serveur d’application et du controlleur REST.

7.1.2.8.3 fr.gouv.vitam.access.external.rest
7.1.2.8.3.1 Rest API

https://vitam/access-external/v1/units

https://vitam/access-external/v 1 /units/unit_id
https://vitam/access-external/v1/objects
https://vitam/access-external/v1/units/unit_id/objects
https://vitam/access-external/v 1/accessionregisters
https://vitam/access-external/v1/accessionregisters/document_id
https://vitam/access-external/v1/accessionregisters/document_id/accessionregisterdetail
https://vitam/access-external/v1/logbookoperations
https://vitam/access-external/v 1/logbookoperations/operation_id
https://vitam/access-external/v1/logbookunitlifecycles/lifecycle_id
https://vitam/access-external/v1/logbookobjectslifecycles/lifecycle_id
https://vitam/admin-external/v1/collection_id
https://vitam/admin-external/v1/collection_id/document_id

7.1.2.9 -AccessApplication.java

classe de démarrage du serveur d’application.

// démarrage
public static void main(String[] args) {
try {
startApplication (args);
server.join();
} catch (InterruptedException e) ({
e.printStackTrace () ;

}

Dans le startApplication on effectue le start de VitamServer. Le join permet de lancer les tests unitaires et d’arreter
le serveur. Dans le fichier de configuration, le parametre jettyConfig est a paramétrer avec le nom du fichier de
configuration de jetty.

7.1. Access 117

https://vitam/access-external/v1/units
https://vitam/access-external/v1/units/unit_id
https://vitam/access-external/v1/objects
https://vitam/access-external/v1/units/unit_id/objects
https://vitam/access-external/v1/accessionregisters
https://vitam/access-external/v1/accessionregisters/document_id
https://vitam/access-external/v1/accessionregisters/document_id/accessionregisterdetail
https://vitam/access-external/v1/logbookoperations
https://vitam/access-external/v1/logbookoperations/operation_id
https://vitam/access-external/v1/logbookunitlifecycles/lifecycle_id
https://vitam/access-external/v1/logbookobjectslifecycles/lifecycle_id
https://vitam/admin-external/v1/collection_id
https://vitam/admin-external/v1/collection_id/document_id

VITAM - Architecture, Version 7.1.5

7.1.2.10 -AccessResourcelmpl.java

classe controlleur REST La classe contient actuellement 9 méthodes :
1. getUnits()
NB : the post X-Http-Method-Override header

@QPOST

@Path (" /units")

public Response getUnits (String requestDsl,

@HeaderParam ("X-Http-Method-Override") String xhttpOverride) {

try {

if (xhttpOverride != null && "GET".equalsIgnoreCase (xhttpOverride)) {
queryJdson = JsonHandler.getFromString(requestDsl);
result = accessModule.selectUnit (queryJson.toString());

} else {

throw new AccessExecutionException ("There is no 'X-Http-Method-Override:GET' as a
—~header");

}

—

2. createOrSelectUnits()

Récupere la liste des units avec la filtre

NB : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont
I’entéte contiendra « X-HTTP-Method-GET »

méthode createOrSelectUnits() va appeler méthode getUnits()

@POST

@Path (" /units")

@Consumes (MediaType.APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

public Response createOrSelectUnits (JsonNode queryJson,
@HeaderParam(GlobalDataRest.X HTTP_METHOD_OVERRIDE) String xhttpOverride)

3. getUnitByld()
récupere un unit avec son id NB : the post X-Http-Method-Override header

@POST

@Path ("/units/{id_unit}")

@Consumes (MediaType.APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

public Response getUnitById(String queryDsl,
@HeaderParam (GlobalDataRest .X_ HTTP_METHOD_OVERRIDE) String xhttpOverride,
@PathParam("id_unit") String id_unit) {

4. createOrSelectUnitByld()

Note : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont I’entéte contiendra
« X-HTTP-Method-GET »

méthode createOrSelectUnitByld() va appeler méthode getUnitById()

118 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

@POST
@Path (" /units/{idu}")
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response createOrSelectUnitById(JsonNode querydJson,
@HeaderParam(GlobalDataRest.X HTTP_METHOD_OVERRIDE) String xhttpOverride,
@PathParam("idu") String idUnit) {

5. updateUnitById()

mise a jour d’un unit par son id avec une requéte json

@PUT
@Path (" /units/{id_unit}")
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response updateUnitById(String queryDsl,
@PathParam("id_unit") String id_unit) {

6. getObjectGroup()

récupérer une groupe d’objet avec la filtre

Note : the post X-Http-Method-Override header

@QGET
@Path ("/objects/{ido}")
@Consumes (MediaType.APPLICATION_JSON)
@Produces (MediaType.APPLICATION_JSON)
public Response getObjectGroup (@PathParam("ido") String idObjectGroup, JsonNode,,
—queryJson)

7. getObjectGroupPost()

Note : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont I’entéte contiendra
« X-HTTP-Method-GET »

méthode getObjectGroupPost() va appeler méthode getObjectGroup()

@POST

@Path ("/objects/{ido}")

@Consumes (MediaType .APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

public Response getObjectGroupPost (@Context HttpHeaders headers,
@PathParam("ido") String idObjectGroup, JsonNode querydJson)

8. getObject()

récupérer le group d’objet par un unit

7.1. Access 119

VITAM - Architecture, Version 7.1.5

Note : the post X-Http-Method-Override header

QGET
@Path ("/units/{ido}/objects")
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_OCTET_STREAM)
public void getObject (RContext HttpHeaders headers, @PathParam("ido") String,
—1dObjectGroup,
JsonNode query, @Suspended final AsyncResponse asyncResponse) {

9. getObjectPost()

Note : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont I’entéte contiendra
« X-HTTP-Method-GET »

méthode getObjectPost() va appeler méthode getObject()

@POST
@Path ("/units/{ido}/objects")
@Consumes (MediaType.APPLICATION_JSON)
@Produces (MediaType .APPLICATION_OCTET_STREAM)
public void getObjectPost (@Context HttpHeaders headers, @PathParam("ido") String,,
—idObjectGroup,
JsonNode query, (@Suspended final AsyncResponse asyncResponse) {

7.1.2.11 -LogbookExternalResourcelmpl.java

classe controlleur REST

la classe contient actuellement 6 méthodes :
1. getOperationById()
récupere 1’opération avec son id NB : the post X-Http-Method-Override header

@GET
@Path ("/logbookoperations/{id_op}")
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType.APPLICATION_JSON)
public Response getOperationById(@PathParam("id op") String operationId) ({

2. selectOperationByPost()

Note : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont I’entéte contiendra
« X-HTTP-Method-GET »

méthode selectOperationByPost() va appeler méthode getOperationById()

120 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

@POST

@Path (" /operations/{id_op}")

@Consumes (MediaType .APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

public Response selectOperationByPost (@PathParam("id _op") String operationId,
@QHeaderParam ("X-HTTP-Method-Override") String xhttpOverride)

3. selectOperation()

récupérer tous les journaux de 1’opéraion NB : the post X-Http-Method-Override header

@GET
@Path (" /operations™)
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response selectOperation (JsonNode query)

4. selectOperationWithPostOverride()

Note : La méthode HTTP GET n’est pas compatible, on utilisera une méthode HTTP POST dont I’entéte contiendra
« X-HTTP-Method-GET »

méthode selectOperationWithPostOverride() va appeler méthode selectOperation()

@POST

@Path (" /operations™)

@Consumes (MediaType .APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

public Response selectOperationWithPostOverride (JsonNode query,
@HeaderParam ("X-HTTP-Method-Override") String xhttpOverride)

5. getUnitLifeCycle()

récupere le journal sur le cycle de vie d’un unit avec son id

QGET
@Path ("/logbookunitlifecycles/{id_1lc}")
@Produces (MediaType .APPLICATION_JSON)
public Response getUnitLifeCycle (@PathParam("id_ 1c") String unitLifeCycleId)

6. getObjectGroupLifeCycle()

récupere le journal sur le cycle de vie d’un groupe d’objet avec son id

QGET
@Path ("/logbookobjectslifecycles/{id_lc}")
@Produces (MediaType.APPLICATION_JSON)
public Response getObjectGroupLifeCycle (@PathParam("id 1lc") String,
—objectGroupLifeCycleId)

7.1. Access 121

VITAM - Architecture, Version 7.1.5

7.1.2.12 -AdminManagementExternalResourcelmpl.java

classe controlleur REST

la classe contient actuellement 10 méthodes :
1. checkDocument()

vérifier le format ou la regle

@Path("/{collection}™")
@PUT
@Consumes (MediaType .APPLICATION_OCTET_STREAM)
@Produces (MediaType .APPLICATION_JSON)
public Response checkDocument (@PathParam("collection") String collection, InputStream
—document) {

2. importDocument()

Importer le fichier du format ou de la regle

@Path("/{collection}™")
@POST
@Consumes (MediaType.APPLICATION_OCTET_STREAM)
@Produces (MediaType.APPLICATION_JSON)
public Response importDocument (@PathParam("collection") String collection,
—InputStream document) {

3. importProfileFile()

Importer un fichier au format xsd ou rng et I’attacher a un profile métadata déja existant.

@QPath("/{collection}/{id}")
@PUT
@Consumes (MediaType.APPLICATION_OCTET_STREAM)
@Produces (MediaType .APPLICATION_JSON)
public Response importProfileFile (@Context UriInfo uriInfo, @PathParam("collection"),
—String collection, @PathParam("id") String profileMetadatald,
InputStream profileFile) {

4. downloadProfileFileOrTraceabilityFile()

Télécharger un fichier d’un profile métadata existant au format xsd ou rng Ou télécharger un fichier
d’opération de tracabilité

@GET
@Path ("/{collection}/{id}")
@Produces (MediaType.APPLICATION_OCTET_STREAM)
public void downloadProfileFileOrTraceabilityFile (@PathParam("collection") String,
—~collection, @PathParam("id") String profileMetadatald,
@Suspended final AsyncResponse asyncResponse) {

5. findDocuments()

122 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

Récupérer le format, la regle, le contrat (entrée ou acces), le profile.

@QPath("/{collection}")
@GET
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType.APPLICATION_JSON)
public Response findDocuments (@PathParam("collection") String collection, JsonNode
—select) {

6. createOrfindDocuments()

Si la valeur de xhttpOverride est rensigné et égale a GET alors, c’est un find, donc redirection vers la
méthode findDocuments ci-dessus. Sinon, c’est créate. Cette méthode est utilisé pour créer des profiles au
format json. On peut noter que dans ce cas de figure, ca ressemble a la méthode importDocument, sauf
que le Consumes qui change.

@Path ("/{collection}")
@POST
@Consumes (MediaType.APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response createOrfindDocuments (@PathParam("collection") String collection,
—~JsonNode select, @HeaderParam(GlobalDataRest.X_ HTTP_METHOD_OVERRIDE) String,
—xhttpOverride) {

7. findDocumentByID()

En utilisant la méthode POST avec un parametre xhttpOverride, ce méthode permets de récupérer avec un
id en entrée, le format, la regle, les contrats (acces, entrée), les profiles.

@QPath ("/{collection}/{id_document}")

@QPOST
@Produces (MediaType .APPLICATION_JSON)
public Response findDocumentByID (@PathParam("collection") String collection,

—@PathParam("id_document") String documentId, @HeaderParam(GlobalDataRest.X_ HTTP_
—METHOD_OVERRIDE) String xhttpOverride) ({

8. findDocumentByID()

En utilisant la méthode GET, ce méthode permets derécupérer avec un id en entrée, le format, la regle, les
contrats (acces, entrée), les profiles.

@QPath("/{collection}/{id_document}")

QGET
@Produces (MediaType .APPLICATION_JSON)
public Response findDocumentByID (@PathParam("collection") String collection,

@PathParam("id_document") String documentId) {

9. updateAccessContract()

Mise a jour du contrat d’acces

7.1. Access

123

VITAM - Architecture, Version 7.1.5

@PUT
@Path (" /accesscontract")
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response updateAccessContract (JsonNode queryDsl) {

10. updatelngestContract()

Mise a jour du contrat d’entrée

@PUT
@Path (" /contract™")
@Consumes (MediaType.APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
public Response updateIngestContract (JsonNode queryDsl) {

7.1.3 Sécurité

7.2 Batch-report

7.2.1 Généralités

Le role de batch report est de fournir une API permettant de contruire des rapports.

7.2.2 Architecture Technique

7.2.2.1 Introduction

7.2.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.batch.report

7.2.2.1.2 Découpage du code

Il y a 3 sous modules :

- batch-report-client, dont le package est fr.gouv.vitam.batch.report.client, contient le client REST exposé vers
I’exterieur permettant d’appeler I’API de ce module.

- batch-report-common, dont les packages sont fr.gouv.vitam.batch.report.model et
fr.gouv.vitam.batch.report.exception, contiennent les modeles et les exceptions liés a ce module.

- batch-report-rest, dont le package est fr.gouv.vitam.batch.report.rest contient I’ API REST.

124 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.2.2.2 batch-report-client

Ce module contient le client permettant d’appeler I’ API.

7.2.2.3 batch-report-common

Ce module contient I’ensemble de modeles et exception nécessaire au batch report.

7.2.2.4 Acbatch-report-rest

Ce module contient les ressources exposant 1”API du batch report.

7.2.3 Sécurité

7.3 Collect

7.3.1 Généralités

Le rdle d”collect est de :
o Intialiser des transacrions.
e Ajouter des Unités d’archives a la transaction.
e Ajouter un object group a une unité d’archive.
e Ajouter un binaire a un object group.

Fermer la transaction.

Produire un SIP et I’envoyer a Vitam (Ingest).

7.3.2 Architecture Technique

7.3.2.1 Introduction

7.3.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.collect

7.3.2.1.2 Itération 4

2 sous-modules pour le module collect. Dans collect (parent).

- vitam-collect-client : Classes communes pour les clients.
- vitam-collect-rest : module pour les api REST.

7.3. Collect

125

VITAM - Architecture, Version 7.1.5

7.3.2.1.3 Modules - packages

collect

/collect-client

fr.gouv.vitam.collect.external.client
/collect-rest

fr.gouv.vitam.collect.internal.dto
fr.gouv.vitam.collect.internal.exception
fr.gouv.vitam.collect.internal.helpers
fr.gouv.vitam.collect.internal.model
fr.gouv.vitam.collect.internal.repository
fr.gouv.vitam.collect.internal.resource
fr.gouv.vitam.collect.internal.server
fr.gouv.vitam.collect.internal.service

7.3.2.2 collect-client

Ce module est utilisé par les test d’integration(package fr.gouv.vitam.collect).

7.3.2.3 Utilisation

e La factory : Afin de récupérer le client-collect , une factory a été mise en place.

// Récupération du client
final CollectClient collectClient = CollectClientFactory.getInstance().getClient();

e Le Mock Si les parametres de productions sont introuvables, le client passe en mode Mock par défaut. Il est
possible de récupérer directement le mock :

e Pour instancier son client en mode Production :

// Changer la configuration du Factory
CollectClientFactory.changeMode (COLLECT_CLIENT_CONF) ;

7.3.2.4 Le client

Le client propose actuellement plusieurs méthodes :

initProject(VitamContext vitamContext, ProjectDto projectDto) updateProject(VitamContext vitam-
Context, ProjectDto projectDto) getProjectByld(VitamContext vitamContext, String projectld) getTran-
sactionByProjectld(VitamContext vitamContext, String projectld) getTransactionByld(VitamContext
vitamContext, String transactionld) getProjects(VitamContext vitamContext) deleteTransaction-
Byld(VitamContext vitamContext, String transactionld) deleteProjectByld(VitamContext vitamCon-
text, String projectld) getUnitByld(VitamContext vitamContext, String unitld) getUnitsByTransac-
tion(VitamContext vitamContext, String transactionld, JsonNode query) getObjectByld(VitamContext
vitamContext, String gotld) initTransaction(VitamContext vitamContext, TransactionDto transactionDto,
String projectld) uploadArchiveUnit(VitamContext vitamContext, JsonNode unitJsonNode, String
transactionld) addObjectGroup(VitamContext vitamContext, String unitld, Integer version, JsonNode

126 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

objectJsonNode, String usage) addBinary(VitamContext vitamContext, String unitld, Integer version,
InputStream inputStreamUploaded, String usage) closeTransaction(VitamContext vitamContext, String
transactionld) ingest(VitamContext vitamContext, String transactionld) abortTransaction(VitamContext
vitamContext, String transactionld) reopenTransaction(VitamContext vitamContext, String transactionId)
uploadProjectZip(VitamContext vitamContext, String transactionld, InputStream inputStreamUploa-
ded) getObjectStreamByUnitld(VitamContext vitamContext, String unitld, String usage, int version)
searchProject(VitamContext vitamContext, CriteriaProjectDto criteria) updateTransaction(VitamContext
vitamContext, TransactionDto transactionDto) updateUnits(VitamContext vitamContext, String tran-

sactionld, InputStream is) selectUnitsWithInheritedRules(VitamContext vitamContext, JsonNode

selectQuery)

7.3.2.5 collect-rest

7.3.2.5.1 Présentation

A faire

7.3.2.5.2 Packages :

fr.gouv.vitam.collect.dto : contient les objets entrants et sortants du service web d’application.

fr.gouv.vitam.collect.exception : classes d’exceptions gérées par le module collecte.

fr.gouv.vitam.collect.helpers : classes gérant la structure des objets en interne du module collecte.

fr.gouv.vitam.collect.model : classes interne du module collecte.

fr.gouv.vitam.collect.repository : classes pour mapper les objets de la base de données.

fr.gouv.vitam.collect.resource : classe du controlleur REST qui contient les endpoints.

fr.gouv.vitam.collect.server : classes de lancement du serveur d’application.

fr.gouv.vitam.collect.service : classes fonctionnelles.

7.3.2.5.3 fr.gouv.vitam.collect.resource
7.3.2.5.3.1 Rest API

https://vitam/collect/v1/transactions
https://vitam/collect/v1/units
https://vitam/collect/v1/objects/{usage }/{ version }
https://vitam/collect/v1/objects/{usage }/{ version }/binary
https://vitam/collect/v1/transactions/close
https://vitam/collect/v1/transactions/send
https://vitam/collect/v1/projects/{ projectld }/binary
https://vitam/collect/v1/projects/{ projectld }/units

7.3.2.6 -TransactionResource.java

classe controlleur REST La classe contient actuellement 6 méthodes :

1. initTransaction()

7.3. Collect

127

https://vitam/collect/v1/transactions
https://vitam/collect/v1/units
https://vitam/collect/v1/objects
https://vitam/collect/v1/objects
https://vitam/collect/v1/transactions/close
https://vitam/collect/v1/transactions/send
https://vitam/collect/v1/projects
https://vitam/collect/v1/projects

VITAM - Architecture, Version 7.1.5

@Path ("/transactions")

@POST

@Consumes (APPLICATION_JSON)

@Produces (MediaType .APPLICATION_JSON)

@Secured (permission = TRANSACTION_CREATE, description = "Créer une transaction")
public Response initTransaction(TransactionDto transactionDto) {

2. uploadArchiveUnit()

Ajouter une unité archivistique

@Path ("/transactions/{transactionId}/units")
@POST
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType.APPLICATION_JSON)
@Secured (permission = TRANSACTION_UNIT_CREATE, description = "Créer une
—unité archivistique")
public Response uploadArchiveUnit (@PathParam("transactionId") String,,
—transactionId, JsonNode unitJsonNode) {

3. uploadObjectGroup()

ajouter un object group a une unité archivistique NB : the post X-Http-Method-Override header

@Path (" /units/{unitId}/objects/{usage}/{version}")
@POST
@Consumes (MediaType .APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
@Secured (permission = TRANSACTION_OBJECT_UPSERT, description = "ajouter ou,
—modifier un objet group")
public Response uploadObjectGroup (@PathParam("unitId") String unitId,
@PathParam("usage") String usageString,
@PathParam("version") Integer version,
ObjectDto objectDto) {

4. upload()

méthode pour uploader un binaire

@Path (" /units/{unitId}/objects/{usage}/{version}/binary")
@POST
@Consumes (MediaType .APPLICATION_OCTET_STREAM)
@Produces (MediaType .APPLICATION_JSON)
@Secured (permission = TRANSACTION_BINARY_UPSERT, description = "ajouter ou modifier
—un binaire")
public Response upload(@PathParam("unitId") String unitId,
@PathParam("usage") String usageString,
@PathParam("version") Integer version,
InputStream uploadedInputStream) throws CollectException {

5. closeTransaction()

128 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

fermeture de la transaction

@Path (" /transactions/{transactionId}/close")
@POST
@Consumes (APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
@Secured (permission = TRANSACTION_CLOSE, description = "Fermer une transaction")
public Response closeTransaction (@PathParam("transactionId") String transactionId) ({

6. generateAndSendSip()
génerer un SIP et I’envoyer a Vitam

@QPath ("/transactions/{transactionId}/send")
@POST
@Consumes (APPLICATION_JSON)
@Produces (MediaType .APPLICATION_JSON)
@Secured (permission = TRANSACTION_SEND, description = "Envoyer une transaction™)
public Response generateAndSendSip (@PathParam("transactionId") String transactionId) {

7.3.3 Sécurité

7.4 Common

7.4.1 Architecture Fonctionnelle

7.4.1.1 Introduction

7.4.1.1.1 But de cette documentation

L’ objectif de cette documentation est d’expliquer I’ architecture fonctionnelle de ce module.

7.4.1.1.2 GUID

Cf chapitre dédié

7.4.1.1.3 Serverldentity et Logger

Ces 2 packages sont liés car Serverldentity fournit des informations utiles au Logger.
Le Logger enverra un certain nombre d’information vers le log centralisé, via un filtre issu de VitamLoggerHelper.

Cette centralisation permettra notamment d’avoir des informations analysées par 1’outil d’administration (par défaut,
ELK).

L’ensemble des logs seront centralisés mais tous n’iront pas dans la partie « analytique » des logs.

7.4.1.2 GUID

Le sujet porte notamment sur les GUID.

7.4. Common 129

VITAM - Architecture, Version 7.1.5

7.4.1.2.1 Présentation de la problématique
7.4.1.2.1.1 Qu’est ce qu’une URL pérenne ?

e Les URL pérennes sont des adresses internet particulieres qui permettent de citer un document numérique, tout
en ayant la garantie que ce lien hypertexte ne risque pas de changer.
o Il existe différents systemes permettant de créer des URL pérennes. Cela conduit a la gestion d’identifiants
pérennes.

7.4.1.2.1.2 Objectifs

e L’objectif de la mise en place de ces URL est de faciliter la « citabilité » et le référencement de documents
numériques, donc 1’acces (ou mieux encore I’accessibilité, la présence. . .)

e Permet d’ajouter un document dans ses favoris, de le citer sur un site Web, dans un mail, sur un blog ou
sur les réseaux sociaux (et autres forums), simplement en utilisant I’adresse avec la garantie que I’acces
sera préservé dans le temps

e La mise en ceuvre d’URL avec identifiants pérennes permet :
e d’afficher I’identifiant pérenne dans la barre d’URL lors de la consultation d’un document numérisé ;

e de conserver dans I’'URL le nom de domaine du contexte de visualisation (différents services peuvent
exposer le méme objet numériques avec des visualisations différentes)

e d’appeler chaque service de visualisation (pagination, table des matieres, etc.) dans I’'URL a I’aide d’un
parametre simple, nommé « qualifieur »;

e d’obtenir plus facilement qu’auparavant I’'URL d’une page précise au sein d’un document numérisé.

7.4.1.2.1.3 Préconisation E-ARK

e Requirement 2.4 : It SHOULD be possible to identify any Information Package globally uniquely
e « Globally » par opposition a « repository » qui vaut pour le SAE en charge a un instant ¢

7.4.1.2.2 Solutions envisagées

Identifiants au format ARK et au format « Vitam »

7.4.1.2.2.1 ARK

Source : http://tools.ietf.org/id/draft-kunze-ark- 15.txt

7.4.1.2.2.2 Forme d’un ARK

[http://NMAH/{]}ark:/NAAN/Name{[}Qualifier]
o [http://NMAH/]
e Non obligatoire : Indique le lien Web complet, y compris I’URL d’acces.
o ark :/NAAN/Name
o NAAN indique la référence du contexte (BNF par exemple) via un identifiant attribué

e Name indique la référence unique de 1’objet dans le contexte NAAN
e [Qualifier]
e Permet de préciser le « type » de ce qu’on veut accéder (métadonnées, original, .. .)

130 Chapitre 7. Architecture détaillée

http://tools.ietf.org/id/draft-kunze-ark-15.txt
http://NMAH/{]}ark:/NAAN/Name{[}Qualifier
http://NMAH/

VITAM - Architecture, Version 7.1.5

7.4.1.2.2.3 Identifiant Vitam

La logique est d’utiliser des GUID (Global Unique Identifier) pour chacun des éléments dans Vitam (Unit, Groupe
d’objet, Objets mais aussi Journaux, Logs, Services, . ..).

7.4.1.2.2.4 Logique de construction

e Version fixe
e Type d’objet fourni en parametre

e Domaine métier / Tenant (NAAN) fourni en parametre et lié au tenant ou a un numéro 0 (interdit sinon) pour le test uniqu

e Lavaleur 1 serait sans doute pour toute la plateforme (information transverse a tous les tenants).
o Identifiant plate-forme fixe par fichier de propriété ou dynamique pour les ccas non Vitam (offres de stockage)
e Processus calculé a I’instanciation de la classe
e Temps UTC dynamique

e Compteur discriminant en fonction du temps UTC (seule zone de calcul en mode « synchronized » pour assurer
I’unicité au sein d’une JVM)

e 4 bits de fin a zéro

7.4.1.2.2.5 Logique d’affichage

e Vision ARK : ark :/Domaine sur 9 chiffres/reste des informations avec la méme logique que la vision Vitam
e Vision Vitam : dans I’ordre et représenté en forme Base 32
1. Domaine
Version
Type d’objet
Plate-forme
Processus
Temps UTC

Compteur

® NNk »D

Non utilisé

7.4.1.2.2.6 Capacité de déconstruction

Il faudra déterminer ce qui pourrait étre reconstruit depuis un identifiant Vitam de ce qui ne devrait pas, mais a priori
toutes les informations seraient re-constructibles.

1. Domaine
o [intérét est de pouvoir déterminer rapidement si un identifiant concerne un Tenant en particulier.
2. Version

e L’intérét est de pouvoir déchiffrer tres vite sur quelle s’ appuie 1’identifiant et donc I’extraction des éléments
suivants

3. Type d’objet
e Utile dans le cadre d’un service « WhoAml » calculé sans appel a la base

4. Plate-forme

7.4. Common 131

VITAM - Architecture, Version 7.1.5

e Utile pour la tragabilité des opérations
5. Processus
e Utile pour la tragabilité des opérations
6. Temps UTC
e Utile pour la détermination a posteriori de I’adéquation du temps « officiel » avec le temps de création de
I'ID
7. Compteur

e A priori sans intérét particulier (a pour objet uniquement d’éviter les collisions)

7.4.1.3 Graphes

Vitam traite des arbres des archive units et des groupes d’objet qui peuvent étre présenter par des graphes
précisement par Graphe orienté acyclique(D.A.G).

7.4.1.3.1 Objectifs

Pour vérifier la structure des arbres dans le bordereau SEDA (on n’a pas des cycles dans les arbres des
units), et pour cela il faudrait créér des Graphes orientés. un autre probléme qui s’impose pour un fichier
seda complexe, I’ordre de I’indexation : il faut toujours indexer les parents avant les fils afin qu’ils puissent
hériter toutes les informations des parents lors de 1’indexation.

7.4.1.4 Vérification des formats :

Cette vérification de format devra intervenir a différents endroits du processing, et pour différents types de workflow.
A T’heure actuelle, pour le processus d’Ingest, nous avons :

o vérification du format du SIP intégré dans 1’upload (zip, tar, tar.gz...)
e vérification des objets techniques contenus dans le SIP.

I apparait clairement, qu’une mise en commun de cet outil doit étre effectué. C’est pourquoi le module common-
format-identification a été ajouté dans la partie commune. De cette maniere un outil de vérification des formats pourra
étre utilisé dans n’importe couche Vitam, si besoin.

Pour le moment, I’outil choisi pour effectuer cette vérification de format est Siegfried.

7.4.2 Architecture Technique

7.4.2.1 Introduction

7.4.2.1.1 But de cette documentation

L’ objectif de cette documentation est d’expliquer I’ architecture fonctionnelle de ce module.

7.4.2.1.2 GUID

Cf chapitre dédié

132 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.4.2.2 GUID

Le sujet porte notamment sur les GUID.

7.4.2.2.1 Identifiant Vitam

La logique est d’utiliser des GUID (Global Unique Identifier) pour chacun des éléments dans Vitam (Unit, Groupe
d’objet, Objets mais aussi Journaux, Logs, Services, ...).

Le GUID s’appuie sur I’objet Serverldentity que chaque Service (JVM) doit instancié correctement.

7.4.2.2.1.1 Forme d’un identifiant Vitam

o Identifiant en base 32 (pour des raisons de lisibilité et d’éviter des erreurs de transcription)
e Longueur de 36 caracteres base 32 représentant 22 octets natifs
e [’identifiant ne doit pas étre trop long car il colite en mémoire et sur disque

e pour 10 milliards d’objets, on peut estimer qu’un octet cotlite 100 Go sur disques et 1 Mo en mémoire par
serveur

e La composition de I’identifiant serait a priori la suivante : 22 octets soit 168 bits
e Une version de 1’algorithme d’identifiant entre O et 255 (8 bits)
e Un identifiant de type d’objets entre 0 et 255 (Unit, Groupe d’objets, Objet, Entrée, Transfert, Journal, ...)

(8 bits)
e Un domaine métier = tenant entre 0 et 2*30-1 permettant une distribution par tenant, correspondant au
NAAN de ARK (30 bits)

o ARK impose une longueur de 5 ou 9 caractéres en numérique uniquement
e Compte tenu que la liste ARK dépasse déja 95 000, il faudrait peut-&tre anticiper la taille a 9 chiffres
e Un identifiant de plateforme entre 0 et 2*31-1 permettant une distribution par instance Vitam (31 bits)

e Cet identifiant serait en 2 parties : partie fixe par plate-forme (1 par site ou 1 pour 3 sites), partie
variable par instance de host (VM)

e La partie plate-forme devrait permettre 2220-1 items, soit 20 bits
e La partie par instance de host devrait permettre 2*11-1 items, soit 11 bits

o Cet identifiant est assimilable & une adresse MAC mais dont la garantie n’est pas suffisamment fiable
en virtuel (assignation dynamique de MAC address)

o Cet identifiant de 31 bits pourrait aussi étre utilisé dans d’autres cas que Vitam pur, comme dans une
offre de stockage pour gérer la distribution

e Par exemple : Distribution sur les Cas Container sur 20 bits et distribution d’un Cas Storage dans
un Cas Container sur 11 bits

e Un identifiant de processus attribuant I’Id (0 a 2722-1) (22 bits)
e Le temps UTC exprimé en millisecondes entre 0 et 2°48-1 (8 925 années apres 1970) (48 bits)
e Un compteur discriminant de milliseconde entre 0 et 2724-1 (24 bits)

Avertissement : Risque de collisions autour de 2717 ~ 100K GUID générés par millisecondes, donc avec la
progression des puissances de calculs sur 20 ans (Loi de Moore approchée : *2 tous les 3 ans) = 2A7+17 = 224

Note : Certains bits ne sont pas utilisés (5) pour de futurs usages.

7.4. Common 133

VITAM - Architecture, Version 7.1.5

7.4.2.3 Configuration jetty

Le besoin est de pouvoir fournir la capacité de configurer de maniere programmatique Jetty. On peut penser aux
besoins suivants :

1. Choisir le port de connection
2. Choisir le connecteur HTTP/HTTPS que I’on désire utiliser
e Parametres communs aux connecteurs HTTP et HTTPS
e Taille des pools de thread (min,max nombre de threads)
e Taille du backlog (nombre de connections en attente d’un thread disponible)
e Différents timeout
e Paramétres spécifiques a la couche TLS
e Paramétres liés aux keystore (emplacement, mot de passe keystore, mot de passe des clés privées)
e Paramétres liés aux trustore (idem keystore)

e Paramétres liés a TLS (protocoles autorisés, ciphers autorisés, options TLS)

7.4.2.4 Gestion des Handlers :

Pour la gestion de ces différents parametres, on utilise le systéme de configuration en “Inversion of Control” de Jetty.
Un exemple de configuration est disponible a 1’adresse suivante : https://gist.github.com/gustavosoares/1438086

Cette solution présente les avantages suivants : une gestion relativement souple de la configuration (la prise en
compte du binding d’un parametre ne nécessite pas de coder le binding) un exploitant qui connait déja Jetty
sera en terrain connu de configuration

Parmi les choix a faire, il faut décider si on limite la configuration par fichier xml a la configuration “serveur d’appli-
cation” ou si on pousse a la configuration des servlet .

L’important est d’utiliser la classe XMLConfiguration (package maven jetty-xml) dont la javadoc est disponible
a I’adresse : http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/xml/XmlConfiguration.html Pour la
mise en oeuvre de ce composant, voici le pseudo code :

URL jettyConfigFileURL = PropertiesUtils.findFile(<fichier>).toURI () .toURL();
Server JjettyServer = (Server) new XmlConfiguration (jettyConfigFileURL) .configure();
<Ajout RequestHandler>

<Ajout ContextHandler>

jettyServer.start ();

avec fichier qui est défini de la maniére suivante :

e Si Le fichier passé en ler argument du module (ex : access.conf) contient une variable nommé « jettyConfig »
alors le serveur cherche dans son répertoire un configuration un fichier du nom de la valeur de jettyConfig .

o Sila variable jettyConfig n’existe ou s’il n’existe pas de fichier correspond a la valeur de la variable “jettyConfig”
, le serveur cherche un fichier « jetty-vitam.xml » dans le répertoire de configuration

e Si les 2 premiers cas échoue, le serveur s’arréte en erreur

A noter : pour les tests Unitaires, comme il n’y a pas de besoins de tuning particulier (pour I’instant) et qu’il y a un
besoin d’avoir le port variable, on conserve la méthode actuelle pour démarrer les serveur (la méthode actuelle est de
faire un (new Server (port) de la classe org.eclipse.jetty.server.Server).

Les modules concernées sont :
e access-rest
e ihm-demo-web-application

e ingest-external-rest

134 Chapitre 7. Architecture détaillée

https://gist.github.com/gustavosoares/1438086
http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/xml/XmlConfiguration.html

VITAM - Architecture, Version 7.1.5

e ingest-internal-rest
e metadata-rest

TODO : * functional-administration-rest * logbook-rest * processing-management * storage-engine-server *
storage-offer-default * workspace-rest

7.4.2.5 Schéma de certificats et d’authentification

7.4.2.5.1 Présentation

Pour sécuriser les échanges, les services externes (ingest-external et access-external) seront exposés en HTTPS avec
une authentification TLS mutuelle (authentification des clients par certificats x509). Pour permettre la consultation des
URLSs de status sans disposer de certificat (par exemple, pour la supervision), au niveau TLS, I'usage d’un certificat
client sera proposé mais non obligatoire (WANT et non NEED clientCertificate) Si un certificat est présenté, - Jetty
fait la poignée de main TLS et refuse si le certificat n’est pas « valide » a ses yeux. Un certificat valide est un certificat
signé par une autorité présente dans la liste des autorités de confiance du serveur (truststore), qui n’est pas expiré
(champs Not Before, Not After), qui, s’il implémente les extensions x509 keyUsage et extendedKeyUsage, dispose
des bons droits pour étre un certificat client. Si le client présente un certificat client invalide, jetty ferme la session TCP
- Shiro vérifie si le certificat présenté et bien autorisé par Vitam. Dans I’'implémentation actuelle (itération 8), cela

1. Configuration serveur jetty : le serveur sera lancé avec 2 magasins de clé suivants - keystore.jks : contient le certificat
le 1a clé privé du serveur - truststore.jks : contient la chaines des CAs qui génere ce certificats de clients & serveurs
2.Configuration de Shiro - granted_certs.jks : list de certificats du client qui sont autorisés a faire des requétes vers le
serveur - truststore.jks : contient la chaines des CAs qui génere ce certificats de clients & serveurs 3. Configuration
client : le client qui doit présenter sa clé privé & le certificat (format certificat PEM ou PKCS12 contenant clé privé
ou publique) pour I’authentification lors de la requéte.

7.4.2.6 Common format identification

7.4.2.6.1 Présentation

Le fonctionnement de cette brique est la suivante. Un outil d’identification est installé sur un environnement a déter-
miner. Ce service offre une API Rest permettant d’obtenir :

e un status

e ’analyse d’un format en fonction du Path vers le fichier a analyser.

Package parent : fr.gouv.vitam.common.format.identification

7.4.2.6.2 Sous packages
7.4.2.6.2.1 Identification :

Package : fr.gouv.vitam.common.format.identification

Ce package contient une factory, une interface de client, ainsi qu’un client mocké. Il contient également une enum
précisant les différents clients disponibles (pour I’instant au nombre de 2 : siegfried + mock).

7.4. Common 135

VITAM - Architecture, Version 7.1.5

7.4.2.6.2.2 Exceptions :

Package : fr.gouv.vitam.common.format.identification.exception

Exceptions retournées par la vérification de formats. Sont au nombre de 5 :
e FileFormatNotFoundException : exception levée en cas de non résolution d’un format de fichier.
e FormatldentifierBadRequestException : exception levée si la requete soumise a 1’outil n’est pas correcte.
e FormatldentifierFactoryException : exception levée dans le cadre de la factory.
e FormatldentifierNotFoundException : exception levée si I’outil ne peut pas €tre interrogé.

e FormatldentifierTechnicalException : exception levée en cas d’erreur technique générique.

7.4.2.6.2.3 Model :

Package : fr.gouv.vitam.common.format.identification.model

Ce package contient une classe de configuration ainsi que 2 POJO de réponses pour des appels au service.

7.4.2.6.2.4 Siegfried :

Package : fr.gouv.vitam.common.format.identification.siegfried

Ce package contient les différences classes pour 1’utilisation d’un client Siegfried. Une factory, un mock ainsi qu’un
client REST.

7.4.2.7 Messages

La classe fr.gouv.vitam.common.il8n.Messages permets de récupérer des messages internationalisé par I’ utilisation
d’un ResourceBundle.
Elle utiliser des fichiers de resources properties dans le format suivant : messages_fr.properties ou :
e messages est le nom du bundle
e frestlalocale
Aujourd’hui, seule la locale « fr » est gérée et les fichiers doivent étre créés dans le dossier src/main/resources du

module common-public.

Cette classe peut étre utilisée en définissant un service qui utilise la classe Messages avec un fichier custom.

7.4.2.8 Messages Logbook

Ce service permet de centraliser les messages des logbooks.
e Nom du bundle : vitam-logbook-messages
e Service : fr.gouv.vitam.common.i18n.VitamLogbookMessages.java

Ce service offre des méthodes permettant de récupérer des messages de logbook opération et cycle de vie. 11 offre éga-
lement la possibilité de récupérer toutes les clés et messages du fichier. Cette méthode ne doit étre que ponctuellement
pour des raisons de performance (elle est destinée a I’'thm-demo).

136 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.4.2.9 Request ID

Le Request ID est un identifiant métier de corrélation qui doit étre positionné par I’appelant.
Il permet de suivre un traitement a travers tous les services qui y participent.

Cet identifiant est transporté par le header HTTP « X-REQUEST-ID ».

7.4.2.9.1 Filtre client

Classe : fr.gouv.vitam.common.client2.RequestIdClientFilter
Récupere le Request ID depuis le VitamSession et le positionne dans le Header « X-REQUEST-ID ».

Ce filtre est référencé dans fr.gouv.vitam.common.client2. AbstractCommonClient.AbstractCommonClient(VitamClientFactorylnterface<

7.4.2.9.2 Sauvegarde dans le thread local

Package : fr.gouv.vitam.common.thread

Le Request ID est sauvegardé dans l’objet VitamSession qui est positionné dans le VitamThreadFac-
tory.VitamThread qui étend le thread local.

Le VitamThreadPoolExecutor gere la recopie du VitamSession d’un thread pére vers un thread fils.
Le VitamThreadPoolExecutor.VitamRunnable encapsule le VitamThreadFactory.VitamThread.

VitamThreadUltils permet de récupérer le VitamSession. Si 1’état du thread ne le permet pas, une VitamThreadAc-
cessException est levée.

7.4.2.9.3 Filtre Serveur

Classe : fr.gouv.vitam.common.server2.RequestldContainerFilter
Extrait le Request ID depuis le Header « X-REQUEST-ID » et le positionne dans le VitamSession.
Ce filtre est référencé dans fr. gouv.vitam.common.server2.application.AbstractVitamApplication.buildApplicationHandler()

Si le request ID présent dans la session n’était pas nul, on trace un warning.

7.4.2.9.4 Affichage dans les logs

Pour afficher le request ID dans les logs, le mécanisme MDC de Logback est utilisé : http://logback.qos.ch/manual/
mdc.html

Dans le VitamSession, lorsque qu’on fait un setRequestld, cela positionne la valeur au niveau du MDC :
MDC.put(GlobalDataRest.X_REQUEST_ID, newRequestld) ;
Dans la configuration de Logback, on rajoute % X{X-REQUEST-ID} dans le pattern de log. Par exemple :

<pattern>%d{IS08601} [%thread] [**%X{X-REQUEST-ID}**x] %-5level %logger - S%replace (
—%caller{l..2}){'Caller\+1 at [\n',''} : %$msg %$rootException{5}%n</pattern>

7.4. Common 137

http://logback.qos.ch/manual/mdc.html
http://logback.qos.ch/manual/mdc.html

VITAM - Architecture, Version 7.1.5

7.4.3 Securite

7.4.3.1 Introduction
7.4.3.2 Securité de MongoDB

7.4.3.2.1 Objectifs

L’ objectif est de sécuriser I’access a la base de donnée MongoDB. MongoDB exige que tous les clients de s’ authentifier
afin de déterminer leur acces.

Pour contrdler ’access a Mongo, vous avez besoin de créer une base de donnée pour chaque module (ex. MetaData,
Logbook et Functional-administration) et ajouter les comptes applicatifs aux bases de données.

e Pour functional-administration : db-functional-administration ; user : user-functional-administration
e Pour logbook : db-logbook ; user : user-logbook
e Pour metadata : db-metadata; user : user-metadata

Lorsque vous ajoutez un compte applicatif, vous créez I’utilisateur avec son mot de passe dans une base de données
spécifique. Cette base de données est la base de données d’authentification pour 1’ utilisateur.

7.4.3.3 secret de la plateforme

7.4.3.3.1 Objectifs

Un secret de plateforme est utilisé afin de protéger contre des erreurs de configuration entre différentes plateformes

Si le secret de plateforme n’est pas transmis ou s’il est faux (non reconnu), la requéte doit étre refusée. Si le secret de
plateforme est transmis et reconnu, la requéte s’exécute normalement.

7.5 Functional administration

7.5.1 Architecture Fonctionnelle

7.5.1.1 Introduction

7.5.1.1.1 But de cette documentation

Ce document fournit une vision globale sur le module functional-administration.
Le module functional-administration propose un service de gestion sur les aspect différents de la plate-forme VITAM.
Pour I’instant, deux fonctionnalités de gestion prévues supportées

e gestion de format

e gestion de régles

e gestion des contrats d’acces

e gestion des contracts d’entrée

e gestion des profiles

e gestion des contextes

e gestion des profiles de sécurité

138 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.5.1.2 Gestion de format

7.5.1.3 Gestion de régles

L application VITAM permet d’importer un référentiel pour les regles de gestion.

Un référentiel peut étre importé plusieurs fois.

Si une regles de gestions est lié a une archive unit alors cette regles de gestion ne peux pas étre supprimer.

Si une regles de gestions présente dans le référentiel a été modifiée alors la version de la régles est égale a la
version du référentiel.

7.5.1.4 Sauvegarde du référentiel des regles de gestion

o Le référentiel importé est stocké dans I’espace de stockage avec sa version.

7.5.2 Architecture Technique
7.5.2.1 Introduction
7.5.3 Securite

7.5.3.1 Introduction

7.6 IHM demo

7.6.1 Architecture fonctionnelle
7.6.1.1 Architecture fonctionnelle de I'application Back

7.6.1.1.1 But de cette documentation

On présente dans ce document I’architecture fonctionnelle de I’application Back IHM de VITAM.

7.6.1.1.2 Fonctionnement général du module

L’application IHM-DEMO est une application web dont la partie Front est une application Single Page développée
avec le framework AngularJS 1.5.3 et c6té serveur on utilise un serveur Jetty intégré qui gere les appels a ses services
REST. Dans ce document, on s’intéresse a 1’application coté serveur. On détaille dans la suite le fonctionnement par
service REST.

Prudence : La solution logicielle VITAM étant avant tout un back office, si vous possédez une /HM raccordée a
VITAM, il n’est pas recommandé d’installer ce composant en environnement de production.

7.6. IHM demo 139

VITAM - Architecture, Version 7.1.5

7.6.1.1.2.1 Recherche des units : POST /ihm-demo/v1/api/archivesearch/units

L application Front construit en amont un objet Json passé dans le corps de la requéte HTTP qui décrit les criteres de
recherche, les colonnes a afficher et le tri par défaut. Ci-dessous, la structure de 1’objet regu :
{ Title = titleCriteria

projection_transactdate = « TransactedDate »

projection_id = « #id »

projection_title = « Title »

orderby = « TransactedDate »

o L’entrée Title définit la chaine de caracteres saisie par 1’utilisateur et utilisée pour la recherche exacte sur les
titres des archive units.

e Pour faire la distinction entre les champs utilisés dans la partie gquery de la requéte DSL et les colonnes sélec-
tionnées (projection), le préfixe projection_ doit étre ajouté a toutes les colonnes a afficher. Le résultat affiché
inclut les colonnes TransactedDate, id et Title.

e [’entrée orderby définit la colonne sur laquelle le tri par défaut sera fait coté serveur.

e Il faudrait noter ici le caractere # ajouté a la sélection du champ _id. En fait, afin de permettre la sélection des
champs protégés tels que _id il faut remplacer le caractere _ par le caractere #.

Cet objet est convertit en Map<String, String> qui sera utilisée pour construire la requéte DSL de sélection. On passe
la main maintenant a la classe utilitaire DslQueryHelper qui construit a partir de la Map recue la requéte DSL de
sélection. Une instance de la classe fr.gouv.vitam.builder.request.construct.Select est créée et alimentée pour obtenir a
la fin la structure suivante :

{

$query :[{« $and » :[{« $Seq » :{« title » : »titleCriteria » } }]}],

$filter :{ « $orderby » :{« TransactedDate » :1}},

$projection :{« $fields » :{« Title » :1, « #id » :1, « TransactedDate » : 1}}
1

La classe UserInterfaceTransactionManager appelle le client Access qui prend en charge 1’appel de MetaData et la
récupération du résultat de recherche. Ci-dessous la structure du résultat retourné a 1’application Front :

{ $hint : { total :x },
$context : {},
$result : [tableau des archive units trouvées]

7.6.1.1.2.2 Affichage du détail d’'une archive unit : GET /ihm-demo/v1/api/archivesearch/unit/{id}

Le processus d’affichage des détails d’une archive unit est déclenché suite a une sélection faite sur un résultat de
recherche. L’id de I’unité sélectionnée est passé en tant que parametre dans I’URL.

Pour indiquer qu’il s’agit d’une sélection par id (c’est a dire une archive unit spécifique), la Map utilisée pour la
construction de la requéte DSL va contenir seulement une entrée : (SELECT_BY_ID, id). De ce fait, la requéte DSL
de sélection introduit I’entrée root égale a I’id de 1’unit sélectionnée. Donc, on aura la structure suivante :

{« $roots » :[id], »$query » :[], »$filter » :{ }, »$projection » :{}}
De méme, on appelle le client Access pour passer la requéte au moteur MetaData qui retourne la structure de résultat
de recherche mais on aura dans le bloc $result un tableau contenant un seul objet qui est I’archive unit sélectionnée.
{ $hint: { total :1 },

$context : {},

$result : [{détails de I’archive unit sélectionnée (toutes les colonnes)}]

140 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.6.1.1.2.3 Modification et enregistrement des détails d’une archive unit : PUT /ihm-
demo/vi/api/archiveupdate/units/{id}

Au niveau du formulaire d’une archive unit, I’ utilisateur peut modifier toutes les données affichées mises a part I’id et
les données de management. L’ application Front passe seulement les champs qui ont été modifiés pour la sauvegarde
sous la forme d’un tableau d’objet Json. Dans la suite la structure retournée :

[{« fieldId » : »XXXXXXXX », »newFieldValue » : »VVVVVVVVV »}, {«fieldld » : »YYYYYYYYY », »new-
FieldValue » : »VVVVVVVVV »}, . .]

On convertit cette structure en Map<String, String> et on ajoute une entrée (SELECT_BY_ID, id)
pour intégrer le bloc root a la construction de la requéte DSL de I'update. on construit cette fois-
ci une instance de la classe frgouv.vitam.builder.request.construct.Update et on ajoute des Actions de type
Jr.gouv.vitam.builder.request.construct.action.SetAction.

Voici un exemple de la requéte obtenue :

{« $roots » :[id], »$query » :[], »$filter » :{ }, »$action » :[{ « $set » : { « date » : »09/09/2015 » } },{ « $set » : { « title » : »Ar-
chive2 »}}1}

De nouveau, on passe la requéte DSL a Access qui retourne a son tour le résultat de I’opération d’update avec la méme
structure des requétes de sélection mais sans résultat car 1’application Front relance la récupération de 1’archive unit a
la réception de la réponse.

7.6.1.1.2.4 Remarque importante

Pour le moment, on ne gere pas la mise a jour des champs de type tableau qui va faire appel a un autre type d’action.

7.6.1.1.2.5 Reste a faire

Dans la suite les services REST qui sont en cours de traitement :

e Recherche sur les opérations logbook

Affichage du détail d’une opération logbook

Téléchargement d’un SIP

Recherche sur le référentiel des formats

Affichage du détail d’un format

e Validation d’un référentiel a télécharger

Téléchargement d’un référentiel de formats

e Suppression d’un format

7.6.1.2 Architecture fonctionnelle de I'application Front

7.6.1.2.1 But de cette documentation

Cette documentation présente 1’architecture fonctionnelle de 1’application Front du programme VITAM.

7.6. IHM demo 141

VITAM - Architecture, Version 7.1.5

7.6.1.2.2 Modules AngularJS déclarés

Afin d’assurer la modularité et la séparation des différentes fonctionnalités de 1’application Front, on a opté pour créer
des modules AngularJS par fonctionnalité. Dans la suite les modules spécifiques créés :

e ihm.demo : Module principal
e core : Module qui regroupe les factories, services (fonctionnalités partagées entre les controllers)
e archiveSearch : Module de recherche d’archives

e archive.unit : Module du formulaire d’une archive

7.6.1.2.3 Routage

Les routes sont déclarées dans le fichier /modules/parent/app.config.js :
o /archiveSearch : Recherche sur les Archive Units
e /importPronoun : Import du référentiel PRONOUN
o /uploadSIP : Import de SIP
e /archiveunit/ :archiveld : Affichage des détails d’une archive unit
e /admin/logbookOperations : Journal des opérations
e /admin/formats : Recherche sur le référentiel PRONOUN
¢ /admin/logbookLifecycle : en cours de construction

e /admin/managementrules : en cours de construction

7.6.1.2.4 Factories/Services

On a eu recours a des factories et des services pour assurer certaines fonctionnalités qui nécessitent un passage de
données entre les controllers définis.

e ihm-demo-factory.js [trois factories ont été déclarées dans ce fichier :]
1. ihmDemoFactory [définit les appels http aux services REST suivants :]
e POST /ihm-demo/v1/api/archivesearch/units
e GET /ihm-demo/v1/api/archivesearch/unit/id
e PUT /ihm-demo/v1/api/archiveupdate/units/id
o GET modules/config/archive-details.json
2. ihmDemoCLient : crée un client RESTAngular configurable
3. idOperationService : recherche 1’id d’une opération logbook dans une liste de résultat
e ihm-demo-service.js [un seul service a été déclaré dans ce fichier :]

e archiveDetailsService [définit la fonction findArchiveUnitDetails qui assure la récupération et 1’ affi-
chage des détails d’une archive unit et qui prend en parametre :]

1. archiveUnitld : id de I’archive unit a afficher

2. displayFormCallBack : fonction callback qui gere 1’affichage du détail a la réception du retour
de I’appel REST

3. failureCallback : fonction callback qui gere I’echec de I’appel REST de récupération des détails
d’une archive unit

142 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.6.1.2.5 Controllers

e import-pronoun-controller.js : le controller « MyController » déclaré dans ce fichier assure la création d’une
instance FileUploader (composant qui gere I’import de fichier) et la définition de ses évenements onSuccessltem
et onErrorltem.

¢ upload-sip-controller.js

e archive-unit.controller.js : définit le controller ArchiveUnitController qui assure I’affichage récursif des détails
d’une Archive Unit et la sauvegarde des données modifiées dans le formulaire.

o archive-search.controller.js : définit le controller ArchiveUnitSearchController qui prend en charge la re-
cherche par titre (mot exact) sur les archive units et aussi le lancement de 1’affichage du formulaire d’une
archive unit sélectionnée.

e main.controller.js : définit le controller mainViewController rattaché a la page principale index.html qui gere
I’affichage du menu principal. Ce menu ne doit pas étre affiché pour 1’écran du formulaire d’une archive unit

o file-format-controller.js

¢ logbook-controller.js

7.6.1.2.6 Components
Les components ont été introduits a partir de la version 1.5.3 d’ AngularJS pour apporter une solution plus simple pour
développer des directives. Pour plus d’information, référez-vous a ce lien Component AngularJS 7.

e archive-unit.component.js

e archive-search.component.js

o fileformat-component.js

¢ logbook-component.js

7.6.2 Architecture technique

7.6.2.1 Architecture technique de I'application Back

7.6.2.1.1 But de cette documentation

Cette documentation décrit I’architecture technique de la partie Back de I’application IHM de VITAM.

7.6.2.1.2 Organisation du module ihm-demo

L’ application IHM de VITAM est assurée par le module ihm-demo composé de deux sous-modules :

7.6.2.1.2.1 1. Module ihm-demo-web-application

Ce module encapsule a la fois le serveur d’application et I’application Front (sous le répertoire
main/resources/webapp). Vous pouvez vous référer a la documentation de ’application Front pour plus de
détails.

57. https://docs.angularjs.org/guide/component

7.6. IHM demo 143

https://docs.angularjs.org/guide/component

VITAM - Architecture, Version 7.1.5

7.6.2.1.2.2 package fr.gouv.vitam.ihmdemo.appserver

e ServerApplication : cette classe configure et lance le serveur d’application Jetty.
e WebApplicationConfig [cette classe définit les parametres de configuration du serveur d’application]
e Parameétres de configuration du serveur IHM :
e port : port du serveur
e serverHost : adresse du serveur
e baseUrl : URL de base
e WebApplicationResource [cette classe définit les services REST assurés par 1’application THM :]
e POST /ihm-demo/v1/api/archivesearch/units
e GET /ihm-demo/v1/api/archivesearch/unit/{id}
e POST /ihm-demo/v1/api/logbook/operations
e POST /ihm-demo/v1/api/logbook/operations/{idOperation }
e GET /ihm-demo/v1/api/status
e POST /ihm-demo/v1/api/ingest/upload
e PUT /ihm-demo/v1/api/archiveupdate/units/{id}
e POST /ihm-demo/v1/api/admin/formats
e POST /ihm-demo/v1/api/admin/formats/{idFormat}
e POST /ihm-demo/v1/api/format/check
e POST /ihm-demo/v1/api/format/upload
e DELETE /ihm-demo/v1/api/format/delete

7.6.2.1.2.3 2. Module ihm-core

Ce module gere la couche fonctionnelle de I'IHM ainsi que I’interaction avec les autres modules de VITAM.

7.6.2.1.2.4 package fr.gouv.vitam.ihmdemo.core

e DslQueryHelper : cette classe fournit les méthodes de construction des requétes DSL requises par les services
de I’application IHM telles que les requétes de sélection et de mise a jour.

o UiConstants (Enumeration) : définit les constantes partagées

e UserlnterfaceTransactionManager : cette classe assure I’appel des autres modules VITAM ; en I’occurrence elle
gere I’appel au module Access.

7.6.2.2 Architecture technique de I'application Front

7.6.2.2.1 But de cette documentation

Cette documentation présente la structure technique de I’application Front Single Page développée avec AngularJS 1.

144 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.6.2.2.2 Le Framework Front : AngularJS 1.5.3
7.6.2.2.2.1 Les modules AngulardJS utilisés :

e angular-animate
e angular-resource

e angular-route

7.6.2.2.2.2 Autres frameworks Front utilisés

e bootstrap (3.3.x) : Responsive feature + CSS + Composants graphiques (bouton + label + zone de saisie)

e jquery (2.2.x)

e angular-material (1.1.0) : Les alertes affichées (de confirmation, d’erreur et d’information) et I’écran de détails
d’une opération logbook

e angular-file-upload (2.3.4) : Composant pour I’'import des fichiers (SIP, référentiels)
e restangular (1.5.2) : Client REST

e v-accordion (1.6.0) : Composant de regroupement (effet accordion) utilisé dans I’écran du formulaire d’une

archive

e bootstrap-material-design-icons : Les icones utilisées dans le menu et les boutons

7.6.2.2.3 Organisation de I'application

/webapp

/archives : les fichiers json utilisés pour tester 1’affichage du formulaire d’une
archive unit c6té Front

/bower_components : librairies et dépendances (t€léchargées en exécutant npm
install ou bower install)

[css : feuilles de styles

/images : images affichées dans 1’application

/js

/modules

/controller : controllers Angular]S

/archive-unit : module qui gére
I’écran du formulaire d’une Ar-
chive Unit

/archive-unit-search : module qui
gére I’écran de recherche des Ar-
chive Units

/config : contient les éventuels
fichiers utilisés pour customiser
Iaffichage. Actuellement, le fi-
chier de traduction d’un premier
lot de labels de meta données a été
ajouté.

/core : contient les factories et les
services

/ffile-format : module qui gére
I’écran d’import du référentiel
PRONOUN

7.6. IHM demo

145

VITAM - Architecture, Version 7.1.5

flogbook : module qui gére 1’écran
de recherche d’opérations Log-
book

/parent : répertoire qui contient
les fichiers app.module.js et
app.config.js qui définissent
respectivement les modules An-
gular et les routes déclarés dans
I’application.

/views : templates HTML

bower.json : dépendances gérées par bower

index.html : page principale

package.json : fichier de configuration no-

dejs

7.7 IHM recette

7.7.1 Architecture technique

7.7.1.1 Architecture technique de I'application Back

7.7.1.1.1 But de cette documentation

Cette documentation décrit I’architecture technique de la partie Back de I’application IHM de VITAM.

7.7.1.1.2 Organisation du module ihm-recette

L’application IHM de recette de VITAM est assurée par le module ihm-recette composé de trois sous-modules :

7.7.1.1.2.1 1. Module ihm-demo-web-application

Ce module encapsule a la fois le serveur d’application.

7.7.1.1.2.2 package fr.gouv.vitam.ihmdemo.appserver

e ServerApplication : cette classe configure et lance le serveur d’application Jetty.
e WebApplicationConfig [cette classe définit les parametres de configuration du serveur d’application]
e Parameétres de configuration du serveur IHM :
e port : port du serveur
e serverHost : adresse du serveur
e baseUrl : URL de base

146 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.7.1.1.2.3 package fr.gouv.vitam.ihmdemo.appserver.performance.

e PerformanceResource [cette classe définit les services REST assurés par 1’application IHM :]
e POST /ihm-recette/v1/api/performance : permet de lancer un test de performance
o HEAD /ihm-recette/v1/api/performance : permet de connaitre I’état du test (en cours ou fini)
o GET /ihm-recette/v1/api/performance/reports : liste les rapports de tests
o GET /ihm-recette/v1/api/performance/reports/{fileName} : télécharge un rapport de test

o GET /ihm-recette/v1/api/performance/sips : liste les fichiers pouvant servir de pour le test de perfor-
mance

7.7.1.1.2.4 2. Module ihm-recette-web-front

Ce module contient la partie front de 'IHM de recette. Il s’agit d’une application classique angular 1.5.3 dont les
dépendances de build sont gérés par le fichier package.json et les dépendances applicatives par le fichier bower.json.

7.7.1.1.2.5 3. Module ihm-core

Ce module gere la couche fonctionnelle de 'IHM ainsi que I’interaction avec les autres modules de VITAM.

7.7.1.2 Architecture technique de I'application Front

7.7.1.2.1 But de cette documentation

Cette documentation présente la structure technique de I’application Front Single Page développée avec AngularJS 1.

7.7.1.2.2 Le Framework Front : AngularJS 1.5.3
7.7.1.2.2.1 Les modules AngularJS utilisés :

e angular-animate
e angular-resource

e angular-route

7.7.1.2.2.2 Autres frameworks Front utilisés

e bootstrap (3.3.x) : Responsive feature + CSS + Composants graphiques (bouton + label + zone de saisie)
e jquery (2.2.x)

e angular-material (1.1.0) : Les alertes affichées (de confirmation, d’erreur et d’information) et I’écran de détails
d’une opération logbook

e angular-file-upload (2.3.4) : Composant pour I’'import des fichiers (SIP, référentiels)
e restangular (1.5.2) : Client REST

e v-accordion (1.6.0) : Composant de regroupement (effet accordion) utilisé dans I’écran du formulaire d’une
archive

e bootstrap-material-design-icons : Les icones utilisées dans le menu et les boutons

7.7. IHM recette 147

VITAM - Architecture, Version 7.1.5

7.7.1.2.3 Organisation de I’application

/webapp /archives : les fichiers json utilisés pour tester 1’affichage du formulaire d’une
archive unit co6té Front

[css : feuilles de styles
/images : images affichées dans 1’application
/js /controller : controllers AngularJS

/modules /parent : répertoire qui contient

les fichiers app.module.js et
app.config.js qui définissent
respectivement les modules An-
gular et les routes déclarés dans
I’application.

/views : templates HTML

bower.json : dépendances gérées par bower

index.html : page principale

package.json : fichier de configuration no-

dejs

7.8 Ingest

7.8.1 Architecture Fonctionnelle
7.8.1.1 Généralités

Le role de I’ingest-internal est de réaliser un upload d’un SIP comme un InputStream, transféré de 1’ingest-interne, qui
viens d’une application externe via I’ingest-externe et de transférer les objets du serveur de stockage a ingest-externe.
La procédure de upload d’un SIP est le suivant :

appeller le service journalisation logbook pour créer des log

Pousser le document le SIP dans le workspace.

Appeller le service processing pour :
e Lancer un workflow de production en mode continu ou étape par étape (*).

e Lancer un workflow pour faire un test blanc en mode antinue ou etape par etape.Dans ce cas, on
n’aura pas des unités archnivistiques et des groupes d’objet indexés, et on n’aura pas des objets
stockés dans les offres de stockage(*).

Relancer un processus workflow en pause :
e En Mode étape par étape pour éxcuter I’etape suivante.

e En Mode Continu pour exécuter toutes les etapes.
e Mettre en pause un processus workflow en cours d’exécution.
e Annuler un processus workflow en cours d’exécution ou en pause.

(*) : Lingest interne est capable de déteminer I’identifiant du workflow qui sera exécuté par le moteur workflow
(processEngine) grace a I’identifant du contexte.

A titre d’exemple : le contextid c’est la combinaison mode d’exécution : production ou test a blanc, utilisateur connecté
et contrat.

148 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.8.1.2 Généralités

Le r6le de I'ingest-external est de réaliser un upload d’un SIP provenant d’une application externe a vitam et de
télécharger les fichiers sauvegardé au serveur apres I’opération ingest (accusé de réception et seda).

7.8.1.3 Téléchargement standard et test a blanc d’un SIP :

La procédure de upload d’un SIP via ingest-externe est le suivant :
e sauvegarder le fichier SIP temporaire dans le systeme

e préparer logbook opération (START)

scan le fichier SIP sauvegardé temporaire pour détecter des virus

e préparer logbook opération (FIN)

si le fichier n’est pas infecté : appel client ingest-internal pour continuer le procédure de test a blanc
(sans stockage des objets, sans indexations) ou le de dépdt en utilisant ingest-internal pour un dépot
dans la base VITAM.

7.8.1.4 Autres Fonctionnalités :

On peut également :
e Relancer un processus workflow (production / test blanc) en pause :
e En Mode étape par étape pour éxécuter I’etape suivante.
e En Mode continu pour exécuter toutes les etapes.
e Mettre en pause un processus workflow en cours d’exécution.

e Annuler un processus workflow en cours d’exécution ou en pause.

7.8.1.5 Ingest ExternalAntivirus

L’antivirus est intégré dans le processus de upload d’un SIP pour déterter un fichier infecté. 1 antivirus rejet-
tera les fichiers vérolés (qu’il pourrait corriger ou pas) afin d’éviter des problemes d’authenticité au moment du
contrdle.

Le critére d’acceptance - Etant donné : un SIP contenant un ou plusieurs fichiers infectés. Lorsque le SAE réalise :
I’étape de check sanitaire

e Si des fichiers vérolés sont détectés et que 1’antivirus peut les corriger, le workflow s’arréte a cette étape

eventType : « Contrdle sanitaire SIP » outcome avec statut « KO », outcomeDetailMessage : « Echec du contrdle
sanitaire du SIP : présence de fichiers infectés » (fichier éventuellement corrigeable par 1’antivirus). » objectldentifie-
rIncome : <nomDuSIP.extension>

o Sides fichiers vérolés sont détectés sans aucune correction de I’antivirus, alors le worflow s’arréte a cette étape.

eventType : « Contrdle sanitaire SIP » outcome avec statut « KO », outcomeDetailMessage : « Echec du contrdle
sanitaire du SIP : présence de fichiers infectés ». objectldentifierIncome : <nomDuSIP.extension>

7.8.1.6 Généralités

En plus de réaliser des upload de SIP, I’ingest-external expose aussi des méthodes pour gérer un process de traitement
avec un workflow. Pour rappel, ingest-external fait appel a ingest-internal pour continuer 1’exécution des méthodes
demandées.

7.8. Ingest 149

VITAM - Architecture, Version 7.1.5

7.8.1.7 Fonctionnalités concernant le workflow

L’ingest external expose les méthodes suivantes pour gérer ces process :

initVitamProcess : Initialiser un process avec un workflow.

initWorkFlow : Initialiser un process avec un workflow. Cette méthode est dépréciée en faveur de initVitamPro-
cess.

updateOperationActionProcess : exécuter une action sur un process (next, resume, pause, cancel)
updateVitamProcess : Cette méthode est dépréciée en faveur de updateOperationActionProcess

executeOperationProcess : Elle expose les méme fonctionnalités que updateOperationActionProcess en utilisant
la méthode http POST.

cancelOperationProcessExecution : Annuler I’exécution d’un process.
getOperationProcessStatus : Retourne le statut d’un process
getOperationProcessExecutionDetails : Retourne le détail d’un process
listOperationsDetails : Lister tous les process qui sont en état RUNNING ou PAUSE.

wait(int tenantld, String processld, ProcessState state, int nbTry, long timeWait, TimeUnit timeUnit) : Permet
de bien gérer le pooling c6té serveur. En effet, cette méthode fait appel a getOperationProcessStatus nbTry fois
et esapce les appels avec un temps de timeWait. La réponse au client est retournée dans les cas suivants :

> nbTry est atteint (nombre de rappel) > le state du process est COMPLETED > Le state du process
est PAUSE et le statut est supérieur a STARTED

7.8.1.8 Les actions :

Les actions possible pour un workflow sont : INIT, NEXT, RESUME, PAUSE, CANCEL Dans le cas des méthodes
initVitamProcess et cancelOperationProcessExecution les actions sont par défaut INIT et CANCEL respectivement.

Pour les autres méthodes : Les actions doivent étres (NEXT, RESUME ou PAUSE)

INIT : Initialiser un process avec un workflow et mettre son état a PAUSE (en attente d’une action)

NEXT : Exécuter la premiere étape d’un process et mettre en état PAUSE. Si c’est la derniére étape alors mettre
en état COMPLETED.

RESUME : Exécuter tous les états d’un process et mettre en état COMPLETED

PAUSE : Mettre le process en état PAUSE des que possible. Si c’est la derniere étape en cours d’exécution alors
mettre en état COMPLETED

CANCEL : Mettre le process en état COMPLETED des que possible.

7.8.1.9 Asynchrone :

L’exécution d’un process est completement asynchrone. Donc pour avoir 1’état final d’un process et son statut final
il faut faire du pooling. La méthode wait est 1a pour vous aider. Attention : Au retour de la réponse d’une action
sur le process ne vaut pas dire que I’exécution est terminé, il faut donc attendre la fin de I’exécution en appelant la
méthode getOperationProcessStatus ou wait. Il faut faire attention aussi pour les tests d’intergrations et les tests de
non régression.

150

Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.8.2 Technique

7.8.2.1 Architecture Technique Ingest

7.8.2.1.1 Présentation

Cette section présente en bref 1’architecture en général du module ingest. Le module ingest se compose de deux sous
modules : ingest-external et ingest-internal.

Le premier role de I’ingest-internal est de réaliser un upload d’un SIP en prenant des données (le SIP le logbook) qui
viennent de ingest-external apres un scan virus sur le SIP. Son deuxieme role est de transférer les objets sauvegardés
dans le serveur de stockage comme Inputstream au ingest-external

Le premier role de 1’ingest-external est de réaliser un upload d’un SIP provenant d’une application externe de vitam
en se connectant au service. Le service ingest-external réalise un scan virus sur le SIP envoyé, préparé le logbook sur
cette opération. Si le SIP n’est pas infecté, ingest-externe va appelé le service ingest-internal via son client avec des
données de parametres (logbook & SIP) pour continuer le service. Son deuxieme role est de télécharger les objets
sauvegardés dans le serveur de stockage.

7.8.2.2 ingest-rest

7.8.2.2.1 Présentation

e Proposition de package : fr.gouv.vitam.ingest.upload.rest

Module utilisant le service REST avec Jersey pour charger SIP et faire 1’appel des autres modules (workspace, pro-
cessing et logbook, etc .. .).

La logique technique actuelle est la suivante :

1. lancement du serveur d’application en appelant le fichier ingest-rest.properties (voir le document d’exploita-
tion).

2. Créer une méthode upload du fichier sip
1. Appel du journal pour la création des opérations (suivi du SIP).
2. Push SIP dans le workspace.
3. Appel du processing (journalisation des opération).

4. Fermeture de la page des opérations.

7.8.2.2.2 IngestInternalApplication. java

classe de démarrage du serveur d’application de I’ingest interne.

// démarrage
public static void main(String[] args) {
try {
final VitamServer vitamServer = startApplication(args);
vitamServer.run () ;
} catch (final VitamApplicationServerException exc) {
LOGGER.error (exc) ;
throw new IllegalStateException("Cannot start the Ingest Internal |
—Application Server", exc);
}
}

7.8. Ingest 151

VITAM - Architecture, Version 7.1.5

Dansle startApplication, on effectue le start de VitamServer. Le join est effectué dans run. Le startAppli-
cation permet d’étre lancé par les tests unitaires. Il peut étre configuré avec un port d’écoute par les tests.

Dans le fichier de configuration, le parametre jettyConfig est a paramétrer avec le nom du fichier de configuration
de jetty.

7.8.3 Securite

7.8.3.1 Introduction
7.9 Security-Internal

7.9.1 Architecture Fonctionnelle

7.9.1.1 Introduction

7.9.1.1.1 But de cette documentation

L’objectif de cette documentation est d’expliquer 1’architecture fonctionnelle de ce module.

7.9.1.1.2 Security-internal

Le role de security-internal est de gérer les certificats applicatifs ainsi que les certificats personnels :
e Les certificats applicatifs sont associés aux SIA, et sont utilisés pour valider le certificat TLS d’appel a Vitam.

e Les certificats personnels sont utilisés dans 1’authentification personae pour les endpoints dits « sensibles ».

7.9.2 Architecture Technique
7.9.2.1 Introduction
7.9.3 Securite

7.9.3.1 Introduction

Les certificats applicatifs (SIA) et personnels sont stockés en base dans la collection MongoDB Identity dans les col-
lections Certificate et PersonalCertificate respectivement. IIs sont indexés en base via leur hash (SHA256 du certificat
encodé au format DER).

Le contrdle du certificat applicatif permet de vérifier si le certificat d’authentification TLS du SIA utilisé pour appeler
Vitam est bien autorisé. Il permet également de récupérer 1’identifiant du contexte associé.

Le controle d’acces sur les certificats personnels sont fait uniquement si le endpoint externe cible requiere une authenti-
fication forte. La liste des endpoints nécessitant une authentification personnelle ou non est défini dans la configuration
du module security-internal.

En cas d’échec de vérification du certificat personnel pour un endpoint nécessitant une authentification forte, la tenta-
tive d’acces est journalisée dans le journal des opérations.

152 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.10 Logbook

7.10.1 Architecture Fonctionnelle

7.10.1.1 Généralités

7.10.1.1.1 Journal d’opération

Le role du journal d’opération est de conserver une trace des opérations réalisées au sein du systéme lors de traitements
sur des lots d’archives.

Chaque opération est tracée sous la forme de 2 enregistrements (début et fin).

Evénements tracés par exemple :
e Démarrage de Ingest avec affectation d’un eventldentifierProcess = GUID (Operationld) (création)

e A partir d’ici tous seront en mode update

Stockage du lot d’archives dans I’espace de travail

Démarrage d’un workflow

Démarrage d’une étape de workflow

Fin d’une étape de workflow

Fin d’un workflow

Fin du Stockage du lot

Fin de Ingest

7.10.1.2 Journal de cycle de vie

Le role du journal de cycle de vie est de tracer toutes les événements qui impactent 1’archive des sa prise en charge
dans le systeme et doit étre conservé autant que 1’archive.

e des la réception de I’entrée, on trace les opérations effectuées sur les ArchiveUnit et les ObjectGroup qui sont
dans le SIP

e les journaux du cycle de vie sont « committés » une fois le stockage des objets OK et I’indexation des MD OK,
avant notification au service versant

7.10.1.3 Modeéle de données

Afin d’assurer le suivi des opérations effectuées sur les archives, un ensemble d’informations sont conservées.

7.10.1.3.1 Description des champs

Les noms des champs sont basés sur les distinctions faites par PREMIS V3 entre :
e objet/ agent / évenement
e type / identifiant

Les champs seront tous au méme niveau dans le journal ==> pas de notion de bloc comme dans PREMIS, mé&me si on
préserve la capacité a générer un schéma PREMIS (et les blocs qui le compose).

Référence : http://www.loc/gov/standard/premis/v3/premis-3-0-final.pdf

Ci-apres la liste des champs stockés dans le journal des opérations associées a leur correspondance métier :

7.10. Logbook 153

http://www.loc/gov/standard/premis/v3/premis-3-0-final.pdf

VITAM - Architecture, Version 7.1.5

Chabscription OnhligrovenaBzempleéCommentaire
mé-
tier
evertlentifiant de 1’opération Oui interne Unique pour chaque ligne
Iden- (vi-
ti- tam)
fier
everitype d’opération Oui interne| CheckSERforMation identifiant 1’étape/action
Type ani- concernée (format : etape_action)
fes-
tExists
everate de 1’opération Oui calculé
Da- par le
te jour-
Time nal
evertlentifiant du processus Oui interne GUID
Iden-
ti-
fier
Pro-
cess
everitype de processus Oui interne| Ingest
Type
Pro-
cess
outcR#seltat Oui interne| Started] II s’agit du status de 1’opération. Par
OK, exemple lorsqu’une opération est lancée,
Fatal, | le status est ‘Started’.
War-
ning
oufcOmie correspondant a I’erreur Nopinterne| 404_XXXonstitué d’un code d’erreur http et d’un
De- sous code d’erreur vitam plus précis.
tai
outcbrfegmations détaillant la nature de I’er- | Oui interne 2 fonctions : Contient le message d’er-
De- reur ou le message informatif de succés reur détaillant le probleme OU contient le
tai contenu du champ SEDA ‘comment’ ex-
Mes- trait. Dans ce dernier cas, la valeur n’est
sage renseignée qu’une seule fois pour ne pas
dupliquer I’'information sur les lignes cor-
respondant aux sous-opérations associées
au méme lot.
agemigent réalisant I’action Oui calculé Nom du serveur vitam exécutant 1’action :
Iden- par le calculé par le journal
ti- jour-
fier nal
ageMom de I’application s’authentifiant a Vi- | Nonexterne Identifiant de I’application externe qui ap-
Identam pour lancer 1’opération pelle Vitam pour effectuer une opération
ti-
fier
Ap-
pli
car
tion
agemdentifiant donnée par I’application utili- | Nonexterne X-Applicationld. I’application externe est
ldersatrice—a—ta—session—utilisée—peur—aneer responsable—deJa—gestion—de—eetident:
184| 1'opération fianCMapitr&fonArehitaqturgi detaiice
fier une session donnée coté application ex-
Ap- terne.
pli

VITAM - Architecture, Version 7.1.5

7.10.1.4 Modeéle de données

Afin d’assurer le suivi des opérations du journal du cycle de vie effectuées sur les archives, un ensemble d’informations
sont conservées.

7.10.1.4.1 Description des champs

Les noms des champs sont basés sur les distinctions faites par PREMIS V3 entre :
e objet / agent / évenement
e type /identifiant

Les champs seront tous au méme niveau dans le journal du cycle de vie ==> pas de notion de bloc comme dans
PREMIS, méme si on préserve la capacité a générer un schéma PREMIS (et les blocs qui le compose).

Référence : http://www.loc/gov/standard/premis/v3/premis-3-0-final.pdf

Ci-apres la liste des champs stockés dans le journal des opérations du journal du cycle de vie associées a leur corres-
pondance métier :

7.10. Logbook 155

http://www.loc/gov/standard/premis/v3/premis-3-0-final.pdf

VITAM - Architecture, Version 7.1.5

Chabscription OnhligrovenaBzempleéCommentaire
mé-
tier
evertlentifiant de 1’opération Oui interne Unique pour chaque ligne
Iden- (vi-
ti- tam)
fier
everitype d’opération Oui interne| CheckSERforMation identifiant 1’étape/action
Type ani- concernée (format : etape_action)
fes-
tExists
everate de 1’opération Oui calculé
Da- par le
te jour-
Time nal
evertlentifiant du processus Oui interne GUID
Iden-
ti-
fier
Pro-
cess
everitype de processus Oui interne| Ingest
Type
Pro-
cess
outcR#seltat Oui interne| Started] II s’agit du status de 1’opération. Par
OK, exemple lorsqu’une opération est lancée,
Fatal, | le status est ‘Started’.
War-
ning
oufcOmie correspondant a I’erreur Nopinterne| 404_XXXonstitué d’un code d’erreur http et d’un
De- sous code d’erreur vitam plus précis.
tai
outcbrfegmations détaillant la nature de I’er- | Oui interne 2 fonctions : Contient le message d’er-
De- reur ou le message informatif de succés reur détaillant le probleme OU contient le
tai contenu du champ SEDA ‘comment’ ex-
Mes- trait. Dans ce dernier cas, la valeur n’est
sage renseignée qu’une seule fois pour ne pas
dupliquer I’'information sur les lignes cor-
respondant aux sous-opérations associées
au méme lot.
agemigent réalisant I’action Oui calculé Nom du serveur vitam exécutant 1’action :
Iden- par le calculé par le journal
ti- jour-
fier nal
ageMom de I’application s’authentifiant a Vi- | Nonexterne Identifiant de I’application externe qui ap-
Identam pour lancer 1’opération pelle Vitam pour effectuer une opération
ti-
fier
Ap-
pli
car
tion
agemdentifiant donnée par I’application utili- | Nonexterne X-Applicationld. I’application externe est
ldersatrice—a—ta—session—utilisée—peur—aneer responsable—deJa—gestion—de—eetident:
186 1’opération fianCMapitr&fonArehitaqturgi detaiice
fier une session donnée coté application ex-
Ap- terne.
pli

VITAM - Architecture, Version 7.1.5

7.10.2 Architecture technique

7.10.2.1 Introduction

7.10.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.logbook

7.10.2.1.2 Itération 3 et Itération 5

4 sous-modules pour le Logbook Engine. Dans logbook (parent).

- vitam-logbook-common : Classes et exception communes aux différents modules
- vitam-logbook-common-client : Classes communes pour les clients

- vitam-logbook-operations : module lié aux opérations

- vitam-logbook-operations-client : module client pour les opérations

7.10.2.1.2.1 Iltérations suivantes / a plus long terme

- vitam-logbook-lifecycles : module des cycles de vie logs
- vitam-logbook-lifecycles-client : module client pour les cycles de vie

- vitam-logbook-administration : module pour 1I’administration du moteur de journalisation (sera détaillé plus en
détail)

- vitam-logbook-administration-client : module client pour 1’administration du moteur de journalisation (sera détaillé

plus en détail)

7.10.2.1.3 Modules - packages logbook

logbook
/logbook-common
fr.gouv.vitam.logbook.common.client
fr.gouv.vitam.logbook.common.exception
fr.gouv.vitam.logbook.common.model
fr.gouv.vitam.logbook.common.parameters

/logbook-common-client
fr.gouv.vitam.logbook.common.client.singlerequest

/logbook-common-server
fr.gouv.vitam.logbook.common.server.database.collections.request
fr.gouv.vitam.logbook.common.server.exception

7.10. Logbook

157

VITAM - Architecture, Version 7.1.5

/logbook-operations
fr.gouv.vitam.logbook.operations.api
fr.gouv.vitam.logbook.operations.corel

/logbook-operations-client

/logbook-lifecycles
fr.gouv.vitam.logbook.lifecycle.api
fr.gouv.vitam.logbook.lifecycle.core

Nlogbook-lifecycles-client

/logbook-administration

/logbook-administration-client

/logbook-rest

7.10.2.2 DSL

7.10.2.2.1 Analyse
7.10.2.2.1.1 Présentation

L’objet de cette analyse est de chercher quel pourrait étre le langage de requéte pour le journal.
A noter : les requétes doivent disposer de quelques criteres libres.

Plusieurs implémentations en ligne de mire possibles :

e Requétes équivalentes a I’'usage dans des collections REST classiques en URL, avec la contrainte VITAM (cela doit étre dz

e Exemple Projection Google : ?fields=url,object(content, attachments/url)

o Exemple de recherche classique : 7Tname=napoli&type=chinese,japanese&zipcode=75*&sort=rating,name&desc=rating
9

e Requétes dans le body permettant d’étre un peu plus riche et notamment dans la composition :

e Des classes « Expression » permettent de gérer les différents cas de recherche : AND/OR, Pro-
perty=value, opérateurs autres (IN, NE, GT, GTE...), NOT...

Un exemple de classes « Expression » :
o Interface Expression;
o Interface AExpression;
e Abstract LogicalExpression ;

e Class AndExpression;

158 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

e Class OrExpression;
o Class PropertyExpression;
o Interface BExpression;
e Abstract OperatorExpression ;
e Class EqualExpression;
e Class GreaterThanExpression;
e ...

e Class NotExpression;

7.10.2.2.1.2 Explication

Une interface Expression.
2 interfaces AExpression et BExpression.

Une classe abstract LogicalExpression permettant de gérer les expressions logiques AND et OR.

LogicalExpression{
Operator ope; // (ENUM)
AExpression exp;

}

Les 2 classes implémentées sont AndExpression et OrExpression. La classe PropertyExpression permet de gérer les
requetes sur les champs a proprement parler.

PropertyExpression({
String propertyName;
BExpression exp;

Une classe abstract OperatorExpression permettant de gérer les opérateurs IN, NE, GT, GTE...

OperatorExpression({
Operator ope; //(ENUM)
Scalar|Array value; //(Int, String...)

Les classes implémentées sont entre autres InExpression, GteExpression. . .. La classe NotExpression permet de gérer
les expressions NOT.

NotExpression{
Operator ope; //(ENUM -> NOT)
BExpression exp;

7.10.2.2.1.3 Utilisation

Classe Query pour y intégrer une expression

7.10. Logbook 159

VITAM - Architecture, Version 7.1.5

Query{
Expression exp;

}

Classe SearchQuery pour y intégrer une liste de Query

SearchQuery
List<Query> queries;

}

7.10.2.2.2 Conclusion

11 apparait clairement que - méme s’il est compliqué - le DSL Vitam existant est trés proche de 1’analyse effectuée. 11
pourra donc étre utilisé pour la recherche dans le logbook, en adaptant les classes Query et Request (ou en adaptant
les Helpers associés).

La réutilisation du méme DSL va aussi dans le sens de la simplification du point de vue de 'utilisateur des API par
I’uniformisation des DSL utilisés.

La recommandation de I’étude porte donc sur la réutilisation du DSL Vitam destiné aux Units et
ObjectGroups pour les Journaux.

Néanmoins, il y aura quelques différences (pas de roots, ni de depth).

Additions IT18 : A ce jour, une implémentation du DSL en mode mono-query a été développée : la classe
DBRequestSingle. Pour le moment il n’y a pas encore de mutualisation entre le DBRequestSingle et les requétes
Logbook car celles-ci sont encore trop spécifiques.

7.10.2.3 Rest

7.10.2.3.1 Présentation

Package Parent : fr.gouv.vitam.logbook
Proposition de package : fr.gouv.vitam.logbook.rest

Module hébergeant le support REST et le jar de lancement du service.

7.10.2.3.2 Services

7.10.2.4 Common-client

7.10.2.4.1 Présentation

Package parent : fr.gouv.vitam.loghook

160 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

Proposition de package : fr.gouv.vitam.logbook.common.client

Module utilisé pour les objets communs client/server :
e utils
e DTO

7.10.2.4.2 Services

7.10.2.5 Common-client

7.10.2.5.1 Présentation

Package parent : fr.gouv.vitam.logbook
Proposition de package : fr.gouv.vitam.logbook.common.server

Ce module est utilisé par les modules server operations et lifecycles et utilise :
e metadata-core

e logbook-common

7.10.2.5.2 Services

La logique technique actuelle est la suivante :
e Chaque journal est une collection dans MongoDB
e Chaque entrée dans la collection est la somme des événements d’une opération / cycle de vie
e Opération ingest x contient I’ensemble des étapes de cette opération
e Cycle de vie d’une archive x contient I’ensemble des événements associés a cette archive
Ceci facilite les recherches sur la base de I’entrée primaire (la premiere) mais n’interdit pas la recherche sur les entrées
secondaires qui sont dans le tableau « events ».
Plus tard, ces journaux seront aussi écrits dans des fichiers.
e Opérations
e Un par jour

e Chaque event (unitaire et non globalisé) devra étre écrit au fur et & mesure, c’est a dire en respectant les
dates d’events (dans I’ordre acquité par le Moteur de journalisation)

e LifeCycles

e Un fichier unique, les events dans I’ordre chronologique (qui correspond a I’odre deans events)

7.10.2.5.3 Données

Les données sont stockées dans 3 types de stockage :
e une base maitre (MongoDB) qui contient toutes les données de type journal
e un base index (EslasticSearch) qui contient uniquement les journaux de type operation

e les offres de stockage qui contienent des fichiers sécurisés des journaux de type opération

7.10. Logbook 161

VITAM - Architecture, Version 7.1.5

La gestion de la base MongoDB se fait par le service d’acces LogbookMongoDbAccessImpl (implémentation de Log-
bookDbAccess). La gestion de la base ElasticSearch se fait par le service d’acces LogbookElasticsearchAccess (implé-
mentation de ElasticsearchAccess).

En cas d’ajout / mise a jour /suppresssion les données sont d’abord gérées dans MongoDB puis la modification est
répercutée (si nécessaire) dans ElasticSearch.

Pour le cas de la recherche, la requéte de recherche est d’abord envoyée dans ElasticSearch pour récupé-
rer une liste d’identifiants (List<ID>) qui sont ensuite envoyés en remplacement de la Query originale dans
MongoDb pour récupérer le détail des données. La traduction d’une requéte DSL vers une requéte Mon-
goDb se fait a 1’aide des objets de traduction présent dans le package du module common-database-private :
fr.gouv.vitam.common.database.translators.mongodb. La traduction d’une requéte DSL et/ou MongoDb vers une
requéte Elasticsearch se fait a ’aide des objets de traduction présent dans le package du module common-database-
private : fr.gouv.vitam.common.database.translators.elasticsearch.

7.10.2.6 Commons
7.10.2.6.1 Présentation

Package parent : fr.gouv.vitam.logbook
Proposition de package : fr.gouv.vitam.logbook.common

Module utilisé pour les objets communs :
e classes utils
e exceptions

e autres...

7.10.2.6.2 Services

7.10.2.7 Operation Client

7.10.2.7.1 Présentation

Parent package : fr.gouv.vitam.loghook
Package proposition : fr.gouv.vitam.loghook.operations.client

Module pour le client des logs opération.

7.10.2.7.2 Services

7.10.2.8 Opération

7.10.2.8.1 Présentation

Parent package : fr.gouv.vitam.logbook
Package proposition : fr.gouv.vitam.logbook.operations

Module pour le module opération : api / rest.

162 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.10.2.8.2 Services
7.10.2.8.3 Rest API

http://server/logbook/v1

POST /operations/id_op -> POST nouvelle opération

PUT /operations/id_op -> Append sur une opération existante (ajout d’un item)

GET /operations -> retourne une liste d’opérations sous forme : id + autres infos de la derniere ligne de chaque
opération ([{ id_op : id, last_line_infos },...])

GET /operations/id_op -> acces aux évenements d’une opération

GET /status -> statut du loghook

7.10.2.9 Lifecycle Client

7.10.2.9.1 Présentation

Parent package : fr.gouv.vitam.loghook
Package proposition : fr.gouv.vitam.logbook.lifecycle

Module client pour les logs lifecycle.

7.10.2.9.2 Services

7.10.2.10 Lifecycle

7.10.2.10.1 Présentation

Parent package : fr.gouv.vitam.logbook
Package proposition : fr.gouv.vitam.logbook.lifecycle.client

Module pour les logs lifecycle : api / rest.

7.10.2.10.2 Services
7.10.2.10.3 Rest API

http://server/app/v1

POST /operations/{id_op }/lifecycles/ -> POST un lifecyle sur une opération
PUT /operations/{id_op}/lifecycles/{id_li} -> Append sur un lifecycle existant
GET /lifecycle -> Administration du lifecycle

7.10. Logbook 163

http://server/logbook/v1
http://server/app/v1

VITAM - Architecture, Version 7.1.5

7.10.2.11 Administration-client

7.10.2.11.1 Présentation

Package Parent : fr.gouv.vitam.logbook
Proposition de package : fr.gouv.vitam.logbook.administration.client

7.10.2.11.2 Services

7.10.2.12 Administration

7.10.2.12.1 Présentation

Package parent : fr.gouv.vitam.logbook
Proposition de Package : fr.gouv.vitam.logbook.administration

7.10.2.12.2 Services
7.10.2.12.3 Rest API

http://server/app/v1

Administration
GET /status -> statut du logbook

7.10.3 Securite

7.10.3.1 Introduction

7.11 Metadata

7.11.1 Architecture Fonctionnelle

7.11.1.1 Introduction
7.11.1.2 Généralités

Le role de métadata est de :
e Stocker de maniere requétable et raipde les métadonnes des objects.

pour faciliter la gestion des demandes d’acces a la base de données. Le méta data permet de structurer et de formaliser
les réquéte types ayant pour but de mieux gérer les demandes d’acces aux tables de la base de données. Chaque
informations issues de la description du méta data doit étre signifier et expliciter son role et son impact dans la requéte.
En clair : Pour chaque champs description du méta data il faut répondre :

1. A quoi ca sert ce champ ?

2. Comment cette information vit dans le cycle de vie de la données du réquéte ?

164 Chapitre 7. Architecture détaillée

http://server/app/v1

VITAM - Architecture, Version 7.1.5

3. Quelle est sa valeur ajoutée face a la demande du client(valuer a considérer pour le client final, pour 1’adminis-
trateur du systeme, pour le gestionnaire etc. ... Comment cette information vit et et circule dans le workflow du

SI).

7.11.2 Architecture technique

7.11.2.1 Introduction

7.11.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.metadata

7.11.2.1.2 Itération 4

6 sous-modules pour le metadata. Dans metadata (parent).

- vitam-metadata-api : Classes et exception, model communes aux différents modules

- vitam-metadata-builder : module pour creer les objets des réquetes select, update,insert etc..
- vitam-metadata-client : module client pour metadata (units, groupe d’objets .. .)

- vitam-metadata-core :

- vitam-metadata-parser : module client pour parser les réqutes Jsons.

- vitam-metadata-rest :

7.11.2.1.3 Modules - packages

metadata
/metadata-api
fr.gouv.vitam.api fr.gouv.vitam.api.config fr.gouv.vitam.api.exception fr.gouv.vitam.api.model

/metadata-builder
fr.gouv.vitam.builder.request
fr.gouv.vitam.builder.request.construct
fr.gouv.vitam.builder.request.construct.action
fr.gouv.vitam.builder.request.construct.configuration
fr.gouv.vitam.builder.request.construct.query
fr.gouv.vitam.builder.request.exception

/metadata-client
fr.gouv.vitam.client

/metadata-core
fr.gouv.vitam.core.database.collections
fr.gouv.vitam.core.database.configuration
fr.gouv.vitam.core.utils

7.11. Metadata

165

VITAM - Architecture, Version 7.1.5

/metadata-parser
fr.gouv.vitam.parser.request.construct.query
fr.gouv.vitam.parser.request.parser.action
fr.gouv.vitam.parser.request.parser fr.gouv.vitam.parser.request.parser.query
/metadata-rest
fr.gouv.vitam.metadata.rest

7.11.2.2 Opération

7.11.2.2.1 Présentation

Parent package : fr.gouv.vitam.api
Package proposition : fr.gouv.vitam.metadata.rest

Module pour le module opération : api / rest.

7.11.2.2.2 Services
7.11.2.2.3 Rest API

URL : http://server/metadata/v 1
POST /units -> POST nouvelle unit et selection d’une liste des units avec une réquéte

GET /status -> statut du metadata

7.11.2.3 Metadata-api

7.11.2.3.1 Présentation

Parent package : * **fr.gouv.vitam.metadata*
Package proposition : fr.gouv.vitam.metadata.api

o Le package fr.gouv.vitam.api permet d’interagir avec le moteur de données a travers la description du métadata

pour les opérations : insertUnit, insertObjectGroup, selectUnitsByQuery, selectUnitsByld Le format utilisé pour la
description du metadonnees : Json.

e Le package fr.gouv.vitam.api.config permet de configurer la connexion de la base de données (Mongo DB)

en utilisant les parametres : host database server IP address, le port database server port, le nom de la
BDD, le nom de la collection.

e Le parkage fr.gouv.vitam.api.exception gere les exceptions issues des opérations des demandes d’acess a travers
de métadata.

les exceptions gerées sont :

166 Chapitre 7. Architecture détaillée

http://server/metadata/v1

VITAM - Architecture, Version 7.1.5

MetaDataAlreadyExistException (String message)
MetaDataAlreadyExistException (Throwable cause)
MetaDataAlreadyExistException (String message, Throwable cause)

e Le parkage fr.gouv.vitam.api.model permet de la gestion d’interrogation de la base de donnees.

7.11.2.4 Metadata-builder

7.11.2.4.1 Présentation

Parent package : fr.gouv.vitam.metadata
Package proposition : fr.gouv.vitam.builder

e Le package fr.gouv.vitam.builder.request.construct pour construire dynamiquement d’une requéte meta data.

Les opérations proposées sont :
e Delete
e Insert
e Select
e Update
et propose un helper pour la construction de la requete.

e Le package fr.gouv.vitam.builder.request.construct.action pour naviguer, modifier dynamiquement d’une re-
quéte en fonction des besoins(Add, pull, push, add).

o Le package fr.gouv.vitam.builder.request.construct.configuration permet de configuer d’une requéte dynamique
de metadonnes.

e Le package fr.gouv.vitam.builder.request.construct.query permet de regrouper d’un ensemble de requete dyna-
miquement.

e Le package fr.gouv.vitam.builder.request.exception permet de gérer, détecter les exceptions lors I'utilisation
d’une requéte dynamique.

7.11.2.5 Operation Client

7.11.2.5.1 Présentation

Parent package : fr.gouv.vitam.metadata
Package proposition : fr.gouv.vitam.metadata.client

e Le package fr.gouv.vitam.client permet d’adresser et de localiser la requete client.

7.11.2.6 metadata-core

7.11.2.6.1 Présentation

Parent package : fr.gouv.vitam.metadata

Package proposition : fr.gouv.vitam.metadata.core

Ce package implémente les différentes opérations sur le module métadata (insertUnit, insertObjectGroup, selec-
tUnitsByQuery, selectUnitsById)

7.11. Metadata 167

VITAM - Architecture, Version 7.1.5

7.11.2.6.2 1. Modules et packages

—fr.gouv.vitam.metadata.core.collections : contenant des classes pour gérer les requetes MongoDb
—fr.gouv.vitam.metadata.core.utils
—fr.gouv.vitam.metadata.core

—fr.gouv.vitam.metadata.core.database.configuration

7.11.2.6.3 2. Classes

Dans cette section, nous présentons quelques classes principales dans les modules/packages abordés ci-dessus.

7.11.2.6.3.1 2.1 Class DbRequest

La classe qui permet de gérer les requetes de metadata : 1la Méthode execRequest(final RequestParserMultiple request-
Parser, final Result defaultStartSet) permet de parser le query et définir le type d’objet(Unit ou Object Group) afin de
gérer et exécuter la requete . Les différents traitements sont I’ajout, I’'update et la suppression.

Pour I’'update :

o La Méthode lastUpdateFilterProjection(UpdateToMongodb requestToMongodb, Result last)

Permet de finaliser la requete avec la derniere list de mise a jour en testant sur le type d’objet Unit ou Object
group et ajout d’index qui correspond au champ mise a jour.

e La Méthode indexFieldsUpdated(Result last)

Permet de mettre a jour les indexes liées aux champs modifiés de Units. Fait appel a une méthode qui permet de
mettre a jour un ensemble d’entrées dans I’index ElasticSearch en se basant sur un Curseur de résultat.

e La méthode indexFieldsOGUpdated(Result last)

Permet de mettre a jour les indexes liées aux champs modifiés de Object Group. fait appel a une méthode qui
permet de mettre a jour un ensemble d’entrées dans I’index ElasticSearch en se basant sur un Curseur de résultat.

Pour I'insert :
e [a Méthode lastInsertFilterProjection(UpdateToMongodb requestToMongodb, Result last)
Permet de finaliser la requete et ajout d’index qui correspond au champ mise a jour.
e La Méthode insertBulk(InsertToMongodb requestToMongodb, Result result)

Permet d’insérer les indexes. Fait appel a une méthode qui permet d’insérer un ensemble d’entrées dans I’index
ElasticSearch en se basant sur une requéte résultat.

Pour le delete :
e La Méthode lastDeleteFilterProjection(UpdateToMongodb requestToMongodb, Result last)
Permet de finaliser la requete et supprimer d’index en se basant sur la requete.
e [a Méthode removeOGIndexFields(Result last)
Permet de supprimer les indexes des object group existants dans le résultat .
e La Méthode removeUnitIndexFields(Result last)
Permet de supprimer les indexes des units existants dans le résultat.

168 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.11.2.6.3.2 2.2 Class ElasticsearchAccessMetadata

e La Méthode updateBulkUnitsEntriesIndexes(MongoCursor<Unit>)
permet de mettre a jour un ensemble d’entrées dans I’'index ElasticSearch en se basant sur un Curseur de résultat.
e La Méthode updateBulkOGEntriesIndexes(MongoCursor<ObjectGroup>)

permet de mettre a jour un ensemble d’entrées dans I’'index ElasticSearch de Object Group en se basant sur un
Curseur de résultat.

e La Méthode insertBulkUnitsEntriesIndexes(MongoCursor<Unit> cursor)

permet d’insérer un ensemble d’entrées dans ’index ElasticSearch de Units en se basant sur un Curseur de
résultat.

e La Méthode updateBulkOGEntriesIndexes(MongoCursor<ObjectGroup> cursor)

permet de mettre a jour un ensemble d’entrées dans I’index ElasticSearch de Object Group en se basant sur un
Curseur de résultat.

e La Méthode deleteBulkOGEntriesIndexes(MongoCursor<ObjectGroup> cursor)

permet de supprimer un ensemble d’entrées dans 1’index ElasticSearch de Object Group en se basant sur un
Curseur de résultat.

e La Méthode deleteBulkUnitsEntriesIndexes(MongoCursor<Unit> cursor)

permet de supprimer un ensemble d’entrées dans I’index ElasticSearch de Unit en se basant sur un Curseur de
résultat.

7.11.2.6.3.3 2.3 Class MetaDatalmpl

e [a Méthode insertUnit(JsonNode insertRequest)

permet de rechercher un ensemble d’entrée dans la collection Unit en se basant sur la requéte DSL.
e La Méthode insertObjectGroup(JsonNode objectGroupRequest)

permet de mettre a jour un ensemble d’entrée dans I’index ElasticSearch de Object Group en se basant sur un curseur
de résultat.

e La Méthode selectUnitsByQuery(JsonNode selectQuery)

permet de rechercher un ensemble d’entrée dans la collection Unit en se basant sur la requéte DSL.
o La Méthode selectUnitsByld(JsonNode selectQuery, String unitld)

permet de rechercher un ensemble d’entrée dans la collection Unit en se basant sur la requéte DSL et Id d’un Unit.
e La Méthode selectObjectGroupByld(JsonNode selectQuery, String objectGroupld)

permet de rechercher un ensemble d’entrée dans la collection ObjectGroup en se basant sur la requéte DSL et Id d’un
Unit.

e La Méthode selectMetadataObject(JsonNode selectQuery, String unitOrObjectGrou-
pld,List<BuilderToken. FILTERARGS> filters)

permet de rechercher un ensemble d’entrée dans les collections Unit et ObjectGroup en se basant sur la requéte DSL,
Id et le filtre.

7.11.2.6.3.4 2.4 Class UnitNode

e La Méthode buildAncestors(Map<String, UnitSimplified> parentMap, Map<String, UnitNode> allUnitNode,
Set<String> rootList)

permet de construire un graphe DAG pour les objets dans Vitam.

7.11. Metadata 169

VITAM - Architecture, Version 7.1.5

7.11.2.6.3.5 2.5 Class UnitRuleCompute

e La Méthode computeRule()

permet de calculer les régles de gestion héritées dans un graphe. Chaque node va calculer un UnitInheritedRule
grice a celui de son parent avec ses propres régles de gestions puis concatener les regles (s’il a plusieurs parents).

7.11.2.6.3.6 2.5 Class UnitinheritedRule

e La Méthode createNewInheritedRule(ObjectNode unitManagement, String unitId)
permet de calculer les regles de gestion héritées en utilisant le regle du parent avec ses propres regles de gestion.

e La Méthode concatRule(UnitlnheritedRule parentRule)
permet de concaténer les regles de gestion héritées de plusieurs parents.

7.11.2.7 metadata-parser

7.11.2.7.1 Présentation

Parent package : fr.gouv.vitam.metadata
Package proposition : fr.gouv.vitam.metadata.parser

Ce parquet permet de valider la conformité de la requete metadata dynamique.

7.11.2.8 Métadata

7.11.2.8.1 Présentation

Parent package : fr.gouv.vitam.api
Package proposition : fr.gouv.vitam.metadata.rest

Ce paquet permet de valider les différents paquets. Module hébergeant le support REST et le jar de lancement du
service.

7.11.2.8.2 Services
7.11.2.8.3 Rest API

URL Path : http://server/metadata/v1

POST /units : POST nouvelle unit et sélection d’une liste des units avec une réquéte
GET /units : GET sélectionne une liste des units avec une requéte

GET /status : statut du server rest metadata (available/unavailable)

POST /objectgroups : Insérer une nouvelle object groups avec une requéte DSL
GET /objectgroups/{id_og} : aveir un object groups par id avec une requéte DSL

GET /units/{id_unit} : POST nouvelle unit et sélection d’une liste des units avec une requéte

170 Chapitre 7. Architecture détaillée

http://server/metadata/v1

VITAM - Architecture, Version 7.1.5

PUT /units/{id_unit} : mettre a jour une unit par identifiant

7.11.2.9 Rest

7.11.2.9.1 Présentation

Package Parent : fr.gouv.vitam.metadata
Proposition de package : fr.gouv.vitam.metadata.rest

Module hébergeant le support REST et le jar de lancement du service.

7.11.2.9.2 Services
7.11.3 Securite

7.11.3.1 Introduction

7.12 Processing

7.12.1 architecture-fontionnelle-processing

7.12.1.1 Introduction

7.12.1.1.1 But de cette documentation

L’ objectif de cette documentation est d’expliquer 1’architecture fonctionnelle de ce module.

7.12.1.1.2 Processing

Mot-clé

e workflow : une processus de traitement des opérations

e parametre d’exécution : en ensemble des données founi précisé les parametres d’exécution

Le module processing de VITAM fournit des services qui permet réaliser une chaine des opérations quand il y a une
requéte depuis le coté client via le service ingest. Il va procéder via plusieurs étapes qui correspondent a des modules

de traitement suivant :
e process management
e process engine
e process distributor

e process worker

7.12. Processing

171

VITAM - Architecture, Version 7.1.5

7.12.1.2 Processing Management

Ce module est pour le but d’organiser I’exécution d’un process de traitement avec les workflows fournis et un ensemble
de parametres passés par le service d’appel (Ingest : traitement des saisies d’archives).

Lors de I’initialisation du processus avec un workflow donné, ProcessManagement crée une instance de ProcessEngine
et de StateMachine qui sont fortement liée au ProcessWorkflow avec une cardinalité un-a-un.

Pour chaque ProcessWorkflow, une et une seule machine a état (StateMachine) est rattachée. Une instance d’une
machine a état ne peut gérer qu’un seul PocessWorkflow. Pour une instance d’une machine a état, une et une seul
instance de ProcessEngine est crée. Un ProcessEngine ne peut étre rattaché qu’une et une seule machine a état

Un ProcessManagement peut avoir zéro ou plusieurs ProcessWorkflow
ProcessManagement (0..n)
(1..1) ProcessWorkflow (1..1)
(1..1) StateMachine (1..1) (1..1) ProcessEngine

7.12.1.3 Engine

Ce service permet d’exécuter une étape d’un processus. Il est completement piloté par une machine a état.

Il peut faire ce qui suit :
e Exécuter une étape d’un processus
o Initialiser le logbook,

e Appeler le distributeur pour exécuter 1’étape (unzip d’un document, indexer d’un document, sauvegarde
d’un document ...)

o Finaliser le logbook concernant I’étape.

e notifier la machine a état sur le résultat de 1’exécution de I’étape.

7.12.1.4 Distributor
Le but de ce module est d’attribuer des taches pour chaque ressources disponibles. Le workflow se compose de plu-
sieurs actions a faire et il sera traité par un des workers de traitement disponibles dans la liste.

Le distributor, en plus de lancer les workflow, offre désormais la possibilité aux Workers de s’abonner, se désabonner.
Lors d’un abonnement, le Worker est ajouté a une liste de workers (regroupés par famille de worker). Pour un désa-
bonnement, il est supprimé. Pour le moment, les workers ajoutés ne pourront étre appelés, cela sera codé dans une
autre itération. Un worker par défaut sera ajouté, et utilisé dans cette itération.

Désormais, 1’appel du worker se fera via un appel Rest. Le code du Worker est déplacé dans un module a part : Worker.

7.12.1.5 Worker

L’objectif de cette documentation est d’expliquer 1’architecture fonctionnelle de ce module.

Ce module lui-méme traite une tache/opération précise dans I’ensemble des opérations de workflow. Le worker se
compose de plusieurs ActionHandler qui permet de traiter une tache précis.

Le worker est désormais appelé via du rest. Un client est fourni et permet 1’ utilisation de I’ API Rest mise en place. Un
module Worker séparé est mis en place.

172 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.12.1.6 Process Monitoring

Le but de ce module est de pouvoir monitorer les différentes étapes des différents Worklow.

Une interface a été déterminée et permet les opérations suivantes :

¢ initOrderedWorkflow : permet I’initialisation d’un Workflow. Le workflow est rattaché a un process, et est com-
posé de steps. La méthode retourne une liste ordonnée de steps avec un id unique.

e updateStepStatus : permet de mettre a jour le statut d’un step. (STARTED, OK, KO, WARNING, FATAL,
PAUSED)

e updateStep : permet de mettre a jour les champs elementToProcess et elementProcessed.
o getWorkflowStatus : permet de récupérer les information de workflow par rapport a un process donné.

L’implémentation choisie permet d’enregistrer toutes les informations de workflow dans une HashMap, tout ceci via
un singleton. La liste des workflow étant enregistrée dans une ConcurrentHashMap, permettant de gérer les nombreux
appels concurrents. Lors de I’initOrderedWorkflow, 1’id unique pour chaque step est généré de cette maniere :

e {CONTAINER_NAME}_{WORKFLOW_ID}_{QUANTIEME_DU_STEP}_{STEP_NAME}

7.12.2 Architecture Technique

7.12.2.1 Introduction
7.12.2.2 DAT : module processing

Ce document présente 1’ensemble de manuel développement concernant le développment du module metadata qui
représente le story #70, qui contient :

e modules & parkages

e classes de métiers

7.12.2.2.1 Module et packages

Les principaux modules sont :
e processing-common : contient les méthodes commons : les modeles, les exceptions, SedaUtil, ...

e processing-distributor : appelle un worker de processus et distribue le workflow. Offre la possibilité au worker
de s’enregistrer, se désabonner.

e processing-distributor-client : client de module processing-distributor

processing-engine : appelle un distributeur de processus

e processing-engine-client : client de module processing-engine

processing-management : gestion de workflow

e processing-management-client : client de module processing-management

7.12.2.2.2 Modeéle

Un modele a été mis en place pour permettre la remontée et I’agrégation des status des différents item du worflow.

Un état du worflow utilise I’objet ItemStatus qui contient : * itemlId : I’identifiant de I’item de processus résponsable
du status (identifiant de step, handler, transaction, etc) * statusMeter : une liste de nombre de code status (nombre de
OK, KO, WARNING, etc) * globalStatus : un status global * une liste de données remontée par 1’item du processus
(comme messageldentifier)

7.12. Processing 173

VITAM - Architecture, Version 7.1.5

Les statuts du processus de workflow utilisent un objet composite CompositeltemStatus qui est un ItemStatus et
contient une Map de statut de workflow de ses sous-items.

Un workflow est défini par un fichier json contenant les steps ainsi que toutes les actions qui doivent étre exécutées
par les steps. Chaque Step et Action doivent étre identifiés par un ID unique qui est également utilisé pour récupérer
les messages.

La combinaison d’un état du processus (PAUSE, RUNNING, COMPLETED) et de son statut qui peut étre (OK,
WARNING, KO, FATAL) nous donne un vue global sur le processus. Le processus peut étre en état COMPLETED
avec tous les statut possible. Il faut étre en état RUNNING ou PAUSE avec le statut de I’exécution des dernieres étapes.

7.12.2.2.3 Process Distributor

Le distributor, en plus de lancer les workflow, offre désormais la possibilité aux Workers de s’abonner, se désabonner.
Lors d’un abonnement, le Worker est ajouté a une liste de workers (regroupés par famille de worker). Pour un désa-
bonnement, il est supprimé. Pour le moment, les workers ajoutés ne pourront tre appelés, cela sera codé dans une
autre itération.

A I’heure actuelle voici les méthodes REST proposées :

POST /processing/v1/worker_family/{id_family }/workers/{id_worker}

-> permet d’enregistrer un nouveau worker pour la famille donnée. -> Une query json est passé en para-
metre et correspond a la configuration du worker.

DELETE /processing/v1/worker_family/{id_family }/workers/{id_worker}
-> permet de désinscrire un worker pour la famille donnée, selon son id.
Dans les itérations suivantes les autres méthodes suivantes seront implémentées :

e liste des familles de worker

ajouter/mettre a jour/effacer une famille de worker

statut d’une fammile de worker

liste des workers d’une famille

effacer les workers d’une famille

statut d’un worker

e mise a jour d’un worker

7.12.2.2.4 Parallélisme dans le distributeur

Les parallélismes suivants sont mis en oeuvre dans le distributeur

e Parallélisme dans I’exécution des steps entre plusieurs workflows : celui-ci est géré de maniére naturelle sous
la forme de plusieurs requétes (actuellement Java, demain en HTTP) entre le moteur du processing (process-
engine) et le distributeur.

e Parallélisme dans I’exécution d’un step pour une distribution de type list vers un méme worker. Les principes
sont les suivants
-> Worker : chaque worker associé a un WorkerConfiguration pré-défini. Chaque worker appartient a une famille
correspondant a ses fonctions. et il posseéde aussi une capacité pour gérer plusieurs threads en parallele, précisé
par le parametre capacity de WorkerCongiguration, et ces parametres seront initialisés lors du lancement du
Worker.
-> Enregistrement/déenregistrement d’un worker : Le principe est un découplage asynchrone basé sur plusieurs
queues de messages bloquantes (BlockingQueue en java) Il y a plusieurs famille de worker et chaque famille
lié a une queue de messages bloquantes. Pour I’enregistrement du worker, nous faisons aussi un contrdle pour

174 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

s’assurer que le worker ne peut s’enregistrer qu’a une famille lui appartenant. Au moment de 1’enregistrement,
si la queue de la famille n’existe pas encore, elle sera créée.

-> Opérarations :
e Lors de I’enregistrement d’un worker (voir section ci-dessus), un thread (cf WorkerManager) est
crée et se met en écoute sur la blocking queue (Consommateur) correspondante de la famille.

Une fois une tache consommée, s’il a une capacité suffisante (fournie par le worker lors de 1’enregis-
trement), ce thread (WorkerThreadManager) va créer un thread (WorkerThread) pour gérer 1’envoi
de la demande au Worker ainsi que la gestion de la callback vers le producteur.

e Lors de distribution d’un step d’un workflow,
e le distributeur pousse les taches dans la blockingQueue (Producteur) et garde en mé-
moire les tAches qui sont en cours

e La queue n’est qu'un élement de découplage et a donc une taile réduite : le thread de
distribution est donc bloqué soit lors de son insertion dans la queue soit en attente que
toutes les taches soient terminées

e Une callback est exécutée par le consommateur en fin de traitement pour supprimer la
tache terminée des tiches en cours

Le parallélisme entre plusieurs workers sera mis en oeuvre en V1

7.12.2.3 Rangement des objets

7.12.2.3.1 Algorithme

1.
2.

Mise a jour du journal de cycle de vie du groupe d’objet

Récupération des informations d’objet technique :

1. Récupération du groupe d’objet dans le workspace

Parsing du SEDA pour identifier les chemins dans le workspace des objets technique contenus dans le groupe
d’objets (a terme il faudra éviter de refaire un parsing SEDA)

. Pour chaque objet technique :

. Mise a jour du journal de cycle de vie du groupe d’objet avec le stockage de 1’objet

Stockage de 1’objet

3. Commit du journal de cycle de vie du groupe d’objet avec le stockage de 1’objet

Commit du journal de cycle de vie du groupe d’objet

7.12.2.4 Veérification de la disponibilité

7.12.2.4.1 Algorithme

1.

Calcul de la taille totale des Objets + manifeste SEDA :

1. Récupération du manifeste SEDA depuis le workspace.

2.
3,
4.

Parsing du manifeste pour calculer la taille totale des objets techniques contenus.
Récupération depuis le Workspace, des informations sur le fichier manifeste SEDA dont sa taille.

Calcul de la taille total (manifeste SEDA + objets techniques a stocker).

7.12. Processing 175

VITAM - Architecture, Version 7.1.5

2. Comparaison capacité stockage VS taille totale

1. Appel au moteur de stockage pour récupérer un Json contenant les informations de capacité pour un couple
tenant/stratégie de stockage donné.

2. Comparaison entre capacité retournée par le moteur de stockage et taille totale calculé précédemment
1. Si capacité supérieure Alors Inscription dans logbook operation d’un OK

2. Si capacité inférieure Alors Inscription dans logbook operation d’un KO, fin du process : « Disponi-
bilité de I’ offre de stockage insuffisante »

3. Si un probleme est rencontré (Offres non dispos, Server down, etc. . .) Alors Inscription dans logbook
operation d’un KO, fin du process : « Offre de stockage non disponible »

7.12.2.5 Veérifier SEDA

7.12.2.5.1 Algorithme

1. Vérifier la validation du seda (SedaUtils->checkSedaValidation)
1. Vérifier I’existance de manifest.xml (SedaUtils->checkExistenceManifest)
2. Valider manifest.xml en utilisant XSD (ValidationXsdUtils->checkWithXSD et getSchema)
2. Vérifier le nombre de BinaryDataObject (CheckObjectsNumberA ctionHandler)
e Si le nombre de BinaryDataObject dans manifest.xml n’est pas égal a le nombre dans workspace

e Lister toutes les objets numériques non référencés (CheckObjectsNumberActionHandler-
>foundUnreferencedDigitalObject)

3. Récupérer toutes les informations des BinaryDataObject (SedaUtils->getBinaryObjectInfo)
e En parcourant manifest.xml, récupere les informations des BinaryDataObject
e En type map(ID de BinaryDataObject, BinaryObjectInfo)
e BinaryObjectlnfo inclut id, uri, version, empreint, type d’empreint . . .
4. Vérifier les versions de BinaryDataObject
1. Créer la liste de version de manifest.xml (SedaUtils->manifestVersionList)
2. Comparer la liste avec le fichier version.conf (SedaUtils->compare VersionList)
e S’il y a la version invalide, stocker dans une liste de version invalide.
o Si la liste de version invalide n’est pas vide, handler retourne la réponse avec statut « Warning ».
3. Journalisation de I’action Check Version
5. Vérifier les empreintes de BinaryDataObject

1. Récupération d’empreinte du GUID/objects/SIP/content/<uri_correspondent> (WorkspaceClient-
>computeObjectDigest)

2. Créer la liste d’empreinte de manifest.xml
3. Comparer les empreintes (SedaUtils->compareDigestMessage)
e S’il y a la version invalide, stocker dans une liste de version invalide.
o Si la liste de version invalide n’est pas vide, handler retourne la réponse avec status « Warning ».

4. Journalisation de I’action CheckConformity

176 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.12.2.6 Métriques spécifiques du composant processing

7.12.2.6.1 Besoins

A des fins de monitoring du composant processing un certain nombre de métriques sont intégrées.
e La possibilité d’avoir une vue instantanée des opérations gérées par le composant processing
e La capacité de détecter des opérations dans un €tat et un statut particulier
e La possibilité de pouvoir filter ces métriques par type d’opération, par état et par statut
e Calculer la durée d’exécution des steps, des taches

e Tracer le cycle de vie des taches crées par le distributeur, création, attente d’entrée dans une queue, temps
passé dans la queue et durée d’exécution par un worker.

e Le nombre de worker abonnés au distributeur

Un outil de monitoring, a ce jour, prometheus, permet de faire des requétes sur ces métriques et surtout de lancer des
alertes dans les cas suspects nécessitant une intervention rapide.

7.12.2.6.2 Liste des métriques

e vitam_processing_workflow_operation_total : Récupere un snapshot de I’ensemble des opéra-
tions visible par le composant processing

e vitam_processing_worker_task_in_queue_total : Total des taches dans la queue en attendre
d’exécution

e vitam_processing_worker_current_task_total : Total des tiches crées par le distributeur et qui
sont pas encore terminées. C’est la somme des tiaches en attente d’entrer dans la queue + Téaches dans la queue
+ Taches en cours d’exécution pour les workers.

e vitam processing_worker_registered_total : Total des worker enregistré dans le distributeur

e vitam_processing_worker_task_execution_duration_seconds : C’est une métrique de type
Histogram, elle calcule la durée d’exécution d’une tiche du point de vu Distributeur/Worker

e vitam_processing_worker_task_idle_duration_in_gueue_seconds : C’est une métrique
de type Histogram, elle calcule la durée d’attente d’exécution d’une tache depuis sa création jusqu’a sa prise en
charge par un worker.

e vitam_processing_workflow_step_execution_duration_seconds : C’est une métrique de
type Histogram, elle calcule la durée d’exécution d’une step du point de vu ProcessEngine

7.12.2.6.3 Exploitation des métriques

L’exploitation de ces métriques a des fins de visualisation ou d’alerting est de la responsabilité d’un collecteur externe
de métriques. A ce jour, le serveur prometheus avec une bonne configuration permet d’exploiter ces métriques.

Note :

e Veuillez vous référer au manuel de développement pour avoir plus d’information et de détails sur chacune de
ces métriques

e Veuillez vous référer a la documentation d’exploitation pour savoir comment exploiter ces métriques, exemple
d’utilisation, alerting, et visualisation

7.12. Processing 177

VITAM - Architecture, Version 7.1.5

7.12.3 Securite

7.12.3.1 Introduction

7.13 Scheduler

7.13.1 Généralités

Le role de scheduler est de lancer des jobs via des crons qui seront configurable dans le fichier quartz.properties. Il
permet aussi de faire la supervision via les API.

7.13.2 Architecture Technique
7.13.2.1 Introduction

7.13.2.1.1 Présentation

7.13.2.2 Jobs de logbook VITAM

7.13.2.2.1 Liste des classes implémentant les jobs

TraceabilityLFCJob
TraceabilityJob

Traceability AuditJob
ReconstructionOperationJob

7.13.2.2.1.1 TraceabilityLFCJob.java
Ce job permet de faire la sécurisation du journal du cycle de vie des unités archivistiques et des groupes d’objets
uniquement sur le site primaire :

e Période d’exécution par défaut pour les unités : * 35 0/1 * *?

e Période d’exécution par défaut pour les groupes objets : * 15 0/1 * *?

7.13.2.2.1.2 TraceabilityJob.java

Ce job permet de faire la sécurisation du journal des opérations uniquement sur le site primaire :

e Période d’exécution par défaut : * 05 0/1 * *?

7.13.2.2.1.3 TraceabilityAuditJob.java

Ce job permet de faire le controle de la validité de la sécurisation des journaux uniquement sur le site primaire :

e Période d’exécution par défaut : 0 55 00 * *?

178 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.13.2.2.1.4 ReconstructionOperationJob.java
Ce job permet de faire la reconstruction des données portées par le composant logbook uniquement sur le site secon-

daire (primary_site = false) :
e Période d’exécution par défaut : 0 0/5 * * *?

7.13.2.3 Jobs de metadata VITAM

7.13.2.3.1 Liste des classes implémentant les jobs
AuditDataConsistencyMongoEsJob
ProcessObsoleteComputedInheritedRulesJob

PurgeDipJob

PurgeSipJob

ReconstructionJob
StoreGraphJob

7.13.2.3.1.1 AuditDataConsistencyMongoEsJob.java

Ce job permet de faire 1’audit sur la cohérence de données MongoDB et Elasticsearch * Période d’exécution par
défaut: 000 1 JAN? 2020

7.13.2.3.1.2 ProcessObsoleteComputedinheritedRulesJob.java

Ce job permet de faire le recalcule des computedInheritedRules pour les units dont les computedInheritedRules sont
marquées comme obsoletes. * Période d’exécution par défaut : 0 30 2 * *?

7.13.2.3.1.3 PurgeDipJob.java

Ce job permet de faire le nettoyage des exports DIPs expirés. * Période d’exécution par défaut: 0 O * * *?

7.13.2.3.1.4 PurgeSipJob.java

Ce job permet de faire le nettoyage des exports transfers expirés. * Période d’exécution par défaut : 0252 * *?

7.13.2.3.1.5 ReconstructiondJob.java

Ce job permet de faire la reconstruction des données portées par le composant metadata. * Période d’exécution par
défaut : 0 0/5 * * *?

7.13. Scheduler 179

VITAM - Architecture, Version 7.1.5

7.13.2.3.1.6 StoreGraphdJob.java

Ce job permet de faire le Log shipping des données graphes portées par le composant metadata. * Période d’exécution
par défaut : 0 10/30 * * *?

7.13.2.4 Jobs de functional-administration VITAM

7.13.2.4.1 Liste des classes implémentant les jobs

ReconstructionAccessionRegisterJob
ReconstructionReferentialJob
ReferentialCreateSymblolicAccessionRegisterJob
RuleManagementAuditJob

7.13.2.4.1.1 ReconstructionAccessionRegisterJob.java

Ce job permet de faire la reconstruction des données concernant AccessionRegisterSymbolic et AccessionRegisterDe-
tail portées par le composant functional-administration uniquement sur le site secondaire :

e Périodicité d’exécution par défaut pour les unités : 0 0/5 * * *?

7.13.2.4.1.2 ReconstructionReferentialJob.java

Ce job permet de faire la reconstruction des données portées par le composant functional-administration uniquement
sur le site secondaire :

e Périodicité d’exécution par défaut : 0 0/5 * * *?

7.13.2.4.1.3 ReferentialCreateSymblolicAccessionRegisterJob.java

Ce job permet de déclencher une commande qui va calculer le registre des fonds symbolique et les ajoute dans les
bases de données uniquement sur le site primaire :

e Périodicité d’exécution par défaut : 0 50 0 * *?

7.13.2.4.1.4 RuleManagementAuditJob.java

Ce job permet de faire la validation de la cohérence des regles de gestion entre les offres de stockage et les bases de
données uniquement sur le site primaire :

e Périodicité d’exécution par défaut : 0 40 * * *?

180 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.13.2.5 Jobs de offer VITAM

7.13.2.5.1 Liste des classes implémentant les jobs

OfferLogCompactionJob

7.13.2.5.1.1 OfferLogCompactionJob.java

Ce job permet de faire la compaction technique des journaux des offres de stockage. * Période d’exécution par défaut :
040 * **?

7.13.3 Sécurité

7.14 Storage

7.14.1 Architecture Fonctionnelle
7.14.1.1 Introduction

7.14.2 Architecture Technique
7.14.2.1 Introduction

7.14.2.1.1 Présentation

Parent package : fr.gouv.vitam
Package proposition : fr.gouv.vitam.storage

7.14.2.1.2 Itération 16

4 sous-modules dans Storage (parent).

- storage-driver-api : module décrivant I’interface du driver
- storage-engine : module embarquant la partie core du storage (client et server)

- cas-manager : module embarquant 1’offre Vitam (module vitam-offer) ainsi que I’implémentation du driver pour
cette offre (cas-manager-drivers) et de son mock pour les tests

- cas-container : module embraquant les implémentations spécifiques de 1’offre de stockage, actuellement que
I’implémntation swift.

7.14. Storage 181

VITAM - Architecture, Version 7.1.5

7.14.2.1.3 Modules - packages Storage

storage
/storage-driver-api
fr.gouv.vitam.storage.driver

/storage-engine

/storage-engine-client
fr.gouv.vitam.storage.engine.client

/storage-engine-server
fr.gouv.vitam.storage.engine.server.spi
fr.gouv.vitam.storage.engine.server.logbook
fr.gouv.vitam.storage.engine.server.rest
fr.gouv.vitam.storage.engine.server.distribution

/storage-engine-common
fr.gouv.vitam.storage.engine.common

/cas-manager
/cas-manager-driver
/mock-driver
fr.gouv.vitam.driver.fake
/vitam-driver

fr.gouv.vitam.storage.offers.workspace.driver

/cas-container
/cas-container-filesystem
fr.gouv.vitam.cas.container.filesystem
/cas-container-swift
fr.gouv.vitam.cas.container.swift
/cas-container-utils
fr.gouv.vitam.cas.container.utils

182

Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.14.2.2 Architecture générale

7.14.2.2.1 Schéma général

STORAGE
STRATEGY
AEFERENTIAL
Worker ! i Storage Engine
e ®
L& REST
STORAGE
WOREER ENGINE
CLaENT : :
; : , LOGROOK
: : CESTRELTION oo s
S MARLAGHENT
DARVER | DROVER | DAAER
WORKSPACE

LOGHOCK LOGEO0K
CIPE RATHON CEELICLE
AEST 1 am ' : o
e ;‘:E CORE : CORE
CORE i :
{Workspace
i Storage Offer i Storage Offer Storage Offer

7.14.2.2.2 Workflow du stockage des objets

Le stockage des objets binaires contenus dans un groupe d’objet technique se fait selon les étapes suivantes :
e Au moment de I’étape de workflow « CheckStorage » (lors de 1’étape « Contrdle global entrée (SIP) ») :

e étape 1 : le worker ajoute dans le journal des opérations le début de 1’opération de vérification de la
disponibilité et capacité des offres associées a la stratégie de stockage (STARTED)

o étape 2 : le worker appelle le moteur de stockage pour faire la vérification de la disponibilité et capacité
des offres associées a la stratégie de stokage

e étape 3 : le moteur de stockage appelle le référentiel des stratégies de stockage pour récupérer le détail
de la statégie de stockage

e ¢tape 4 : le moteur de stockage appelle les différentes offres de stockage définies par la stratégie de
stockage pour vérifier leur disponibilité et capacité a travers leur driver correspondant

7.14. Storage 183

VITAM - Architecture, Version 7.1.5

e étape 5 : le worker ajoute dans le journal des opérations le résultat de I’opération de vérification de la
disponibilité et capacité pour la stratégie (OK/...)

e Au moment de I’étape de workflow « StoreObjects » (lors de 1’étape « Rangement des objets ») :

e étape 6 : le worker ajoute dans le journal des opérations le début de 1’opération de stockage du groupe
d’objet technique (STARTED)

e pour chaque objet binaire du groupe d’objet technique :
e ¢étape 7 : le worker met a jour le journal du cycle de vie de 1’objet (STARTED)

e étape 8 : le worker appelle le moteur de stockage pour envoyer 1’objet dont I’identifiant est donné
en suivant la stratégie de stockage donnée

o étape 9 : le moteur de stockage appelle le référentiel des stratégies de stockage pour récupérer les
détail de la stratégie de stockage

e étape 10 : le moteur de stockage récupere 1’objet binaire dans le workspace

e ¢étape 11 : le moteur de stockage envoi 1’objet binaire dans les offres de stockage définies par la
stratégie de stockage a travers leur driver correspondant

e ¢tape 12 : le worker met a jour le journal du cycle de vie de I’objet (OK/...)

e étape 13 : le worker ajoute dans le journal des opérations la fin de ’opération de stockage du groupe
d’objet technique (OK/. . .)

7.14.2.2.3 Itération 6

Limites :

e le référentiel des stratégies de stockage n’est pas encore implémenté, de ce fait la stratégie de stockage est
définie de maniere statique

o seule I”offre de stockage utilisant une partie du module workspace est disponible

e la vérification de la disponibilité n’est pas encore implémenté.

7.14.2.2.4 ltération 7

Implémentation de la disponibilité / capacité.
Limites :
e Une seule offre, ainsi la logique est simplifiée au niveau du distributeur qui ne gere alors pas le multi-offres

e La gestion des erreurs est trés basique, il serait certainement intéressant de gérer ces erreurs plus finement

7.14.2.2.5 Itération 13

Mise en place du multi-offres.

La stratégie prend maintenant en compte le nombre de copie et les offres qui sont déclarées. Une limite est qu’il faut
autant d’offre que de copie.

Dans cette version, le moteur de stockage est séquentiel, il récupere 1’objet sur le workspace et 1’envoi a la premiere
offre, puis il récupere a nouveau 1’objet sur le workspace et I’envoi a 1’offre suivante et ainsi de suite.

184 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.14.2.2.6 Itération 14

Implémentation multi-thread

Dans cette version la distribution du moteur de stockage se charge d’envoyer 1’objet issu du workspace en parallele
aux différentes offres. L’ objet est récupéré sur le workspace et est « copié » n fois, n étant le nombre de copie a faire.
Chacune de ces copies est envoyée a une offre au travers de threads.

L’objet n’est pas tout a fait copié. Il passe au travers d’un tee qui crée autant de buffers que de copies. Chacun des
buffers est rempli, puis lu en parallele. Des que tous les buffers sont vidés, ils sont tous réalimenté jusqu’a ce qu’il
n’y ait plus rien a transmettre. Cela signifie que le tee est bloquant. Si un buffer n’est pas vidé les autres attendent
potentiellement indéfinement s’il n’y a pas de timeout.

Il n’y a pas de vrai pool de threads dans cette version.

7.14.2.2.7 Itération 16

e Revue de I’architecture golbale du stockage. Mise en place du CAS MANAGER et du CAS CONTAINER.

e Refactoring des éléments communs entre les offres et le workspace. Mise en place d’une implémentation works-
pace spécifique de stockage en mode filesystem

7.14.2.2.8 R12

Travaux pour la gestion du multi-stratégie dans VITAM : modifications du module storage-engine
e Refactoring pour ajouter le header X-Strategy-Id sur les point d’ API ne les déclarant pas (débuté en R11)
e Ajout de la configuration multi-stratégie et de sa gestion dans le module

Hors du module storage-engine, possibilité d’utiliser d’autre stratégies que celle de plateforme VITAM d’identifiant
default.

7.14.2.3 Storage Driver

7.14.2.3.1 Présentation

Parent package : fr.gouv.vitam.storage
Package proposition : fr.gouv.vitam.storage.driver

Ce module définit I’ API « Driver » que doivent implémenter les fournisseurs d’offres de stockage. Un driver peut étre
assimilé a un module « client » qui permet de dialoguer avec une offre de stockage distante et qui satisfait un contrat
de service défini dans I’interface.

7.14.2.3.2 Architecture

Pour permettre au moteur d’exécution de dialoguer avec un service d’offre de stockage, deux interfaces doivent étre
implémentées par le fournisseur d’offre :

e Driver Objet technique responsable d’établir une connexion avec le service de stockage en fonction des para-
metres qui lui sont fournis. C’est aussi lui qui est responsable de déterminer si le service est disponible ou
non.

7.14. Storage 185

VITAM - Architecture, Version 7.1.5

e Connection L’établissement d’une connexion au service distant via le driver produit un object Connection qui
est lié a un contexte d’exécution précis.

En effet, les parametres initiaux utilisés pour 1’établissement de la connexion, et donc I’instanciation d’un
objet Connection, ne peuvent étre modifiés sur 1’objet Connection.

Par exemple, ’'URL de base du service ne peut étre modifiée. S’il y a besoin d’une connexion vers un autre
serveur, ou en tant qu’utilisateur différent, il faut créer une nouvelle connexion en réutilisant le driver.

Le diagramme suivant décrit les relations entre ces 2 interfaces et les objets connexes utilisés dans le cadre de requétes :

Vitam Storage Driver architecture

‘@ Properties ‘@PutObJe(tRequest |©Get0bie:tRequest ‘@hwuts‘tream ‘@ File |®Auta€foseabfe ‘@ RemoveObjectRequest
T
I\I ///
is used in \9 usedin is used in \is usedin fis usedin s used in
. -
—
\ h | e
@ Driver @ Connection
@ Connection connectiString url, Properties parameters) Provides @ long getStorageRemainingCapacity()
@ boolean isStorageOfferAvailable(String url, Properties parameters) @ GetObjectResult getObjectiGetObjectRequest request)
® String getName() @ PutObjectResult putObject{PutObjectRequest request, File abject)
© int getMajorVersion() @ PutObjectResult putObject(PutObjectRequest request, InputStream object]
@ int getMinorversioni) ® RemoveObjectResult removeObjectiRemoveObjectRequest request)
‘/oduce Produce Produce
‘@GEtObje(tRasult |©Put0bja(tREsu|t |©REmuvaObje(tRasu|t

7.14.2.3.3 Pour aller plus loin

Certaines notions seront implémentées plus tard telles que :
e Thread pool : Mettre en place un mécanisme de limitation du nombre de thread concurents utilisant des drivers.

e Connection pool : Bien que proche du premier point, celui-ci est a mettre en place au niveau Driver dirctement.
En effet, le principe est de permettre la configuration (et donc la limitation) du nombre de connexions
concurrentes faites par un méme Driver pour une offre donnée.

o Extension des services : L’interface driver (et I’interface Connection associée) a pour vocation de définir les
services minimums que doit assurer I’offre de stockage distante. L’interface driver pourra donc évoluer
pour augmenter la finesse ou le nombre de services que 1’offre doit assurer pour €tre compatible avec
Vitam.

7.14.2.4 Storage Engine
7.14.2.4.1 Présentation

Parent package : fr.gouv.vitam.storage
Package proposition : fr.gouv.vitam.storage.engine

Module embarquant la partie core du storage (client et server).

7.14.2.4.1.1 Services

De maniere générale, pour le Storage, les méthodes utilisées sont les suivantes :
e GET : pour I’équivalent du « Select ».
e POST : sans X-Http-Method-Override : GET dans le Header, pour faire un insert.
e POST : avec X-Http-Method-Override : GET dans le Header, pour faire un select (avec Body).

186 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

e PUT : pour les mises a jour de Units et ObjectGroups.
e DELETE : pour effacer des métadonnées, des objects, des units, des journaux ou bien des containers.

e HEAD : pour les tests d’existence.

7.14.2.4.1.2 Rest API
7.14.2.4.1.3 URI d’appel

http://server/storage/v1

7.14.2.4.1.4 Headers

Plusieurs informations sont nécessaires dans la partie header :

o X-Strategy-1d : Stratégie pour Offres de stockage et Copies (conservation).

e X-Tenant-Id (obligatoire pour toute requéte) : id du tenant. Cette information sera utilisée dans toutes les re-

quétes pour déterminer sur quel tenant se baser.

e X-Request-Id : I’identifiant unique de la requéte.

e Accept : Permet de spécifier si un résultat doit contenir uniquement des métadonnées (“application/json”), un
DIP complet (un ZIP contenant les métadonnées et les objets) ou seulement des Objects avec un contenu binaire

(“application/octet-stream”).
e X-ObjectGroup-Id : Id de I’ObjectGroup
o X-Units : Ids des Units parents

e X-Caller-Id : Id du service demandeur

7.14.2.4.1.5 Méthodes

HEAD / -> Permet d’accéder aux informations d’un container.

POST / -> avec header X-Http-Method-Override : GET Permet d’accéder aux informations d’un container.
POST / -> Permet de créer un nouveau container (nouveau tenant).

DELETE / -> Permet d’effacer un Container (si vide).

HEAD / -> Permet de tester I’existence du Container + retourne état et capacité occupée + restante

GET /objects -> Liste du contenu binaire pour ce tenant.

POST /objects -> avec header X-Http-Method-Override : GET Liste du contenu binaire pour ce tenant.
GET /objects/{id_object} -> Permet de lire un Object.

POST /objects/{id_object} -> avec header X-Http-Method-Override : GET Permet de lire un Object.
POST /objects/{id_object} -> Permet de créer un nouveau Object.

DELETE /objects/{id_object} -> Permet de détruire un Object.

HEAD /objects/{id_object} -> Permet d’obtenir des informations sur un Object.

GET /logbooks -> Liste du contenu d’une collection.

POST /logbooks -> avec header X-Http-Method-Override : GET Liste du contenu d’une collection.

GET /logbooks/{id_logbook} -> Permet de lire un Journal.

POST /logbooks/{id_logbook} -> avec header X-Http-Method-Override : GET Permet de lire un Journal.

7.14. Storage

187

http://server/storage/v1

VITAM - Architecture, Version 7.1.5

POST /logbooks/{id_logbook} -> Permet de créer un nouveau Journal.
DELETE /logbooks/{id_logbook} -> Permet de détruire un Journal.
HEAD /logbooks/{id_logbook} -> Permet d’obtenir des informations sur un Journal.

GET /units -> Liste du contenu d’une collection.

POST /units -> avec header X-Http-Method-Override : GET Liste du contenu d’une collection.

GET /units/{id_md} -> Permet de lire un Unit Metadata.

POST /units/{id_md} -> avec header X-Http-Method-Override : GET Permet de lire un Unit Metadata.
POST /units/{id_md} -> Permet de créer un nouveau Unit Metadata.

PUT /units/{id_md} -> Permet de mettre a jour un Unit Metadata (404 si non pré-existant).
DELETE /units/{id_md} -> Permet de détruire un Unit Metadata.

HEAD /units/{id_md} -> Permet d’obtenir des informations sur un Unit Metadata.

GET /objectgroups -> Liste du contenu d’une collection.
POST /objectgroups -> avec header X-Http-Method-Override : GET Liste du contenu d’une collection.
GET /objectgroups/{id_md} -> Permet de lire un ObjectGroup Metadata.

POST /objectgroups/{id_md} -> avec header X-Http-Method-Override : GET Permet de lire un ObjectGroup
Metadata.

POST /objectgroups/{id_md} -> Permet de créer un nouveau ObjectGroup Metadata.

PUT /objectgroups/{id_md} -> Permet de mettre a jour un ObjectGroup Metadata (404 si non pré-existant).
DELETE /objectgroups/{id_md} -> Permet de détruire un ObjectGroup Metadata.

HEAD /objectgroups/{id_md} -> Permet d’obtenir des informations sur un ObjectGroup Metadata.

GET /status -> statut du storage

7.14.2.4.1.6 Distribution

Le distributeur (module distribution) est en charge de décider selon la stratégie de stockage dans quelles offres doit
&tre stocké un objet binaire.

Avant tout, le moteur de stockage récupere le binaire sur le workspace et le démultplie via un tee autant de fois
que de copies a réaliser. Pour chaque offre de stockage contenue dans la stratégie le distributeur demande au SPI
DriverManager le driver associé. Le distributeur instancie alors pour chaque offre un nouveau thread qui va se charger
du transfert vers chacune des offres. Dans chaque thread le driver associé a I’ offre est utilisé pour le transfert.

Les thread font un retour OK ou KO. Pour chaque offre en KO, une nouvelle tentative de transfert est faite, jusqu’a
trois tentatives. Si encore une offre est en KO apres trois tentatives (retry), les binaires déposés sur les offres OK sont
supprimés (rollback).

Le distributeur gere la mise a jour du journal des écritures du storage liée & I’opération de stockage d’un objet binaire
dans une offre. Toutes les tentatives y sont répertoriées pour chaque offre.

D’un point de vue séquentiel :

e Lors d’un appel de type POST /objects/{id_object} pour stocker un nouvel objet, le service est appelé :

1. 11 vérifie les parametres d’entrée (nullité et cohérence simple)
2. Il récupere la stratégie associée a I’ID fourni

3. Regarde uniquement la partie « offres chaudes »

188 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

4. Récupere le fichier sur le workspace
5. Pour chaque offre chaude :
1. Récupération du Driver associé s’il existe (sinon remontée d’une exception technique)

2. Instancie un thread et dans ce trhead : 1. Récupération des parametres de 1’offre : url du service, para-
metres additionels 2. Tentative de connection a I’offre et d’upload de I’objet 3. Comparaison du digest
hash renvoyé par I’offre avec le digest calculé a la volée lors de ’envoi du stream a I’offre 4. Retour vers
le distributeur du résultat (OK ou KO)

3. Stockage du résultat de I’'upload dans une map temporaire contenant le résultat de ’'upload sur chaque
offre

6. Pour chaque offre KO, un nouvelle tentative est faite (jusqu’a trois)

7. Si tout est OK, génération d’une réponse sérialisable, en mode “succes” si tous les drivers ont correctement
stocker 1’objet.
Si une offre au moins est KO, suppression des binaires sur les offres en succes et renvoie une exception

7.14.2.4.1.7 DriverManager : SPI

Service permettant d’ajouter ou de supprimer des drivers d’offre.
Le driver (son interface) est défini dans Storage Driver (page 185).

Les différents drivers sont chargés via le ServiceLoader de la JDK puis leurs instances sont stockées dans une liste.
Cela permet ensuite de configurer les offres sur les différentes instances de driver en passant par une MAP dont la clef
est I'identifant de I’ offre, la valeur est le driver instancié dans la liste (une référence a ce driver donc, retrouvé par son
nom (getName())).

Le distributeur va alors demander au DriverManager le driver correspondant a 1’offre définie dans la stratégie afin de
réaliser les opérations de stockage.

7.14.2.4.1.8 Principe

Le driver a ajouter doit implémenter 1’interface définie. Dans son jar, il faut donc retrouver I’'implémentation du driver
ainsi que le fichier permettant au ServiceLoader de fonctionner. Ce fichier DOIT se trouver dans les resources, sous
META-INF/services (principe du ServiceLoader de 1a JDK). Son nom est I’interface implémentée par le driver précédé
de son package.

Exemple :

samples/fr.gouv.vitam.storage.driver.Driver

Ou VitamDriver est ’interface implémentée.
Son contenu est le nom de la classe qui implémente I’interface (qui est le nom du fichier) précédé de son package.

Exemple :

mon.package.ou.se.trouve.mon.driver.VitameDriverImpl

Ou VitamDriverImpl est I’'implémentation du driver.

Voici le fichier : fr.gouv.vitam.storage.driver.Driver

Le jar sera déposé via une interface graphique dans un répertoire défini dans le fichier de configuration
driver-location.conf avec la clef driverLocation. Actuellement il faut le déposer manuellement.

7.14. Storage 189

VITAM - Architecture, Version 7.1.5

Le paramétrage des offres se fera également via une interface graphique.

Cependant, il faut pouvoir redémarrer Vitam sans perdre I’association driver / offre ou démarrer Vitam avec des drivers
et des offres par défaut. Pour se faire, il faut persister la configuration.

7.14.2.4.1.9 Persistance

On s’appuie sur une interface offrant différentes méthodes afin de récupérer les offres a partir d’un nom de driver,
persister la configuration. . . Cela permet demain de changer la stratégie de persistance sans avoir a modifier le code du
SPIL

public interface DriverMapper {
List<String> getOffersFor (String driverName) throws StorageException;
void addOfferTo(String offerId, String driverName) throws StorageException;
void addOffersTo(List<String> offersIdsToAdd, String driverName) throws
—StorageException;
void removeOfferTo (String offerId, String driverName) throws StorageException;
void removeOffersTo (List<String> offersIdsToRemove, String driverName) throws
—StorageException;

}

Dans un premier temps, I’implémentation du mapper se fera en passant par un fichier. Dans son implémentation
actuelle, le DriverMapper a besoin d’un fichier de configuration, driver-mapping. conf. Ici, il permet de définir
I’emplacement ou seront enregistrés les fichiers permettant la persistance via la clef driverMappingPath. Une autre
clef est nécessaire afin de définir le délimiteur dans ce fichier via la clef delimiter, le principe étant de mettre en place
un fichier par driver comme un fichier CSV, les offres étant séparées par ce délimiteur.

7.14.2.5 Storage Engine Client
7.14.2.5.1 Présentation

Parent package : fr.gouv.vitam.storage.engine
Package proposition : fr.gouv.vitam.storage.engine.client

Sous-module du storage engine embarquant le storage engine client.

Ce module permet la discussion entre le worker et le moteur de stockage.
7.14.2.6 Storage Offers
7.14.2.6.1 Présentation

Parent package : fr.gouv.vitam.storage
Package proposition : fr.gouv.vitam.storage.offers

Module embarquant les différentes offres de stockage Vitam ainsi que leur drivers associés.

Actuellement, ce module embarque :

190 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

e une seule offre de stockage, appelée vitam-offer, qui supporte plusieurs types de persistance : systeme de fichiers,
Swift, S3 ou sur bandes magnétiques.

e un seul driver (utilisé par storage-offer-default) appelé vitam-driver. Il permet d’utiliser 1’ offre par défaut qu’elle
soit en mode swift, s3, systeme de fichiers ou sur bandes magnétiques.

e Il est possible, grace a plusieurs instance de I’offre par défaut d’avoir un stockage multi offres. Il existe une

limite, au sein de la meme JVM, il n’est possible de n’avoir qu’une seul offre d’un seul type.

7.14.2.7 Vitam Offer

7.14.2.7.1 Présentation

Parent package : fr.gouv.vitam.storage.offers
Package proposition : fr.gouv.vitam.storage.offers.workspace

Module embarquant I’ offre de stockage Vitam utilisant une partie du workspace. Utilisation du terme worskpace dans
les packages car le terme default est réservé.

L offre de stockage workspace est séparé en deux parties :
e le serveur de I’offre de stockage par défaut
e I’implémentation du driver associé a 1’offre de stockage par défaut

Dans 1’offre, tout les objets binaires sont stockés dans des conteneur définis par : {type}_{tenant}. Un objet binaire
est lui définit par son identifiant ET son conteneur.

7.14.2.7.2 Driver

Objet technique responsable d’établir une connexion avec le service de stockage en fonction des paramétres qui
lui sont fournis. C’est aussi lui qui est responsable de déterminer si le service est disponible ou non. La méthode
connect, permet de récupérer un objet Connection afin de pouvoir effectuer des actions sur I’offre de stockage.

7.14.2.7.3 Serveur
7.14.2.7.3.1 Description

Les fonctionnalités sont :
e récupérer la capacité et disponibilité de I’ offre
e envoyer un objet
e récupérer un objet
e tester ’existence d’un objet
e récupérer I’empreinte d’un objet
e compter le nombre d’objets d’un conteneur
e contrdler un objet pour valider son transfert

e supprimer un objet

7.14. Storage 191

VITAM - Architecture, Version 7.1.5

7.14.2.7.3.2 REST
7.14.2.7.3.3 Description

L’ API REST, trois header spécifiques sont définis :
e X-Tenant-Id : I'identifiant du Tenant
e X-Type : permets de préciser le résultat attendu pour la recupération de 1’objet
e DATA : I’objet en lui-méme (valeur par défaut)
e DIGEST : empreinte de I’ objet

Les réponses en erreur définies par 1’ API Vitam sont respéctées (400, 401, 404, etc)

7.14.2.7.3.4 REST API

HEAD/
e description : recupération des informations de 1’offre
e response :
e code : 200
e contenu : information sur I’offre (capacité, disponibilité, . ..)
GET /count/{type}/
e description : compter le nombre d’objet d’un conteneur de 1’ offre
e headers :

e X-Tenant-Id : id du tenant

e path:
e {type} : le type permettant d’identifier un conteneur (unit/report/logbook/etc, se basant sur une enum)
e response :
e code : 200
e contenu : le nombre d’objets binaires (hors répertoires)
GET /objects/{id}

e description : recupération sur 1’offre d’un objet ou de son empreinte
e headers :

e X-Type : DATA / DIGEST

e X-Tenant-Id : id du tenant

e path:

e {id} : path de I’objet
e response :

e code : 200

e contenu : data ou empreinte de 1’objet
GET /objects/{type}/{id :.+}/check
e description : vérification d’un objet
e headers :
e X-Type : DATA / DIGEST
e X-Tenant-Id : id du tenant
e path:

192 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

e {id} : path de I’objet
o {type} : le type permettant d’identifier un conteneur (unit/report/logbook/etc, se basant sur une enum)
e response :
e code : 200
e contenu : un boolean indiquant si le digest de I’ objet correspond ou non
PUT /objects/{type}/{id}
e description : écriture d’un objet sur 1’ offre
e headers :
e X-Tenant-Id : id du tenant
e Vitam-Content-Length : Taille de 1’objet
o X-digest-algorithm : Algorithme de hash utilisé pour vérifier I’empreinte de 1’objet
e path:
e {id} : id de I’objet
o {type} : le type (unit/objectgroup/logbook/etc, se basant sur une enum)
e body :
e flux : data ou digest
e response :
e code : 201
e contenu : un json avec le digest de 1’objet et sa taille.
HEAD /objects/{id}
e description : existance de 1’objet sur 1’ offre
e headers :
e X-Tenant-Id : id du tenant

e path:

e {id} :id de I’objet
e response :

e code : 204

DELETE /objects/{type}/{id}
e description : suppression d’un objet de 1’offre
e headers :
e X-Tenant-Id : id du tenant
e X-Type : DATA / DIGEST
e path:
e {id} :id de I’objet

o {type} : le type permettant d’identifier un conteneur (unit/report/logbook/etc, se basant sur une enum)

e response :
e code : 200
e contenu : I’id de 1’objet supprimé + le statut
GET /status
e description : état du serveur
e reponse :
e code : 200

e contenu : statut

7.14. Storage 193

VITAM - Architecture, Version 7.1.5

7.14.2.8 Métriques spécifiques du composant storage-engine

7.14.2.8.1 Besoins

A des fins de monitoring du composant storage-engine pour estimer les données qui traverse ce composant depuis et
vers les offres de stockage, un certain nombre de métriques sont intégrées.

e Lade calculer le taux moyen des données téléversées dans les offres de stockage
e La de calculer le taux moyen des données téléchargées depuis les offres de stockage
Il est important d’avoir des filtres sur les criteres suivant :
e tenant
e strategy de stockage
e la carégorie de la donnée
e I’identifiant de I’offre de stockage.
e optionnellement, I’origin de la demande et aussi le numéro d’essai pour mesurer s’il y a des erreurs.

Un outil de monitoring, & ce jour, prometheus, permet de faire des requétes sur ces métriques et surtout de lancer des
alertes dans les cas suspects nécessitant une intervention rapide.

7.14.2.8.2 Liste des métriques

e vitam_storage_download_size_bytes : Données en octets téléchargées par le composant vitam-
storage-engine depuis les offres de stockages.

e vitam_storage_upload_size_bytes : Données en octets téléversées par le composant vitam-storage-
engine vers les offres de stockages.

7.14.2.8.3 Exploitation des métriques

L’exploitation de ces métriques a des fins de visualisation ou d’alerting est de la responsabilité d’un collecteur externe
de métriques. A ce jour, le serveur prometheus avec une bonne configuration permet d’exploiter ces métriques.

Note :

e Veuillez vous référer au manuel de développement pour avoir plus d’information et de détails sur chacune de
ces métriques

e Veuillez vous référer a la documentation d’exploitation pour savoir comment exploiter ces métriques, exemple
d’utilisation, alerting, et visualisation

194 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.14.3 Securite

7.14.3.1 Introduction

7.15 Technical administration

7.15.1 Architecture Fonctionnelle
7.15.1.1 Introduction

7.15.2 Architecture Technique
7.15.2.1 Introduction

7.15.3 Securite

7.15.3.1 Introduction

7.16 Worker

7.16.1 architecture-fontionnelle-processing

7.16.1.1 Introduction

7.16.1.1.1 But de cette documentation

L’objectif de cette documentation est d’expliquer I’ architecture fonctionnelle de ce module.

7.16.1.1.2 Worker

Le module Worker de VITAM fournit des services qui permettent de réaliser une chaine des opérations quand il y a
une requéte depuis le coté client via le service ingest.

7.16.1.2 Worker
Ce module traite une étape précise dans I’ensemble des opérations de workflow. Pour chaque étape, une liste d’actions
est lancée via des ActionHandler.

Le worker offre une API Rest permettant (via un client spécifique) de lancer les différentes méthodes désirées (pour
I’instant submitStep est la seule méthode disponible).

7.16.1.3 notification-atr-ok

Cette section présente le processus pour notifier le résultat d’un téléchargement d’un document SIP.

Lorsque le SIP passe toutes les étapes du workflow d’entrée avec succes, Vitam lui envoie une notification au service
versant dans ce cas. La procédure se compose deux étapes : la génération d’une notification et le téléchargement de la
notification

7.15. Technical administration 195

VITAM - Architecture, Version 7.1.5

e Génération et stockage de la notification

A partir de SIP versant, nous devrons générer une réponse en format XML en utilisant les informations précisées dans
le SEDA et I’information sur le workflow exécuté. La réponse doit étre validé par le schéma XSD pré-défini pour le
format de la réponse de notification. Cette notification sera sauvegardé dans 1’espace de stockage.

e Téléchargement de la notification

Dans I'interface de téléchargement du SIP, lors d’un UPLOAD succes, nous trouvons le status OK de UPLOAD SIP
et en bas nous trouvons aussi un lien pour télécharger la notification générée dans 1’étape précédente.

7.16.1.4 notification-atr-ko

Cette section présente le processus pour notifier le résultat négatif d’un téléchargement d’un document SIP.

Lorsque le SIP provoque une erreur au niveau du workflow d’entrée, une étape finale est exécutée. Elle a pour but la
génération d’une notification d’erreur au service versant.

La procédure se compose deux étapes : la génération d’une notification et le téléchargement de la notification
e Génération et stockage de la notification :

A partir du SIP soumis par le service versant, nous devrons générer une réponse en format XML en utilisant les
informations précisées dans le SEDA et I’information sur le workflow exécuté. La réponse doit étre validé par le
schéma XSD pré-défini pour le format de la réponse de notification. Cette notification sera sauvegardé dans 1’espace
de stockage.

e Téléchargement de la notification

Dans D'interface de téléchargement du SIP, lors d’un UPLOAD en erreur, I’icone KO sera affiché, et le xml sera
téléchargé automatiquement.

7.16.1.5 Controle de la cohérence de SIPs

Pour un SIP versant, il y a certaine controle pour valider avant de le mettre dans le VITAM. Une parmis des controles
est celle de la cohérence de SIP concernant les ArchiveUnit et Object Group. Pour ce contréle : tous les SIP versés
dans Vitam devront avoir tous leurs groupes d’objets référencés dans au moins une archiveUnit. La méme contrainte
s’applique pour les objets sans groupe d’objets. Le fait d’avoir des objets ou groupes d’objets sans archiveUnits est
I’équivalent d’un vrac archivistique, ce que 1I’équipe souhaite éviter pour vitam.

e Criteres d’acceptance : des critéres suivantes sont appliqués pour valider cette controle.

CA1 : mise ne place de la nouvelle action de contrdle Etant donné le versement d’un SIP, lorsque le SIP passe par le
contrdle d’entrée globale, alors le controle d’entrée procede a une nouvelle tiche qui est la « vérification concernant
la cohérence entre objet/groupe d’objet et archiveUnit ». Cette tache vérifie que dans le manifeste, CHAQUE objets
sans groupe d’objets et CHAQUE groupe d’objets sont référencés par AU MOINS une archiveUnit

CA2 : SIP avec références valide Etant donné le versement d’un SIP dont chaque objets sans groupe d’objets ET
chaque groupes d’objets sont référencés par au moins une archiveUnit. Lorsque le SIP a terminé la tache de vérification
concernant la cohérence entre objet/groupe d’objet et archiveUnit alors le workflow d’entrée continue ; et une ligne de
status OK est ajouté dans le journal des opérations EVT_CHECK_MANIFEST_01_OK

CA3 : SIP avec références invalides - action non bloquante Etant donné le versement un SIP possédant au moins un
objet sans groupe d’objet et/ou au moins un groupe d’objet qui n’est pas référencé par au moins une archiveUnit. Lors-
qu’on le contrdle passe par la tiche de vérification concernant la cohérence entre objet/groupe d’objet et archiveUnit
alors le workflow d’entrée continue

CA4 : SIP avec références invalides - bloquage du processus a la fin du contrdle d’entrée Lorsque le SAE a ren-
contré au moins un warning lors de la tiche de vérification concernant la cohérence entre objet/groupe d’objet et
archiveUnit alors je peux constater sur I’'THM de suivi des opérations d’entrée que le statut de I’opération d’entrée
passe a « erreur ». Le workflow d’entrée s’arréte et une ligne de status KO est ajoutée dans le journal des opérations :
EVT_CHECK_MANIFEST_01_KO

196 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

7.16.2 Architecture Technique

7.16.2.1 Module Worker

Ce document présente le module Worker

Voici les sous-modules et package associés :

e worker-common [contient les méthodes commons : les modeles, les exceptions] —
fr.gouv.vitam.worker.common

e worker-client [module client] — fr.gouv.vitam.worker.client
e worker-core [module core permettant I’exécution des différentes actions] — fr.gouv.vitam.worker.core

e worker-server [serveur REST du worker pour pouvoir effectuer des opérations sur des étapes] —
fr.gouv.vitam.worker.server — fr.gouv.vitam.worker.server.rest

7.16.2.2 Worker server
7.16.2.2.1 Présentation

Parent package : fr.gouv.vitam.worker
Package proposition : fr.gouv.vitam.worker.server

Module embarquant la partie server du worker.

7.16.2.2.1.1 Services

De maniére générale, pour le Worker, les méthodes utilisées sont les suivantes :
e GET : pour récupérer des infos sur une liste d’étapes, ou sur une étape particuliere.
e POST : pour démarrer le lancement d’une étape.

e PUT : pour les mises a jour d’étapes.

7.16.2.2.1.2 Rest API
7.16.2.2.1.3 URI d’appel

http://server/worker/v1

7.16.2.2.1.4 Headers

Plusieurs informations sont nécessaires dans la partie header :

e X-Request-Id : I’identifiant unique de la requéte.

7.16. Worker 197

http://server/worker/v1

VITAM - Architecture, Version 7.1.5

7.16.2.2.1.5 Méthodes
GET /tasks -> Liste les étapes en cours.
POST /tasks -> Permet de soumettre une étape.

GET /tasks/{id_async} -> Permet de récupérer le statut d’une étape.
PUT /tasks/{id_async} -> Permet d’intéragir avec une étape.

GET /status -> statut du worker

7.16.2.3 Extraire les métadonnées des ArchiveUnit et DataObject

7.16.2.3.1 Géneéral

L’extraction du bordereau SEDA tranforme le fichier manifest.xml en plusieurs fichiers contenant les informations du
manifest, les définitions des Archives Units et des Groupes d’Objets Techniques, ainsi que la structure des objets. Dans
des étapes utlérieures, les fichiers OG et Unit extraits sont indexés en base lors de 1’indexation.

7.16.2.3.1.1 Workspace avant extraction :

containerld/SIP containerId/SIP/Content/ containerId/SIP/manifest.xml

7.16.2.3.1.2 Workspace aprés extraction :

containerld/SIP containerld/SIP/Content/ containerld/SIP/manifest.xml containerld/Units containe-
rId/Units/AU_GUID.json containerld/Uits/... containerld/ObjectGroup containerld/ObjectGroup/GOT_GUID.json
containerld/ObjectGroup/. .. containerld/Maps/ containerld/Maps/ARCHIVE_ID_TO_GUID_MAP.json
containerld/Maps/DATA_OBJECT_TO_OBJECT_GROUP_ID_MAP,json containe-
rIld/Maps/DATA_OBJECT_ID_TO_DATA_OBJECT_DETAIL_MAP.json containe-
rld/Maps/DATA_OBJECT_ID_TO_GUID_MAP.json containerld/Maps/OBJECT_GROUP_ID_TO_GUID_MAPjson
containerld/UnitsLevel/ containerld/UnitsLevel/ingestLevelStack.json containerld/ATR/ containe-

rId/ATR/globalSEDAParameters.json

7.16.2.3.2 Algorithme

1. Récupération du GUID/objects/SIP/manifest.xml
e Voir RAML WEB/Internal_Workspace.html#containers__cid__objects__id_object__get
2. Extraction SEDA
1. Extraction des DataObject (Physical et Binary) dans workspace depuis manifest.xml
(GUID/DataObject/GUID) (SedaUtils->extractSEDA)
e En lisant le fichier XML, extraire les DataObject depuis xml (SedaUtils-
>writeDataObjectInLocal et extractArchiveUnitToLocalFile)
o Mettre en place des MAP utiles
e Liaisons DataObject -> object (MAP<idDo, path>)
e Liaisons DataObject <-> ObjectGroup (MAP<idDo, idOg> et MAP<idOg, List<idDo>>)
e Liaisons Unit -> Unit (MAP<idUFils, List<idUPere>>)

198 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

e Liaisons Unit <-> ObjectGroup (MAP<idx, idy> avec x et y a décider)

2. Construction des ObjectGroup depuis les DataObject (SedaUtils-
>saveObjectGroupsToWorkspace)

e A partir le map ObjectGroup -> DataObject : construire 1’objet ObjectGroup en Json

e Sauvegarde ces ObjectGroups dans workspace

3. Sauvegarde des ArchiveUnit dans workspace depuis manifest.xml (GUID/Units/GUID)
(SedaUtils->write ArchiveUnitToWorkspace)

3. Journalisation de fin de 1’action extraction SEDA (fait par le Distributeur)
4. Indexation

1. Lors de I’indexation des OGs, le worker va chercher les ObjectGroups dans workspace puis le worker se
charge d’indexer dans metadata (SedaUtils->indexObjectGroup)

2. Lors de I’indexation des Units, le worker va chercher dans le workspace, et le handler se charge de nettoyer
et préparer les Units puis indexer dans metadata (SedaUtils->index ArchiveUnit)

5. Journalisation de fin de I’action d’indexation (fait par le Distributeur)

7.16.2.3.2.1 Algorithme d’update pour I'extract SEDA

Apres la création de 1’Archives Unit temporaire extraite du manifest.xml si une balise <Syste-
mld>EXISTING_GUID</Systemld> a été rencontrée les traitement suivant sont fait : * 1’Archive Unit existant
est récupéré en base a partir du EXISTING_GUID fourni dans le fichier, si il n’est pas trouvé 1’extraction est arrétée
* un nouveau fichier d’archive temporaire EXISTING_GUID.json est créé a partir du fichier extrait (GUID.json)
en changeant modifiant d’id I’objet « ArchiveUnit » :{ « _id » : »GUID », ...} * ’ancien fichier GUID.json est
supprimé * le nouveau guid EXISTING_GUID remplace 1’ancien GUID dans la données temporaires d’extraction
(correspondance des Id VITAM/SEDA, liste des GUID de unit extrait) et ajouté dans la liste des GUID existants *
préparation du lifecycle de 1’archive unit spécifique a la mise a jour (message a définir)

Lors de la finalisation de 1’extraction des units, si le unit est déclaré comme pré-existant on ajoute : * on ajoute une
valeur « existing » :true dans I’objet _work : {...} pour indiquer aux prochaines étapes que 1’archive unit manipulé est
une mise a jour

7.16.2.4 notification-atr-ok

Cette section présente les modules & services pour traiter le processus de notification du téléchargement d’un docu-
ment SIP.

1. Génération et stockage de la notification : worker/worker-core - Le schéma de validation de la réponse XSD : le
schéma de validation du fichier XML de la réponse de notification est src/main/resources/seda-2.0-main.xsd. - La
génération du fichier XML de la réponse de notification est faite par I’XML Stream pour les éléments en dehors de
ReplyOutcome et par des POJO JAXB pour les éléments a itérer (ArchiveUnit, BinaryDataObject, PhysicalDataOb-
ject). Les modeles Object Element POJO de ces deux éléments se trouvent dans fr.gouv.vitam.worker.model (DataOb-
jectTypeRoot.java et ArchiveUnitReplyTypeRoot) - Handlers : le handler ExtractSedaActionHandler est modifé pour
extraire des information nécessaire depuis le SIP pour générer la réponse de notification, a savoir : le map des BDOs
et sa version, le json contenant des informations hors Archive Unit et Binary/Physical Data Object de SEDA.

le handler TransferNotifcationActionHandler est ajouté pour 1’opération de création de la réponse de notification :
création de fichier XML a partir des données générées dans le workflow, validation du fichier, effectuer la sauvergade
de la réponse dans le workspace.

storage/storage-engine : - crééer la collection (report) pour sauvegarder des réponses de notification. - fournir le serive
de sauvegarder de la réponse comme un document de workspace. Ce service est défini sur différens niveaux a savoir
API/Rest/Client

7.16. Worker 199

VITAM - Architecture, Version 7.1.5

2. Téléchargement de la notification

storage/storage-engine ingest/ingest-internal ingest/ingest-external ihm-demo/ihm-demo-web-application
Tous ces 4 services sont mis a jour pour récupérer la réponse de notification sauvegardée dans le storage.

7.16.2.5 notification-atr-ko

Cette section présente les modules & services pour traiter le processus de notification en erreur de 1’upload d’un
document SIP.

1. Génération et stockage de la notification :

worker/worker-core : - Le schéma de validation de la réponse XSD : les schémas différents de validation du fichier
XML de la réponse de notification est : src/main/resources/seda-2.0-main.xsd. - La génération du fichier XML de la
réponse de notification est faite par I’XML Stream. - Workflow : Le workflow a été modifié, un behaviour « Finally »
a été ajouté. A I'image du Finally java, il permet d’exécuter une étape quoi qu’il se passe dans le process d’ingest
d’un SIP. Ceci permet la génération d’une notification KO. Le workflow a été adapté pour que I’on puisse également
générer une notification OK dans le cadre d’un succes. - Handlers : le handler TransferNotifcationActionHandler a été
modifié pour pouvoir répondre au besoin de génération d’un XML KO : création de fichier XML a partir des données
générées dans le workflow (logbook opération, logbook lifecycle unit et object group), effectuer la sauvergade de la
réponse dans le workspace.

storage/storage-engine : - utilisation de I’ API REST pour pouvoir sauvegarder la réponse.

2. Téléchargement de la notification
storage/storage-engine ingest/ingest-internal ingest/ingest-external ihm-demo/ihm-demo-web-application

Tous ces 4 services sont mis a jour pour récupérer la réponse de notification sauvegardée dans le storage.

7.16.2.6 Plugin Worker

7.16.2.6.1 But de cette documentation

L’ objectif de cette documentation est d’expliquer I’architecture technique des plugins de worker.

7.16.2.6.2 Introduction

Le plugin worker est une classe java qui réaslise des actions dans le workflow comme les Handler. Dans le workflow,
si I’action traite une action qui a besoin un enregistrement JCV, le plugin sera remplacé le Handler.

Le plugin prends en entrée une interface HandlerIO pour charger les fichier de vitam, les parametres du worker En
sortie, il retourne les status des traitements et chaque status contient un code de traitement (définit dans le fichier
properties du plugin, si ce n’est pas définit on utilise le code par défaut)

D’une fagon synthétique, le plugin worker est décrit de cette fagon :

200 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

Traduction
WorkerP:
WORKER
Logbook +
helperlCV
Fichier properties ---------
ItemStatus
| logbookParameters \
ENGINE
Logbook LFC
|
logbookParameters
Logbook Opéreation

7.16. Worker

201

VITAM - Architecture, Version 7.1.5

7.16.2.6.3 Appel du plugin

Au démarrage du service, le serveur worker charge tous les plugins et leurs fichier de propriétés. Les référentiels de
plugin sont déclarés dans un fichier de configuration :

{

"NOM_DE_PLUGIN_1": {
"className": "package.plugin.class_1",
"propertyFile": "le fichier de_properties_1"

} ’

"NOM_DE_PLUGIN_2": {
"className": "package.plugin.class_2",
"propertyFile": "le fichier de_ properties_2"

Au démarrage de chaque worker, la liste des plugins va étre analysé. Puis le serveur va tenter d’instancier chaque
plugin de la liste. Si un des plugins ne se lance pas pour une raison quelconque (nom de classe incorrect, impossible
d’instancier la classe, . ..), alors le serveur ne démarrera pas.

Les plugins ne sont pas pour I’instant thread safe dans Vitam, ce qui signifie que un plugin est réinstancié pour chaque
appel au serveur worker.

7.16.2.6.4 Résultat du plugin

Apres ses traitements, Plugin doit retourner au Worker un ItemStatus. Quand le Worker regoit le résultat :
e [l doit le traduire en utilisant par défaut le fichier de properties VITAM (vitam-logbook-messages_{fr.properties)

si les clés ne sont pas définies dans ce fichier, alors il va chercher la valeur du label dans le fichier properties du plugin
puis envoie a Engine pour écrire dans les journaux des opération.

e Construire et écrire LogbookLifeCycle.

7.16.2.6.5 Implémentation
7.16.2.6.5.1 Worker

o getActionHandler : pour chaque action, le worker vérifie si I’action est dans la liste des plugins, il va le charger,
si non on utilise les handlers prédéfinis dans Vitam

o writeLogbookLifeCycle : traduire le code d’action d’un ItemStatus du Plugin en LogbookLifeCycleParameters
puis en fonction du type d’élément dans la distribution (Unit ou ObjectGroup), il écrit dans la base de données
correspondante

Exemple : Le plugin CHECK_DIGEST fait un traitement CALC_CHECK qui donne un status OK.

Le résultat retourné du plugin contiendra :

{
"globalStatus" : OK ,
"itemsStatus" : [{"CALC_CHECK" : { "globalStatus"™ : OK }}]

}

Alors le worker va écrire ces événements ci-dessous dans LFC.

202 Chapitre 7. Architecture détaillée

VITAM - Architecture, Version 7.1.5

"evIype" : "LFC.CHECK_DIGEST ",
"outcome" : "OK",
"outDetail" : "LFC.CHECK_DIGEST..OK",
s
{
"evIype" : "LFC.CHECK_DIGEST.CALC_CHECK ",
"outcome" : "OK",
"outDetail" : "LFC.CHECK_DIGEST.CALC_CHECK.OK",

}
}

L’écriture des journaux des opérations garde son implémentation.

7.16.2.6.5.2 PluginPropertiesLoader

c’est un service pour charger les définitions du code dans le fichier de properties du plugin

7.16.2.6.5.3 Intégration

Cela définit comment Worker appelle les plugins.

java —cp "/vitam/lib/${unix.name}/*" fr.gouv.vitam.worker.server.rest.
WorkerApplication au lieu de java -jar "/vitam/lib/${unix.name}/${project.build.
finalName}.jar"

Donc les JAR du plugin doit étre placé dans /vitam/lib/worker/.

7.16.3 Securite

7.16.3.1 Introduction

7.17 Workspace

7.17.1 Architecture Fonctionnelle
7.17.1.1 Introduction

7.17.2 Architecture Technique
7.17.2.1 Introduction

7.17.3 Securite

7.17.3.1 Introduction

7.17. Workspace 203

CHAPITRE 8

Annexes

204

Table des figures

o =

O N O R S

[N

[e IR o) NV I SN OS]

10
11
12

Vue de VITAM dans son environnement (vue « boitenoire »)
Architecture fonctionnelle ciblede VITAM

Architecture applicative : 1égende oL 0oL
Architecture applicative : flux de données d’archives et de commandes
Architecture applicative : flux de données de journalisation
Architecture applicative : flux de données de référentiels
Architecture des données d’archives ; fonctionnement multisite.

Environnement d’un service VITAM
Déploiement VITAM : zones & principes de communication; les utilisateurs métier ar-
chivistes sont présentés a gauche, et les exploitants technique a droite.
Architecture technique : 1égende oL oL
Architecture technique : flux (1/5 : flux métiers généraux)
Architecture technique : flux (2/5 : flux métiers de dépdt des journaux)
Architecture technique : flux (3/5 : flux métiers de lecture des référentiels métier)
Architecture technique : flux (4/5 : flux des outils d’exploitation)
Architecture technique : flux (5/5 : flux du socle technique). Seul le port exposant les
services d’administration/exploitation est représenté sur le composant VITAM présenté
dans cette figure. e
Architecture technique : délimitation par zones
Architecture générique d’un systeme de gestiondelogs..
Architecture du sous-systeme de centralisationdeslogs
Déploiement d’un cluster Mongo DB avec sharding.

Vue d’ensemble des magasins de certificats déployés dans un systeme VITAM ; chaque
couleur correspond a une chaine de certification potentiellement disjointe des autres.

205

Liste des tableaux

N =

~N NN kN =

Documents de référence VITAM o 2
Inventaire des données VITAM it 18
Inventaire des données selon le type de stratégie VITAM 19
Dimensionnement XSmall e 94
Dimensionnement Small 96
Dimensionnement Medium e e 98
Dimensionnement Large L. 100
Dimensionnement XLarge o e 102
Matrice des flux inter-zones e e e e 106
Matrice des flux inter-sites e e e 107

206

Index

A

API,3
AU, 3

B

BDD, 3
BDO, 3

C

CA,3
CAS,3
CCFN, 3
CN, 3
COTS, 3
CRL, 3
CRUD, 3

D

DAT, 3
DC, 3
DEX, 3
DIN, 3
DIP,3
DMV, 3
DNS, 3
DNSSEC, 3
DSL, 3
DUA, 3

E

EAD, 3
EBIOS, 3
ELK, 3

F?

FIP,3

G

GOT, 3

IHM, 3
IP,3
IsaDG, 3

J

JRE, 3
JvM, 4

L

LAN, 4
LFC, 4
LTS, 4

M

M2M, 4
MitM, 4
MoReq, 4

N

NoSQL, 4
NTP, 4

O

OAIS, 4
ooM, 4
0Ss, 4
OWASP, 4

F)

PCA, 4
PDMA, 4
PKI, 4
PRA, 4

R

REST, 4
RGAA, 4
RGI, 4

207

VITAM - Architecture, Version 7.1.5

RPM, 4

S

SAE, 4
SEDA, 4
SGBD, 5
SGBDR, 5
SIA,S
SIEM, 5
SIP, 5
SSH, 5
Swift,5

T

TLS, 5
TNA, 5
TNR, 5
TTL, 5

U

UDP, 5
UlD, 5

\Y

VITAM, 5
VM, 5

W

WAF, 5
WAN, 5

208 Index

	Introduction
	Objectif de ce document
	Structure du document

	Rappels
	Information concernant les licences
	Documents de référence
	Documents internes
	Référentiels externes

	Glossaire

	Vue d’ensemble
	Drivers du projet
	Enjeux
	Contraintes et objectifs
	Positionnement

	Interfaces externes du système
	Interfaces requises
	Interfaces métier exposées

	Orientations générales
	Open Source
	API REST
	Big Data et Cloud computing
	Cloud storage
	PCA/PRA et répartitions des travaux
	Sécurité des données additionnelle
	Architecture multi-tenants
	Solution exploitable

	Architecture fonctionnelle

	Architecture applicative
	Architecture applicative
	Drivers de l’architecture
	Services
	Détail des flux d’information métier
	Données métier

	Architecture des données & multisite
	Inventaire des données
	Stockage et stratégies
	Multisite
	Stratégies & multisite
	Mode standard: exemple d’architecture mono-stratégie
	Mode avancé: exemple d’architecture multi-stratégie orienté Qualité de service
	Mode avancé: exemple d’architecture multi-stratégie orienté Offres objets

	Services métiers
	API externes (ingest-external et access-external)
	Moteur d’entrée (ingest-internal)
	Moteur d’accès (access-internal)
	Gestion des droits & accès (security-internal)
	Moteur d’exécution (processing)
	Espace de travail (workspace)
	Worker (worker)
	Moteur de données (metadata)
	Moteur de journalisation (logbook)
	Gestion des référentiels (functional-administration)
	Moteur de stockage (storage)
	Offre de stockage par défaut (storage-offer-default)
	Interface de démonstration (ihm-demo)
	Scheduler
	Connecteur générique

	Architecture technique / exploitation
	Principes d’architecture technique
	Principes communs et environnement des services
	Principes relatifs aux composants délivrés
	Nommage
	Principes relatifs aux services VITAM
	Principes relatifs aux COTS

	Utilisateurs, dossiers & droits
	Utilisateurs et groupes d’exécution
	Groupes
	Utilisateurs

	Arborescence de fichiers
	Services VITAM
	Arborescence VITAM
	Intégration au système

	COTS

	Principes sur les communications inter-services et le clustering
	Clusters applicatifs métier
	Appels REST des services métier
	Workers

	COTS & clustering
	Annuaire de services (service registry)

	Packaging
	Principes communs
	Dépôts
	CentOS
	Debian

	Prise en compte de la configuration dans le packaging
	CentOS
	Debian

	Déploiement de la solution
	Principes de déploiement
	Contraintes et vue d’ensemble
	Installation initiale
	Principes de mise à jour à chaud
	Multi-site
	Support de l’élasticité
	Validation du déploiement

	Suivi de l’état du système
	API de supervision
	Métriques
	Logs
	Protocoles : syslog
	Types de log
	Logs applicatifs
	Logs du garbage collector Java
	Logs d’accès

	Suivi de l’état de déploiement
	Intégration à un système de monitoring tiers

	Administration technique
	Démarrage / arrêt des services
	Tâches régulières

	Gestion des données du système
	Cas des déploiements de petite taille
	Dossiers
	Sauvegarde

	Restauration

	Services techniques fournis par la solution
	Moteur de déploiement et de configuration
	Chaîne de traitement de logs et de métriques
	Service registry

	Composants logiciels utilisés
	Fournis
	COTS
	Bibliothèques structurantes

	Requis

	Architecture technique détaillée
	Flux métier
	Flux exploitation
	Flux techniques
	Découpage en zones

	Stockage des données
	Stratégies de stockage
	Offre filesystem
	Offre Swift
	Offre S3
	Offre Tape-library

	Concentration et exploitation des logs applicatifs
	Besoins
	Modèle générique
	Choix des implémentations
	Émetteur de logs
	Agent de transport de log
	Concentration de logs
	Stockage des logs
	Gestion des index

	Visualisation des logs

	Intégration à un système de gestion de logs existants
	Limites

	Métriques applicatives
	Besoins
	Modèle générique
	Choix des implémentations
	Enregistreur de métriques
	Reporters de métriques
	Endpoint des métriques
	Stockage des métriques

	Limites

	Outillage de déploiement
	Outil
	Architecture de l’outil
	Gestion des secrets

	Service registry
	Architecture
	Résolution DNS
	Multi-site
	Packaging
	Monitoring

	Dépendances aux services d’infrastructures
	Ordonnanceurs techniques / batchs
	Curator
	Sécurisation des journaux d’opérations
	Sécurisation des journaux d’écriture
	Sécurisation des cycles de vie
	Cas de la sauvegarde

	Socles d’exécution
	Middlewares

	Composants déployés
	Access-external
	Access-internal
	Batch-report
	Collect-external
	Collect-internal
	Consul
	Architecture de déploiement

	Curator
	Elasticsearch-data
	Architecture de déploiement
	Monitoring

	Elasticsearch-log
	Architecture de déploiement

	Functional-administration
	Grafana
	Architecture de déploiement
	Ports utilisés

	Ingest-external
	Antivirus

	Ingest-internal
	Kibana
	Déploiement

	Logbook
	Logstash
	Metadata
	Metadata Collect
	Mongodb
	Base mongo-data
	Base mongo-offer
	Architecture de déploiement
	Architecture 1 noeud
	Architecture distribuée
	Ports utilisés

	Processing
	Prometheus server
	Architecture de déploiement
	Ports utilisés

	Prometheus alertmanager
	Architecture de déploiement
	Ports utilisés

	Prometheus node_exporter
	Architecture de déploiement
	Ports utilisés
	API exposées

	Prometheus Elasticsearch Exporter
	Architecture de déploiement
	Ports utilisés
	API exposées

	restic
	Architecture de déploiement

	Scheduler
	Security-internal
	API d’administration

	Siegfried
	Mode de fonctionnement dans VITAM

	Storage
	Storage-offer
	Types d’offre de stockage
	Cas des containers objet

	Worker
	Particularités

	Workspace
	Workspace Collect

	Guidelines de déploiement
	Eléments de dimensionnement
	Compute
	« xsmall » : développement local
	« small » : recette simple métier
	« medium » : production pour volumétries moyennes
	« large » : production pour volumétries moyennes avec besoin de résilience
	« xlarge » : production pour fortes volumétries

	Stockage
	Réseau : inter-site
	Scalabilité

	Matrice des flux
	Matrice des flux intra-site
	Matrice des flux inter-site

	Sécurité
	Principes
	Principes de cloisonnement
	Principes de sécurisation des accès externes
	Principes de sécurisation des communications internes au système
	Principes de sécurisation des bases de données
	MongoDB
	Elasticsearch

	Principes de sécurisation des secrets de déploiement

	Liste des secrets
	Certificats
	SELinux
	Documentation de sécurité

	Architecture détaillée
	Access
	Généralités
	Architecture Technique
	Introduction
	Présentation
	Itération 4
	Modules - packages

	Access-api
	Présentation

	Access-client
	Utilisation
	Le client
	Access-common
	Présentation

	Access-core
	Présentation
	Packages:
	Récupération d’un objet spécifique

	Access-rest
	Présentation
	Packages:
	fr.gouv.vitam.access.external.rest
	Rest API

	-AccessApplication.java
	-AccessResourceImpl.java
	-LogbookExternalResourceImpl.java
	-AdminManagementExternalResourceImpl.java

	Sécurité

	Batch-report
	Généralités
	Architecture Technique
	Introduction
	Présentation
	Découpage du code

	batch-report-client
	batch-report-common
	Acbatch-report-rest

	Sécurité

	Collect
	Généralités
	Architecture Technique
	Introduction
	Présentation
	Itération 4
	Modules - packages

	collect-client
	Utilisation
	Le client
	collect-rest
	Présentation
	Packages:
	fr.gouv.vitam.collect.resource
	Rest API

	-TransactionResource.java

	Sécurité

	Common
	Architecture Fonctionnelle
	Introduction
	But de cette documentation
	GUID
	ServerIdentity et Logger

	GUID
	Présentation de la problématique
	Qu’est ce qu’une URL pérenne ?
	Objectifs
	Préconisation E-ARK

	Solutions envisagées
	ARK
	Forme d’un ARK
	Identifiant Vitam
	Logique de construction
	Logique d’affichage
	Capacité de déconstruction

	Graphes
	Objectifs

	Vérification des formats :

	Architecture Technique
	Introduction
	But de cette documentation
	GUID

	GUID
	Identifiant Vitam
	Forme d’un identifiant Vitam

	Configuration jetty
	Gestion des Handlers :
	Schéma de certificats et d’authentification
	Présentation

	Common format identification
	Présentation
	Sous packages
	Identification :
	Exceptions :
	Model :
	Siegfried :

	Messages
	Messages Logbook
	Request ID
	Filtre client
	Sauvegarde dans le thread local
	Filtre Serveur
	Affichage dans les logs

	Securite
	Introduction
	Securité de MongoDB
	Objectifs

	secret de la plateforme
	Objectifs

	Functional administration
	Architecture Fonctionnelle
	Introduction
	But de cette documentation

	Gestion de format
	Gestion de règles
	Sauvegarde du référentiel des règles de gestion

	Architecture Technique
	Introduction

	Securite
	Introduction

	IHM demo
	Architecture fonctionnelle
	Architecture fonctionnelle de l’application Back
	But de cette documentation
	Fonctionnement général du module
	Recherche des units : POST /ihm-demo/v1/api/archivesearch/units
	Affichage du détail d’une archive unit : GET /ihm-demo/v1/api/archivesearch/unit/{id}
	Modification et enregistrement des détails d’une archive unit : PUT /ihm-demo/v1/api/archiveupdate/units/{id}
	Remarque importante
	Reste à faire

	Architecture fonctionnelle de l’application Front
	But de cette documentation
	Modules AngularJS déclarés
	Routage
	Factories/Services
	Controllers
	Components

	Architecture technique
	Architecture technique de l’application Back
	But de cette documentation
	Organisation du module ihm-demo
	1. Module ihm-demo-web-application
	package fr.gouv.vitam.ihmdemo.appserver
	2. Module ihm-core
	package fr.gouv.vitam.ihmdemo.core

	Architecture technique de l’application Front
	But de cette documentation
	Le Framework Front : AngularJS 1.5.3
	Les modules AngularJS utilisés:
	Autres frameworks Front utilisés

	Organisation de l’application

	IHM recette
	Architecture technique
	Architecture technique de l’application Back
	But de cette documentation
	Organisation du module ihm-recette
	1. Module ihm-demo-web-application
	package fr.gouv.vitam.ihmdemo.appserver
	package fr.gouv.vitam.ihmdemo.appserver.performance.
	2. Module ihm-recette-web-front
	3. Module ihm-core

	Architecture technique de l’application Front
	But de cette documentation
	Le Framework Front : AngularJS 1.5.3
	Les modules AngularJS utilisés:
	Autres frameworks Front utilisés

	Organisation de l’application

	Ingest
	Architecture Fonctionnelle
	Généralités
	Généralités
	Téléchargement standard et test à blanc d’un SIP:
	Autres Fonctionnalités:
	Ingest ExternalAntivirus
	Généralités
	Fonctionnalités concernant le workflow
	Les actions:
	Asynchrone:

	Technique
	Architecture Technique Ingest
	Présentation

	ingest-rest
	Présentation
	IngestInternalApplication.java

	Securite
	Introduction

	Security-Internal
	Architecture Fonctionnelle
	Introduction
	But de cette documentation
	Security-internal

	Architecture Technique
	Introduction

	Securite
	Introduction

	Logbook
	Architecture Fonctionnelle
	Généralités
	Journal d’opération

	Journal de cycle de vie
	Modèle de données
	Description des champs

	Modèle de données
	Description des champs

	Architecture technique
	Introduction
	Présentation
	Itération 3 et Itération 5
	Itérations suivantes / à plus long terme

	Modules - packages logbook

	DSL
	Analyse
	Présentation
	Explication
	Utilisation

	Conclusion

	Rest
	Présentation
	Services

	Common-client
	Présentation
	Services

	Common-client
	Présentation
	Services
	Données

	Commons
	Présentation
	Services

	Operation Client
	Présentation
	Services

	Opération
	Présentation
	Services
	Rest API

	Lifecycle Client
	Présentation
	Services

	Lifecycle
	Présentation
	Services
	Rest API

	Administration-client
	Présentation
	Services

	Administration
	Présentation
	Services
	Rest API

	Securite
	Introduction

	Metadata
	Architecture Fonctionnelle
	Introduction
	Généralités

	Architecture technique
	Introduction
	Présentation
	Itération 4
	Modules - packages

	Opération
	Présentation
	Services
	Rest API

	Metadata-api
	Présentation

	Metadata-builder
	Présentation

	Operation Client
	Présentation

	metadata-core
	Présentation
	1. Modules et packages
	2. Classes
	2.1 Class DbRequest
	2.2 Class ElasticsearchAccessMetadata
	2.3 Class MetaDataImpl
	2.4 Class UnitNode
	2.5 Class UnitRuleCompute
	2.5 Class UnitInheritedRule

	metadata-parser
	Présentation

	Métadata
	Présentation
	Services
	Rest API

	Rest
	Présentation
	Services

	Securite
	Introduction

	Processing
	architecture-fontionnelle-processing
	Introduction
	But de cette documentation
	Processing

	Processing Management
	Engine
	Distributor
	Worker
	Process Monitoring

	Architecture Technique
	Introduction
	DAT : module processing
	Module et packages
	Modèle
	Process Distributor
	Parallélisme dans le distributeur

	Rangement des objets
	Algorithme

	Vérification de la disponibilité
	Algorithme

	Vérifier SEDA
	Algorithme

	Métriques spécifiques du composant processing
	Besoins
	Liste des métriques
	Exploitation des métriques

	Securite
	Introduction

	Scheduler
	Généralités
	Architecture Technique
	Introduction
	Présentation

	Jobs de logbook VITAM
	Liste des classes implémentant les jobs
	TraceabilityLFCJob.java
	TraceabilityJob.java
	TraceabilityAuditJob.java
	ReconstructionOperationJob.java

	Jobs de metadata VITAM
	Liste des classes implémentant les jobs
	AuditDataConsistencyMongoEsJob.java
	ProcessObsoleteComputedInheritedRulesJob.java
	PurgeDipJob.java
	PurgeSipJob.java
	ReconstructionJob.java
	StoreGraphJob.java

	Jobs de functional-administration VITAM
	Liste des classes implémentant les jobs
	ReconstructionAccessionRegisterJob.java
	ReconstructionReferentialJob.java
	ReferentialCreateSymblolicAccessionRegisterJob.java
	RuleManagementAuditJob.java

	Jobs de offer VITAM
	Liste des classes implémentant les jobs
	OfferLogCompactionJob.java

	Sécurité

	Storage
	Architecture Fonctionnelle
	Introduction

	Architecture Technique
	Introduction
	Présentation
	Itération 16
	Modules - packages Storage

	Architecture générale
	Schéma général
	Workflow du stockage des objets
	Itération 6
	Itération 7
	Itération 13
	Itération 14
	Itération 16
	R12

	Storage Driver
	Présentation
	Architecture
	Pour aller plus loin

	Storage Engine
	Présentation
	Services
	Rest API
	URI d’appel
	Headers
	Méthodes
	Distribution
	DriverManager : SPI
	Principe
	Persistance

	Storage Engine Client
	Présentation

	Storage Offers
	Présentation

	Vitam Offer
	Présentation
	Driver
	Serveur
	Description
	REST
	Description
	REST API

	Métriques spécifiques du composant storage-engine
	Besoins
	Liste des métriques
	Exploitation des métriques

	Securite
	Introduction

	Technical administration
	Architecture Fonctionnelle
	Introduction

	Architecture Technique
	Introduction

	Securite
	Introduction

	Worker
	architecture-fontionnelle-processing
	Introduction
	But de cette documentation
	Worker

	Worker
	notification-atr-ok
	notification-atr-ko
	Contrôle de la cohérence de SIPs

	Architecture Technique
	Module Worker
	Worker server
	Présentation
	Services
	Rest API
	URI d’appel
	Headers
	Méthodes

	Extraire les métadonnées des ArchiveUnit et DataObject
	Général
	Workspace avant extraction :
	Workspace après extraction :

	Algorithme
	Algorithme d’update pour l’extract SEDA

	notification-atr-ok
	notification-atr-ko
	Plugin Worker
	But de cette documentation
	Introduction
	Appel du plugin
	Résultat du plugin
	Implémentation
	Worker
	PluginPropertiesLoader
	Intégration

	Securite
	Introduction

	Workspace
	Architecture Fonctionnelle
	Introduction

	Architecture Technique
	Introduction

	Securite
	Introduction

	Annexes
	Index

